Research article

Boundedness analysis of non-autonomous stochastic differential systems with Lévy noise and mixed delays

  • Received: 26 June 2020 Accepted: 28 July 2020 Published: 31 July 2020
  • MSC : 34K50, 34K20, 60G51

  • The present research studies the boundedness issue of Lévy driven non-autonomous stochastic differential systems with mixed discrete and distributed delays. A set of sufficient conditions of the $p$th moment globally asymptotical boundedness is obtained by combining the Lyapunov function method with the inequality technique. The proposed results reveal that the convergence rate $\lambda$ and the coefficients of the estimates for Lyapunov function $W$ and Itô operator $\mathcal {L}W$ can determine the upper bound for the solution. The presented results are demonstrated by an illustrative example.

    Citation: Danhua He, Liguang Xu. Boundedness analysis of non-autonomous stochastic differential systems with Lévy noise and mixed delays[J]. AIMS Mathematics, 2020, 5(6): 6169-6182. doi: 10.3934/math.2020396

    Related Papers:

  • The present research studies the boundedness issue of Lévy driven non-autonomous stochastic differential systems with mixed discrete and distributed delays. A set of sufficient conditions of the $p$th moment globally asymptotical boundedness is obtained by combining the Lyapunov function method with the inequality technique. The proposed results reveal that the convergence rate $\lambda$ and the coefficients of the estimates for Lyapunov function $W$ and Itô operator $\mathcal {L}W$ can determine the upper bound for the solution. The presented results are demonstrated by an illustrative example.


    加载中


    [1] X. Mao, Stochastic Differential Equations and Applications, Chichester: Horwood, 1997.
    [2] T. Taniguchi, K. Liu, A. Truman, Existence, uniqueness, and asymptotic behavior of mild solutions to stochastic functional differential equations in Hilbert spaces, J. Differ. Equations, 181 (2002), 72-91.
    [3] D. Xu, Z. Yang, Y. Huang, Existence-uniqueness and continuation theorems for stochastic functional differential equations, J. Differ. Equations, 245 (2008), 1681-1703. doi: 10.1016/j.jde.2008.03.029
    [4] R. Z. Has'minskii, Stochastic Stability of Differential Equations, Heidelberg: Springer-Verlag, 2012.
    [5] H. Hu, L. Xu, Existence and uniqueness theorems for periodic Markov process and applications to stochastic functional differential equations, J. Math. Anal. Appl., 466 (2018), 896-926. doi: 10.1016/j.jmaa.2018.06.025
    [6] D. Xu, Y. Huang, Z. Yang, Existence theorems for periodic Markov process and stochastic functional differential equations, Discrete Contin. Dyn. Syst., 24 (2009), 1005-1023. doi: 10.3934/dcds.2009.24.1005
    [7] R. Sakthivel, J. Luo, Asymptotic stability of nonlinear impulsive stochastic differential equations, Statist. Probab. Lett., 79 (2009), 1219-1223. doi: 10.1016/j.spl.2009.01.011
    [8] R. Sakthivel, J. Luo, Asymptotic stability of impulsive stochastic partial differential equations with infinite delays, J. Math. Anal. Appl., 356 (2009), 1-6. doi: 10.1016/j.jmaa.2009.02.002
    [9] R. Sakthivel, Y. Ren, H. Kim, Asymptotic stability of second-order neutral stochastic differential equations, J. Math. Phys., 51 (2010), 052701.
    [10] L. Xu, S. S. Ge, The pth moment exponential ultimate boundedness of impulsive stochastic differential systems, Appl. Math. Lett., 42 (2015), 22-29. doi: 10.1016/j.aml.2014.10.018
    [11] L. Xu, Z. Dai, D. He, Exponential ultimate boundedness of impulsive stochastic delay differential equations, Appl. Math. Lett., 85 (2018), 70-76. doi: 10.1016/j.aml.2018.05.019
    [12] L. Xu, Z. Dai, H. Hu, Almost sure and moment asymptotic boundedness of stochastic delay differential systems, Appl. Math. Comput., 361 (2019), 157-168. doi: 10.1016/j.cam.2019.04.001
    [13] L. Xu, S. S. Ge, H. Hu, Boundedness and stability analysis for impulsive stochastic differential equations driven by G-Brownian motion, Int. J. Control, 92 (2019), 642-652. doi: 10.1080/00207179.2017.1364426
    [14] L. Xu, H. Hu, Boundedness analysis of stochastic pantograph differential systems, Appl. Math. Lett., 111 (2021), 106630.
    [15] B. Tojtovska, S. Jankovic, On a general decay stability of stochastic Cohen-Grossberg neural networks with time-varying delays, Appl. Math. Comput., 219 (2012), 2289-2302.
    [16] A. Rathinasamy, J. Narayanasamy, Mean square stability and almost sure exponential stability of two step Maruyama methods of stochastic delay Hopfield neural networks, Appl. Math. Comput., 348 (2019), 126-152.
    [17] O. M. Otunuga, Closed-form probability distribution of number of infections at a given time in a stochastic SIS epidemic model, Heliyon, 5 (2019), e02499.
    [18] A. Raza, M. Rafiq, D. Baleanu, et al. Competitive numerical analysis for stochastic HIV/AIDS epidemic model in a two-sex population, IET syst. biol., 13 (2019), 305-315. doi: 10.1049/iet-syb.2019.0051
    [19] D. He, L. Xu, Globally impulsive asymptotical synchronization of delayed chaotic systems with stochastic perturbation, Rocky MT. J. Math., 42 (2012), 617-632. doi: 10.1216/RMJ-2012-42-2-617
    [20] J. Zhao, Adaptive Q-S synchronization between coupled chaotic systems with stochastic perturbation and delay, Appl. Math. Model., 36 (2012), 3312-3319. doi: 10.1016/j.apm.2011.10.029
    [21] R. Sakthivel, T. Saravanakumar, B. Kaviarasan, et al., Dissipativity based repetitive control for switched stochastic dynamical systems, Appl. Math. Comput., 291 (2016), 340-353.
    [22] L. Xu, D. He, Mean square exponential stability analysis of impulsive stochastic switched systems with mixed delays, Comput. Math. Appl., 62 (2011), 109-117. doi: 10.1016/j.camwa.2011.04.056
    [23] L. Liu, F. Deng, pth moment exponential stability of highly nonlinear neutral pantograph stochastic differential equations driven by Lévy noise, Appl. Math. Lett., 86 (2018), 313-319. doi: 10.1016/j.aml.2018.07.003
    [24] Q. Zhu, Stability analysis of stochastic delay differential equations with Lévy noise, Syst. Control Let., 118 (2018), 62-68. doi: 10.1016/j.sysconle.2018.05.015
    [25] Y. Xu, B. Pei, G. Guo, Existence and stability of solutions to non-Lipschitz stochastic differential equations driven by Lévy noise, Appl. Math. Comput., 263 (2015), 398-409.
    [26] J. Yang, X. Liu, X. Liu, Stability of stochastic functional differential systems with semi-Markovian switching and Lévy noise by functional Itô's formula and its applications, J. Frankl. Inst., 357 (2020), 4458-4485. doi: 10.1016/j.jfranklin.2020.03.012
    [27] D. Applebaum, M. Siakalli, Asymptotic stability of stochastic differential equations driven by Lévy noise, J. Appl. Probab. 46 (2009), 1116-1129. doi: 10.1239/jap/1261670692
    [28] D. He, L. Xu, Boundedness analysis of stochastic integrodifferential systems with Lévy noise, J. Taibah Univ. Sci., 14 (2020), 87-93. doi: 10.1080/16583655.2019.1708540
    [29] E. Beckenbach, R. Bellman, Inequalities, New York: Springer-Verlag, 1961.
    [30] X. Mao, C. Yuan, Stochastic Differential Equations with Markovian Switching, London: Imperial College Press, 2006.
    [31] Y. Miyahara, Ultimate boundedness of the systems governed by stochastic differential equations, Nagoya Math. J., 47 (1972), 111-144. doi: 10.1017/S0027763000014951
    [32] H. Ahmad, A. R. Seadawy, T. A. Khan, et al. Analytic approximate solutions for some nonlinear Parabolic dynamical wave equations, J. Taibah. Univ. Sci., 14 (2020), 346-358. doi: 10.1080/16583655.2020.1741943
    [33] S. Peszat, J. Zabczyk, Stochastic Partial Differential Equations with Lévy Noise-Evolution Equation Approach, Cambridge: Cambridge Univ Press, 2009.
    [34] L. Xu, S. S. Ge, Asymptotic behavior analysis of complex-valued impulsive differential systems with time-varying delays, Nonlinear Anal.: Hybrid Syst., 27 (2018), 13-28. doi: 10.1016/j.nahs.2017.07.002
    [35] L. Xu, X. Chu, H. Hu, Exponential ultimate boundedness of non-autonomous fractional differential systems with time delay and impulses, Appl. Math. Lett., 99 (2020), 106000.
    [36] S. Ma, Y. Kang, Periodic averaging method for impulsive stochastic differential equations with Lévy noise, Appl. Math. Lett., 93 (2019), 91-97. doi: 10.1016/j.aml.2019.01.040
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3217) PDF downloads(220) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog