Research article

Distinguished subspaces in topological sequence spaces theory

  • Received: 23 October 2019 Accepted: 16 March 2020 Published: 18 March 2020
  • MSC : 46A45, 46A20

  • In this paper, we study $R_{\lambda}$-semiconservative $FK$-spaces for Riesz-method defined by the Riesz matrix $(R)$ and give some characterizations. We show that if $\ell_{A}$ is $\ell$-replaceable, then $A$ can not be $R_{\lambda}$-semiconservative and also if $X_{A}$ is $R_{\lambda}$-conull $FK$-space then it must be $R_{\lambda}$-semiconservative space. In addition, we determine a new $r(\lambda)$ and $rb(\lambda)$ type duality of a sequence space $X$ containing $\varphi$. The paper aims to develop some new subspaces which each one has its own value on topological sequence spaces theory. These subspaces are called as $R_{\lambda}S; R_{\lambda}W; R_{\lambda}F^{+}; $ and $R_{\lambda}B^{+}$ for a locally convex $FK$-space X containing $\varphi$. The subspaces mentioned in the work requires some serious studies and they arose independently from the literature which was done at the recent stage of the development of summability through functional analysis.

    Citation: Merve Temizer Ersoy, Hasan Furkan. Distinguished subspaces in topological sequence spaces theory[J]. AIMS Mathematics, 2020, 5(4): 2858-2868. doi: 10.3934/math.2020183

    Related Papers:

  • In this paper, we study $R_{\lambda}$-semiconservative $FK$-spaces for Riesz-method defined by the Riesz matrix $(R)$ and give some characterizations. We show that if $\ell_{A}$ is $\ell$-replaceable, then $A$ can not be $R_{\lambda}$-semiconservative and also if $X_{A}$ is $R_{\lambda}$-conull $FK$-space then it must be $R_{\lambda}$-semiconservative space. In addition, we determine a new $r(\lambda)$ and $rb(\lambda)$ type duality of a sequence space $X$ containing $\varphi$. The paper aims to develop some new subspaces which each one has its own value on topological sequence spaces theory. These subspaces are called as $R_{\lambda}S; R_{\lambda}W; R_{\lambda}F^{+}; $ and $R_{\lambda}B^{+}$ for a locally convex $FK$-space X containing $\varphi$. The subspaces mentioned in the work requires some serious studies and they arose independently from the literature which was done at the recent stage of the development of summability through functional analysis.


    加载中


    [1] J. Boos, Classical and Modern Methods in Summability, Oxford University Press, New York, Oxford, 2000.
    [2] A. Wilansky, Summability Through Funtional Analysis, North Holland, 1984.
    [3] A. Wilansky, Functional Analysis, Blaisdell Press, 1964.
    [4] K. Zeller, Allgemeine Eigenschaften von Limitierungsverfahren, Math. Z., 53 (1951), 463-487. doi: 10.1007/BF01175646
    [5] K. Zeller, Theorie der Limitierungsverfahren, Berlin-Heidelberg New York, 1958.
    [6] I. Dağadur, Cλ-conull FK-spaces, Demonstr. Math., 35 (2002), 835-848.
    [7] J. A. Osikiewicz, Equivalance results for Cesàro submethods, Analysis, 20 (2000), 35-43. doi: 10.1524/anly.2000.20.1.35
    [8] S. A. Mohiuddine, A. Alotaibi, Weighted almost convergence and related infinite matrices, J. Inequal. Appl., 2018 (2018), 15.
    [9] A. K. Snyder, A. Wilansky, Inclusion Theorems and Semiconservative FK spaces, Rocky Mtn. J. Math., 2 (1972), 595-603. doi: 10.1216/RMJ-1972-2-4-595
    [10] H. G. Ince, Cesàro semiconservative FK-Spaces, Math. Communs., 14 (2009), 157-165.
    [11] I. Dağadur, Cλ semiconservative FK-Spaces, Ukr. Math. J., 64 (2012), 908-918. doi: 10.1007/s11253-012-0697-y
    [12] U. Değer, On Approximation by Nörlund And Riesz Submethods in Variable Expotent Lebesgue Spaces, Commun. Fac. Sci. Univ. Ank. Series A1, 67 (2018), 46-67.
    [13] M. Buntinas, Convergent and bounded Cesaro sections in FK-space, Math. Z., 121 (1971), 191-200. doi: 10.1007/BF01111591
    [14] G. Goes, S. Goes, Sequence of bounded variations and sequences of Fourier coefficients I., Math. Z., 118 (1970), 93-102. doi: 10.1007/BF01110177
    [15] M. Temizer Ersoy, B. Altay, H. Furkan, On Riesz Sections in Sequence Spaces, Adv. Math. Compt. Sci., 24 (2017), 1-10. doi: 10.9734/JAMCS/2017/35815
    [16] M. S. Macphail, C. Orhan, Some Properties of Absolute Summability Domains, Analysis, 9 (1989), 317-322. doi: 10.1524/anly.1989.9.4.317
    [17] E. Malkowsky, F. Başar, A Survey On Some Paranormed Sequence Spaces, Filomat, 31 (2017), 1099-1122. doi: 10.2298/FIL1704099M
    [18] A. Malkowsky, F. Özger, V. Veličković, Matrix Transformations on Mixed Paranorm Spaces, Filomat, 31 (2017), 2957-2966. doi: 10.2298/FIL1710957M
    [19] H. B. Ellidokuzoglu, S. Demiriz, Euler-Riesz Difference Sequence Spaces, Turk. J. Math. Comput. Sci., 7 (2017), 63-72.
    [20] F. Gökçe, M. A. Sarıgöl, Generalization of the Absolute Cesàro Space and Some Matrix Transformations, Numer. Func. Anal. Opt., 40 (2019), 1039-1052. doi: 10.1080/01630563.2019.1596130
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3485) PDF downloads(340) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog