Citation: Jiyu Cai, Qian Sun, Xiangbo Meng. Novel nanostructured materials by atomic and molecular layer deposition[J]. AIMS Materials Science, 2018, 5(5): 957-999. doi: 10.3934/matersci.2018.5.957
[1] | Siegel RW (1993) Nanostructured materials-mind over matter. Nanostruct Mater 3: 1–18. doi: 10.1016/0965-9773(93)90058-J |
[2] | Moriarty P (2001) Nanostructured materials. Rep Prog Phys 64: 297–381. doi: 10.1088/0034-4885/64/3/201 |
[3] | Chen X, Li C, Grätzel M, et al. (2012) Nanomaterials for renewable energy production and storage. Chem Soc Rev 41: 7909–7937. doi: 10.1039/c2cs35230c |
[4] | Alivisatos AP (1996) Perspectives on the physical chemistry of semiconductor nanocrystals. J Phys Chem 100: 13226–13239. doi: 10.1021/jp9535506 |
[5] | Burda C, Chen X, Narayanan R, et al. (2005) Chemistry and properties of nanocrystals of different shapes. Chem Rev 105: 1025–1102. doi: 10.1021/cr030063a |
[6] | Peng L, Fang Z, Zhu Y, et al. (2018) Holey 2D nanomaterials for electrochemical energy storage. Adv Energy Mater 8: 1702179. doi: 10.1002/aenm.201702179 |
[7] | Bottari G, de la Torre G, Guldi DM, et al. (2010) Covalent and noncovalent phthalocyanine–carbon nanostructure systems: synthesis, photoinduced electron transfer, and application to molecular photovoltaics. Chem Rev 110: 6768–6816. doi: 10.1021/cr900254z |
[8] | Lee J, Singer JP, Thomas EL (2012) Micro-/Nanostructured mechanical metamaterials. Adv Mater 24: 4782–4810. doi: 10.1002/adma.201201644 |
[9] | Fourkas JT (2010) Nanoscale photolithography with visible light. J Phys Chem Lett 1: 1221–1227. doi: 10.1021/jz1002082 |
[10] | Biswas A, Bayer IS, Biris AS, et al. (2012) Advances in top-down and bottom-up surface nanofabrication: Techniques, applications & future prospects. Adv Colloid Interfac 170: 2–27. doi: 10.1016/j.cis.2011.11.001 |
[11] | Li SP, Peyrade D, Natali M, et al. (2001) Flux closure structures in cobalt rings. Phys Rev Lett 86: 1102. doi: 10.1103/PhysRevLett.86.1102 |
[12] | Berger S, Gibson J, Camarda R, et al. (1991) Projection electron-beam lithography: A new approach. J Vac Sci Technol B 9: 2996–2999. |
[13] | Brétagnol F, Sirghi L, Mornet S, et al. (2008) Direct fabrication of nanoscale bio-adhesive patterns by electron beam surface modification of plasma polymerized poly ethylene oxide-like coatings. Nanotechnology 19: 125306. doi: 10.1088/0957-4484/19/12/125306 |
[14] | Guo LJ (2004) Recent progress in nanoimprint technology and its applications. J Phys D Appl Phys 37: R123–R141. doi: 10.1088/0022-3727/37/11/R01 |
[15] | Xie G, Zhang J, Zhang Y, et al. (2009) Fabrication of metal suspending nanostructures by nanoimprint lithography (NIL) and isotropic reactive ion etching (RIE). Sci China Ser E-Technol Sci 52: 1181–1186. doi: 10.1007/s11431-008-0290-7 |
[16] | Chen Y, Ohlberg DA, Li X, et al. (2003) Nanoscale molecular-switch devices fabricated by imprint lithography. Appl Phys Lett 82: 1610–1612. doi: 10.1063/1.1559439 |
[17] | Leggett GJ (2006) Scanning near-field photolithography-surface photochemistry with nanoscale spatial resolution. Chem Soc Rev 35: 1150–1161. doi: 10.1039/B606706A |
[18] | Salaita K, Wang Y, Mirkin CA (2007) Applications of dip-pen nanolithography. Nat Nanotechnol 2: 145–155. doi: 10.1038/nnano.2007.39 |
[19] | Dagata JA, Schneir J, Harary HH, et al. (1990) Modification of hydrogen‐passivated silicon by a scanning tunneling microscope operating in air. Appl Phys Lett 56: 2001–2003. doi: 10.1063/1.102999 |
[20] | Suntola T, Antson J (1977) Method for producing compound thin films. U.S. Patent 4058430. |
[21] | Kim H, Maeng W (2009) Applications of atomic layer deposition to nanofabrication and emerging nanodevices. Thin Solid Films 517: 2563–2580. doi: 10.1016/j.tsf.2008.09.007 |
[22] | López T, Recillas S, Guevara P, et al. (2008) Pt/TiO2 brain biocompatible nanoparticles: GBM treatment using the C6 model in Wistar rats. Acta Biomater 4: 2037–2044. doi: 10.1016/j.actbio.2008.05.027 |
[23] | Song F, Su H, Han J, et al. (2010) Controllable synthesis and gas response of biomorphic SnO2 with architecture hierarchy of butterfly wings. Sensor Actuat B-Chem 145: 39–45. doi: 10.1016/j.snb.2009.11.011 |
[24] | Weatherspoon MR, Cai Y, Crne M, et al. (2008) 3D rutile titania-based structures with morpho butterfly wing scale morphologies. Angew Chem 120: 8039–8041. doi: 10.1002/ange.200801311 |
[25] | Zhao Y, He S, Wei M, et al. (2010) Hierarchical films of layered double hydroxides by using a sol–gel process and their high adaptability in water treatment. Chem Commun 46: 3031–3033. doi: 10.1039/b926906a |
[26] | Bayer I, Biswas A, Tripathi A, et al. (2009) Composite thin films of poly(phenylene oxide)/poly(styrene) and PPO/silver via vapor phase deposition. Polym Advan Technol 20: 775–784. doi: 10.1002/pat.1315 |
[27] | Dervishi E, Li Z, Watanabe F, et al. (2009) Thermally controlled synthesis of single-wall carbon nanotubes with selective diameters. J Mater Chem 19: 3004–3012. doi: 10.1039/b822469b |
[28] | Novoselov KS, Geim AK, Morozov SV, et al. (2005) Two-dimensional gas of massless Dirac fermions in graphene. Nature 438: 197–200. doi: 10.1038/nature04233 |
[29] | Biswas A, Eilers H, Hidden Jr F, et al. (2006) Large broadband visible to infrared plasmonic absorption from Ag nanoparticles with a fractal structure embedded in a Teflon AF® matrix. Appl Phys Lett 88: 013103. doi: 10.1063/1.2161401 |
[30] | Mijatovic D, Eijkel JC, van den Berg A (2005) Technologies for nanofluidic systems: top-down vs. bottom-up-a review. Lab Chip 5: 492–500. doi: 10.1039/b416951d |
[31] | Hobbs RG, Petkov N, Holmes JD (2012) Semiconductor nanowire fabrication by bottom-up and top-down paradigms. Chem Mater 24: 1975–1991. doi: 10.1021/cm300570n |
[32] | Siegel RW (1993) Synthesis, Structure and Properties of Nanostructred Materials, In: Fiorani D, Sberveglieri G, Fundamental properties of nanostructured materials, Singapore: World Scientific, 3–19. |
[33] | Yu Z, Tetard L, Zhai L, et al. (2015) Supercapacitor electrode materials: nanostructures from 0 to 3 dimensions. Energ Environ Sci 8: 702–730. doi: 10.1039/C4EE03229B |
[34] | Kiss L, Söderlund J, Niklasson G, et al. (1999) New approach to the origin of lognormal size distributions of nanoparticles. Nanotechnology 10: 25–28. doi: 10.1088/0957-4484/10/1/006 |
[35] | Tang F, Higgins AJ, Goroshin S (2009) Effect of discreteness on heterogeneous flames: propagation limits in regular and random particle arrays. Combust Theor Model 13: 319–341. doi: 10.1080/13647830802632184 |
[36] | Kim Y, Han JH, Hong BH, et al. (2010) Electrochemical synthesis of CdSe quantum‐dot arrays on a graphene basal plane using mesoporous silica thin‐film templates. Adv Mater 22: 515–518. doi: 10.1002/adma.200902736 |
[37] | Wang J, Lin M, Yan Y, et al. (2009) CdSe/AsS core–shell quantum dots: preparation and two-photon fluorescence. J Am Chem Soc 131: 11300–11301. doi: 10.1021/ja904675a |
[38] | Portet C, Yushin G, Gogotsi Y (2007) Electrochemical performance of carbon onions, nanodiamonds, carbon black and multiwalled nanotubes in electrical double layer capacitors. Carbon 45: 2511–2518. doi: 10.1016/j.carbon.2007.08.024 |
[39] | Lee JY, Hong BH, Kim WY, et al. (2009) Near-field focusing and magnification through self-assembled nanoscale spherical lenses. Nature 460: 498–501. doi: 10.1038/nature08173 |
[40] | Jeevanandam J, Barhoum A, Chan YS, et al. (2018) Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein J Nanotech 9: 1050–1074. doi: 10.3762/bjnano.9.98 |
[41] | Xia H, Feng J, Wang H, et al. (2010) MnO2 nanotube and nanowire arrays by electrochemical deposition for supercapacitors. J Power Sources 195: 4410–4413. doi: 10.1016/j.jpowsour.2010.01.075 |
[42] | Park J, Nalwa KS, Leung W, et al. (2010) Fabrication of metallic nanowires and nanoribbons using laser interference lithography and shadow lithography. Nanotechnology 21: 215301. doi: 10.1088/0957-4484/21/21/215301 |
[43] | Okada T, Kawashima K, Nakata Y, et al. (2005) Synthesis of ZnO nanorods by laser ablation of ZnO and Zn targets in He and O2 background gas. Jpn J Appl Phys 44: 688–691. doi: 10.1143/JJAP.44.688 |
[44] | Han J, Qin J, Guo L, et al. (2018) Ultrasmall Fe2GeO4 nanodots anchored on interconnected carbon nanosheets as high-performance anode materials for lithium and sodium ion batteries. Appl Surf Sci 427: 670–679. |
[45] | Yuan W, Qiu Z, Chen Y, et al. (2018) A binder-free composite anode composed of CuO nanosheets and multi-wall carbon nanotubes for high-performance lithium-ion batteries. Electrochim Acta 267: 150–160. doi: 10.1016/j.electacta.2018.02.081 |
[46] | Li C, Wei G, Wang S, et al. (2018) Two-dimensional coupling: Sb nanoplates embedded in MoS2 nanosheets as efficient anode for advanced sodium ion batteries. Mater Chem Phys 211: 375–381. doi: 10.1016/j.matchemphys.2018.03.010 |
[47] | Tang Q, Su H, Cui Y, et al. (2018) Ternary tin-based chalcogenide nanoplates as a promising anode material for lithium-ion batteries. J Power Sources 379: 182–190. doi: 10.1016/j.jpowsour.2018.01.051 |
[48] | Kong X, Wang Y, Lin J, et al. (2018) Twin-nanoplate assembled hierarchical Ni/MnO porous microspheres as advanced anode materials for lithium-ion batteries. Electrochim Acta 259: 419–426. doi: 10.1016/j.electacta.2017.11.002 |
[49] | Xu F, Liu M, Li X, et al. (2018) Loading of indocyanine green within polydopamine-coated laponite nanodisks for targeted cancer photothermal and photodynamic therapy. Nanomaterials 8: 1–16. |
[50] | Li Z, Huang F, Peng B, et al. (2018) A kind of economical, environment-friendly and controllable synthesis of Nb3O7F nanowalls and their photocatalytic properties. Mater Lett 214: 165–169. doi: 10.1016/j.matlet.2017.11.124 |
[51] | Srivastava SK, Kumar V, Vankar VD (2018) Carbon Nanowalls: A potential 2-Dimensional material for field emission and energy-related applications, In: Khan Z, Nanomaterials and Their Applications, Part of the Advanced Structured Materials book series, Singapore: Springer, 27–71. |
[52] | Gautam UK, Vivekchand S, Govindaraj A, et al. (2005) GaS and GaSe nanowalls and their transformation to Ga2O3 and GaN nanowalls. Chem Commun 3995–3997. |
[53] | Park JK, Kang H, Kim JH, et al. (2018) Improvement of electrical properties of carbon nanowall by the deposition of thin film. J Nanosci Nanotechno 18: 6026–6028. doi: 10.1166/jnn.2018.15591 |
[54] | Khot LR, Sankaran S, Maja JM, et al. (2012) Applications of nanomaterials in agricultural production and crop protection: a review. Crop Prot 35: 64–70. doi: 10.1016/j.cropro.2012.01.007 |
[55] | Peters RJ, Bouwmeester H, Gottardo S, et al. (2016) Nanomaterials for products and application in agriculture, feed and food. Trends Food Sci Tech 54: 155–164. doi: 10.1016/j.tifs.2016.06.008 |
[56] | Navrotsky A (2000) Nanomaterials in the environment, agriculture, and technology (NEAT). J Nanopart Res 2: 321–323. doi: 10.1023/A:1010007023813 |
[57] | Paull J (2011) Nanomaterials in food and agriculture: The big issue of small matter for organic food and farming. Proceedings of the Third Scientific Conference of ISOFAR (International Society of Organic Agriculture Research), 28 September–1 October, Namyangju, Korea, 2: 96–99. |
[58] | Magnuson BA, Jonaitis TS, Card JW (2011) A brief review of the occurrence, use, and safety of food–related nanomaterials. J Food Sci 76: R126–R133. doi: 10.1111/j.1750-3841.2011.02170.x |
[59] | Ranjan S, Dasgupta N, Chakraborty AR, et al. (2014) Nanoscience and nanotechnologies in food industries: opportunities and research trends. J Nanopart Res 16: 2464. doi: 10.1007/s11051-014-2464-5 |
[60] | Kagan CR (2016) At the nexus of food security and safety: opportunities for nanoscience and nanotechnology. ACS Nano 10: 2985–2986. doi: 10.1021/acsnano.6b01483 |
[61] | Yao J, Yang M, Duan Y (2014) Chemistry, biology, and medicine of fluorescent nanomaterials and related systems: new insights into biosensing, bioimaging, genomics, diagnostics, and therapy. Chem Rev 114: 6130–6178. doi: 10.1021/cr200359p |
[62] | Solanki A, Kim JD, Lee K (2008) Nanotechnology for regenerative medicine: nanomaterials for stem cell imaging. Nanomedicine 3: 567–578. doi: 10.2217/17435889.3.4.567 |
[63] | Skoog S, Elam J, Narayan R (2013) Atomic layer deposition: medical and biological applications. Int Mater Rev 58: 113–129. doi: 10.1179/1743280412Y.0000000009 |
[64] | Lehner R, Wang X, Marsch S, et al. (2013) Intelligent nanomaterials for medicine: carrier platforms and targeting strategies in the context of clinical application. Nanomed-Nanotechnol 9: 742–757. doi: 10.1016/j.nano.2013.01.012 |
[65] | Yao J, Sun Y, Yang M, et al. (2012) Chemistry, physics and biology of graphene-based nanomaterials: new horizons for sensing, imaging and medicine. J Mater Chem 22: 14313–14329. doi: 10.1039/c2jm31632c |
[66] | Xu B (2009) Gels as functional nanomaterials for biology and medicine. Langmuir 25: 8375–8377. doi: 10.1021/la900987r |
[67] | Masciangioli T, Zhang W (2003) Peer reviewed: environmental technologies at the nanoscale. Environ Sci Technol 37: 102A–108A. doi: 10.1021/es0323998 |
[68] | Mu L, Sprando RL (2010) Application of nanotechnology in cosmetics. Pharm Res 27: 1746–1749. doi: 10.1007/s11095-010-0139-1 |
[69] | Bowman DM, Van Calster G, Friedrichs S (2010) Nanomaterials and regulation of cosmetics. Nat Nanotechnol 5: 92. doi: 10.1038/nnano.2010.12 |
[70] | Musee N (2011) Simulated environmental risk estimation of engineered nanomaterials: a case of cosmetics in Johannesburg City. Hum Exp Toxicol 30: 1181–1195. doi: 10.1177/0960327110391387 |
[71] | Brauer S, Lem K, Haw J (2009) The markets for soft nanomaterials: cosmetics and pharmaceuticals. Nano and Green Technology Conference, 17–19. |
[72] | Raj S, Jose S, Sumod US, et al. (2012) Nanotechnology in cosmetics: opportunities and challenges. J Pharm Bioallied Sci 4: 186–193. |
[73] | Harifi T, Montazer M (2015) A review on textile sonoprocessing: a special focus on sonosynthesis of nanomaterials on textile substrates. Ultrason Sonochem 23: 1–10. doi: 10.1016/j.ultsonch.2014.08.022 |
[74] | Dawson T (2008) Nanomaterials for textile processing and photonic applications. Color Technol 124: 261–272. doi: 10.1111/j.1478-4408.2008.00151.x |
[75] | Butola B, Mohammad F (2016) Silver nanomaterials as future colorants and potential antimicrobial agents for natural and synthetic textile materials. RSC Adv 6: 44232–44247. doi: 10.1039/C6RA05799C |
[76] | Mahmoud HR, Ibrahim SM, El-Molla SA (2016) Textile dye removal from aqueous solutions using cheap MgO nanomaterials: adsorption kinetics, isotherm studies and thermodynamics. Adv Powder Technol 27: 223–231. doi: 10.1016/j.apt.2015.12.006 |
[77] | Lee T, Lee W, Kim S, et al. (2016) Flexible textile strain wireless sensor functionalized with hybrid carbon nanomaterials supported ZnO nanowires with controlled aspect ratio. Adv Funct Mater 26: 6206–6214. doi: 10.1002/adfm.201601237 |
[78] | Pradeep T (2009) Noble metal nanoparticles for water purification: a critical review. Thin Solid Films 517: 6441–6478. doi: 10.1016/j.tsf.2009.03.195 |
[79] | Theron J, Walker JA, Cloete TE (2010) Nanotechnology and water treatment: Applications and emerging opportunities, In: Cloete TE, De Kwaadsteniet M, Botes M, et al. Nanotechnology in water treatment applications, Caister Academic Press, 1–38. |
[80] | Savage N, Diallo MS (2005) Nanomaterials and water purification: opportunities and challenges. J Nanopart Res 7: 331–342. doi: 10.1007/s11051-005-7523-5 |
[81] | Ummartyotin S, Manuspiya H (2015) A critical review on cellulose: from fundamental to an approach on sensor technology. Renew Sust Energ Rev 41: 402–412. doi: 10.1016/j.rser.2014.08.050 |
[82] | Yoon H, Jang J (2009) Conducting-polymer nanomaterials for high-performance sensor applications: issues and challenges. Adv Funct Mater 19: 1567–1576. doi: 10.1002/adfm.200801141 |
[83] | Llobet E (2013) Gas sensors using carbon nanomaterials: A review. Sensor Actuat B-Chem 179: 32–45. doi: 10.1016/j.snb.2012.11.014 |
[84] | Bai J, Zhou B (2014) Titanium dioxide nanomaterials for sensor applications. Chem Rev 114: 10131–10176. doi: 10.1021/cr400625j |
[85] | Sengupta D, Das P, Mondal B, et al. (2016) Effects of doping, morphology and film-thickness of photo-anode materials for dye sensitized solar cell application-A review. Renew Sust Energ Rev 60: 356–376. doi: 10.1016/j.rser.2016.01.104 |
[86] | Sengupta D, Das P, Kasinadhuni U, et al. (2014) Morphology induced light scattering by zinc oxide polydisperse particles: Promising for dye sensitized solar cell application. J Renew Sustain Ener 6: 063114. doi: 10.1063/1.4904435 |
[87] | Le Viet A, Jose R, Reddy M, et al. (2010) Nb2O5 photoelectrodes for dye-sensitized solar cells: choice of the polymorph. J Phys Chem C 114: 21795–21800. doi: 10.1021/jp106515k |
[88] | Saito M, Fujihara S (2008) Large photocurrent generation in dye-sensitized ZnO solar cells. Energ Environ Sci 1: 280–283. doi: 10.1039/b806096g |
[89] | Turković A, Orel ZC (1997) Dye-sensitized solar cell with CeO2 and mixed CeO2/SnO2 photoanodes. Sol Energ Mat Sol C 45: 275–281. doi: 10.1016/S0927-0248(96)00076-1 |
[90] | Zheng H, Tachibana Y, Kalantar-zadeh K (2010) Dye-sensitized solar cells based on WO3. Langmuir 26: 19148–19152. doi: 10.1021/la103692y |
[91] | Zhang Q, Cao G (2011) Hierarchically structured photoelectrodes for dye-sensitized solar cells. J Mater Chem 21: 6769–6774. doi: 10.1039/c0jm04345a |
[92] | Law M, Greene LE, Johnson JC, et al. (2005) Nanowire dye-sensitized solar cells. Nat Mater 4: 455–459. doi: 10.1038/nmat1387 |
[93] | Martinson AB, Elam JW, Hupp JT, et al. (2007) ZnO nanotube based dye-sensitized solar cells. Nano Lett 7: 2183–2187. doi: 10.1021/nl070160+ |
[94] | Schlur L, Carton A, Lévêque P, et al. (2013) Optimization of a new ZnO nanorods hydrothermal synthesis method for solid state dye sensitized solar cells applications. J Phys Chem C 117: 2993–3001. doi: 10.1021/jp305787r |
[95] | Ameen S, Akhtar MS, Song M, et al. (2012) Vertically aligned ZnO nanorods on hot filament chemical vapor deposition grown graphene oxide thin film substrate: solar energy conversion. ACS Appl Mater Inter 4: 4405–4412. doi: 10.1021/am301064j |
[96] | Guo D, Wang J, Cui C, et al. (2013) ZnO@TiO2 core-shell nanorod arrays with enhanced photoelectrochemical performance. Sol Energy 95: 237–245. doi: 10.1016/j.solener.2013.06.003 |
[97] | Chen H, Zhang T, Fan J, et al. (2013) Electrospun hierarchical TiO2 nanorods with high porosity for efficient dye-sensitized solar cells. ACS Appl Mater Inter 5: 9205–9211. doi: 10.1021/am402853q |
[98] | Roy P, Kim D, Lee K, et al. (2010) TiO2 nanotubes and their application in dye-sensitized solar cells. Nanoscale 2: 45–59. doi: 10.1039/B9NR00131J |
[99] | Zhang Q, Cao G (2011) Nanostructured photoelectrodes for dye-sensitized solar cells. Nano Today 6: 91–109. doi: 10.1016/j.nantod.2010.12.007 |
[100] | Lee CS, Kim JK, Lim JY, et al. (2014) One-step process for the synthesis and deposition of anatase, two-dimensional, disk-shaped TiO2 for dye-sensitized solar cells. ACS Appl Mater Inter 6: 20842–20850. doi: 10.1021/am505217k |
[101] | Lin J, Peng Y, Pascoe AR, et al. (2015) A Bi-layer TiO2 photoanode for highly durable, flexible dye-sensitized solar cells. J Mater Chem A 3: 4679–4686. doi: 10.1039/C4TA06656A |
[102] | Shanmugam M, Jacobs-Gedrim R, Durcan C, et al. (2013) 2D layered insulator hexagonal boron nitride enabled surface passivation in dye sensitized solar cells. Nanoscale 5: 11275–11282. doi: 10.1039/c3nr03767c |
[103] | Alivov Y, Fan Z (2009) Efficiency of dye sensitized solar cells based on TiO2 nanotubes filled with nanoparticles. Appl Phys Lett 95: 063504. doi: 10.1063/1.3202411 |
[104] | Mahmood K, Kang HW, Munir R, et al. (2013) A dual-functional double-layer film with indium-doped ZnO nanosheets/nanoparticles structured photoanodes for dye-sensitized solar cells. RSC Adv 3: 25136–25144. doi: 10.1039/c3ra43643h |
[105] | Choi SY, Mamak M, Coombs N, et al. (2004) Thermally stable two-dimensional hexagonal mesoporous nanocrystalline anatase, meso-nc-TiO2: Bulk and crack-free thin film morphologies. Adv Funct Mater 14: 335–344. doi: 10.1002/adfm.200305039 |
[106] | Shchukin DG, Caruso RA (2004) Template synthesis and photocatalytic properties of porous metal oxide spheres formed by nanoparticle infiltration. Chem Mater 16: 2287–2292. doi: 10.1021/cm0497780 |
[107] | Iwasaki M, Davis SA, Mann S (2004) Spongelike macroporous TiO2 monoliths prepared from starch gel template. J Sol-Gel Sci Techn 32: 99–105. doi: 10.1007/s10971-004-5772-x |
[108] | Caruso R, Schattka J (2000) Cellulose acetate templates for porous inorganic network fabrication. Adv Mater 12: 1921–1923. doi: 10.1002/1521-4095(200012)12:24<1921::AID-ADMA1921>3.0.CO;2-B |
[109] | Chen D, Cao L, Huang F, et al. (2010) Synthesis of monodisperse mesoporous titania beads with controllable diameter, high surface areas, and variable pore diameters (14–23 nm). J Am Chem Soc 132: 4438–4444. doi: 10.1021/ja100040p |
[110] | Cavallo C, Di Pascasio F, Latini A, et al. (2017) Nanostructured semiconductor materials for dye-sensitized solar cells. J Nanomater 2017: 5323164. |
[111] | Scrosati B (2000) Recent advances in lithium ion battery materials. Electrochim Acta 45: 2461–2466. doi: 10.1016/S0013-4686(00)00333-9 |
[112] | Goodenough JB, Park K (2013) The Li-ion rechargeable battery: a perspective. J Am Chem Soc 135: 1167–1176. doi: 10.1021/ja3091438 |
[113] | Sun Q, Lau KC, Geng D, et al. (2018) Atomic and molecular layer deposition for superior lithium–sulfur batteries: strategies, performance, and mechanisms. Batteries Supercaps 1: 41–68. doi: 10.1002/batt.201800024 |
[114] | Meng XB (2017) Atomic-scale surface modifications and novel electrode designs for high-performance sodium-ion batteries via atomic layer deposition. J Mater Chem A 5: 10127–10149. doi: 10.1039/C7TA02742G |
[115] | Zhu C, Han K, Geng D, et al. (2017) Achieving high-performance silicon anodes of lithium-ion batteries via atomic and molecular layer deposited surface coatings: an overview. Electrochim Acta 251: 710–728. doi: 10.1016/j.electacta.2017.09.036 |
[116] | Knez M, Nielsch K, Niinistö L (2007) Synthesis and surface engineering of complex nanostructures by atomic layer deposition. Adv Mater 19: 3425–3438. doi: 10.1002/adma.200700079 |
[117] | Knoops H, Donders M, Van De Sanden M, et al. (2012) Atomic layer deposition for nanostructured Li-ion batteries. J Vac Sci Technol A 30: 010801. |
[118] | George S, Ott A, Klaus J (1996) Surface chemistry for atomic layer growth. J Phys Chem 100: 13121–13131. doi: 10.1021/jp9536763 |
[119] | Suntola T (1992) Atomic layer epitaxy. Thin Solid Films 216: 84–89. doi: 10.1016/0040-6090(92)90874-B |
[120] | Kucheyev S, Biener J, Wang Y, et al. (2005) Atomic layer deposition of ZnO on ultralow-density nanoporous silica aerogel monoliths. Appl Phys Lett 86: 083108. doi: 10.1063/1.1870122 |
[121] | Zhang W, Dong J, Li C, et al. (2015) Large scale synthesis of pinhole‐free shell‐isolated nanoparticles (SHINs) using improved atomic layer deposition (ALD) method for practical applications. J Raman Spectrosc 46: 1200–1204. doi: 10.1002/jrs.4760 |
[122] | Yao Z, Wang C, Li Y, et al. (2015) AAO-assisted synthesis of highly ordered, large-scale TiO2 nanowire arrays via sputtering and atomic layer deposition. Nanoscale Res Lett 10: 166. doi: 10.1186/s11671-015-0872-9 |
[123] | Klaus J, George S (2000) Atomic layer deposition of SiO2 at room temperature using NH3-catalyzed sequential surface reactions. Surf Sci 447: 81–90. doi: 10.1016/S0039-6028(99)01119-X |
[124] | Mackus AJ, Garcia-Alonso D, Knoops HC, et al. (2013) Room-temperature atomic layer deposition of platinum. Chem Mater 25: 1769–1774. doi: 10.1021/cm400274n |
[125] | Kot M, Das C, Wang Z, et al. (2016) Room-temperature atomic layer deposition of Al2O3: Impact on efficiency, stability and surface properties in perovskite solar cells. ChemSusChem 9: 3401–3406. doi: 10.1002/cssc.201601186 |
[126] | Lim BS, Rahtu A, Gordon RG (2003) Atomic layer deposition of transition metals. Nat Mater 2: 749–754. doi: 10.1038/nmat1000 |
[127] | Tynell T, Karppinen M (2014) Atomic layer deposition of ZnO: a review. Semicond Sci Tech 29: 043001. doi: 10.1088/0268-1242/29/4/043001 |
[128] | Meng X, Geng D, Liu J, et al. (2011) Controllable synthesis of graphene-based titanium dioxide nanocomposites by atomic layer deposition. Nanotechnology 22: 165602. doi: 10.1088/0957-4484/22/16/165602 |
[129] | Wind R, George S (2009) Quartz crystal microbalance studies of Al2O3 atomic layer deposition using trimethylaluminum and water at 125 ℃. J Phys Chem A 114: 1281–1289. |
[130] | Becker JS, Kim E, Gordon RG (2004) Atomic layer deposition of insulating hafnium and zirconium nitrides. Chem Mater 16: 3497–3501. doi: 10.1021/cm049516y |
[131] | Klug JA, Becker NG, Groll NR, et al. (2013) Heteroepitaxy of group IV–VI nitrides by atomic layer deposition. Appl Phys Lett 103: 211602. doi: 10.1063/1.4831977 |
[132] | Han X, Liu Y, Jia Z, et al. (2013) Atomic-layer-deposition oxide nanoglue for sodium ion batteries. Nano Lett 14: 139–147. |
[133] | Lee HJ, Seo HO, Kim DW, et al. (2011) A high-performing nanostructured TiO2 filter for volatile organic compounds using atomic layer deposition. Chem Commun 47: 5605–5607. doi: 10.1039/c1cc10307e |
[134] | Pore V, Hatanpaa T, Ritala M, et al. (2009) Atomic layer deposition of metal tellurides and selenides using alkylsilyl compounds of tellurium and selenium. J Am Chem Soc 131: 3478–3480. doi: 10.1021/ja8090388 |
[135] | Wang H, Wang J, Gordon R, et al. (2009) Atomic layer deposition of lanthanum-based ternary oxides. Electrochem Solid-State Lett 12: G13–G15. doi: 10.1149/1.3074314 |
[136] | Abdulagatov AI, Hall RA, Sutherland JL, et al. (2012) Molecular layer deposition of titanicone films using TiCl4 and ethylene glycol or glycerol: growth and properties. Chem Mater 24: 2854–2863. doi: 10.1021/cm300162v |
[137] | Kim H, Jeong G, Kim Y, et al. (2013) Metallic anodes for next generation secondary batteries. Chem Soc Rev 42: 9011–9034. doi: 10.1039/c3cs60177c |
[138] | George SM, Lee BH, Yoon B, et al. (2011) Metalcones: Hybrid organic–inorganic films fabricated using atomic and molecular layer deposition techniques. J Nanosci Nanotechno 11: 7948–7955. doi: 10.1166/jnn.2011.5034 |
[139] | Marichy C, Bechelany M, Pinna N (2012) Atomic layer deposition of nanostructured materials for energy and environmental applications. Adv Mater 24: 1017–1032. doi: 10.1002/adma.201104129 |
[140] | Hwang CS (2012) Atomic layer deposition for microelectronic applications, In: Pinna N, Knez M, Atomic layer deposition of nanostructured materials, John Wiley & Sons, 161–192. |
[141] | Shao H, Umemoto S, Kikutani T, et al. (1997) Layer-by-layer polycondensation of nylon 66 by alternating vapour deposition polymerization. Polymer 38: 459–462. doi: 10.1016/S0032-3861(96)00504-6 |
[142] | Kim A, Filler MA, Kim S, et al. (2005) Layer-by-layer growth on Ge (100) via spontaneous urea coupling reactions. J Am Chem Soc 127: 6123–6132. doi: 10.1021/ja042751x |
[143] | Lee JS, Lee YJ, Tae EL, et al. (2003) Synthesis of zeolite as ordered multicrystal arrays. Science 301: 818–821. doi: 10.1126/science.1086441 |
[144] | Haq S, Richardson N (1999) Organic beam epitaxy using controlled PMDA-ODA coupling reactions on Cu {110}. J Phys Chem B 103: 5256–5265. doi: 10.1021/jp984813+ |
[145] | Putkonen M, Harjuoja J, Sajavaara T, et al. (2007) Atomic layer deposition of polyimide thin films. J Mater Chem 17: 664–669. doi: 10.1039/B612823H |
[146] | Yoshimura T, Ito S, Nakayama T, et al. (2007) Orientation-controlled molecule-by-molecule polymer wire growth by the carrier-gas-type organic chemical vapor deposition and the molecular layer deposition. Appl Phys Lett 91: 033103. doi: 10.1063/1.2754646 |
[147] | Dameron AA, Seghete D, Burton B, et al. (2008) Molecular layer deposition of alucone polymer films using trimethylaluminum and ethylene glycol. Chem Mater 20: 3315–3326. doi: 10.1021/cm7032977 |
[148] | Yoon B, O'Patchen JL, Seghete D, et al. (2009) Molecular layer deposition of hybrid organic–inorganic polymer films using diethylzinc and ethylene glycol. Chem Vapor Depos 15: 112–121. doi: 10.1002/cvde.200806756 |
[149] | Peng Q, Gong B, VanGundy RM, et al. (2009) "Zincone" zinc oxide–organic hybrid polymer thin films formed by molecular layer deposition. Chem Mater 21: 820–830. doi: 10.1021/cm8020403 |
[150] | Yoon B, Lee Y, Derk A, et al. (2011) Molecular layer deposition of conductive hybrid organic–inorganic thin films using diethylzinc and hydroquinone. ECS Trans 33: 191–195. |
[151] | Yoon B, Lee BH, George SM (2011) Molecular layer deposition of flexible, transparent and conductive hybrid organic–inorganic thin films. ECS Trans 41: 271–277. |
[152] | Yoon B, Lee BH, George SM (2012) Highly conductive and transparent hybrid organic–inorganic zincone thin films using atomic and molecular layer deposition. J Phys Chem C 116: 24784–24791. doi: 10.1021/jp3057477 |
[153] | Han KS, Sung MM (2014) Molecular layer deposition of organic–inorganic hybrid films using diethylzinc and trihydroxybenzene. J Nanosci Nanotechno 14: 6137–6142. doi: 10.1166/jnn.2014.8448 |
[154] | Cho S, Han G, Kim K, et al. (2011) High-performance two-dimensional polydiacetylene with a hybrid inorganic–organic structure. Angew Chem Int Edit 50: 2742–2746. doi: 10.1002/anie.201006311 |
[155] | Brown JJ, Hall RA, Kladitis PE, et al. (2013) Molecular layer deposition on carbon nanotubes. ACS nano 7: 7812–7823. doi: 10.1021/nn402733g |
[156] | Lee BH, Anderson VR, George SM (2013) Molecular layer deposition of zircone and ZrO2/zircone alloy films: growth and properties. Chem Vapor Depos 19: 204–212. doi: 10.1002/cvde.201207045 |
[157] | Hall RA, George SM, Kim Y, et al. (2014) Growth of zircone on nanoporous alumina using molecular layer deposition. JOM 66: 649–653. doi: 10.1007/s11837-014-0933-z |
[158] | Van de Kerckhove K, Mattelaer F, Deduytsche D, et al. (2016) Molecular layer deposition of "titanicone", a titanium-based hybrid material, as an electrode for lithium-ion batteries. Dalton T 45: 1176–1184. doi: 10.1039/C5DT03840E |
[159] | Cao Y, Zhu L, Li X, et al. (2015) Growth characteristics of Ti-based fumaric acid hybrid thin films by molecular layer deposition. Dalton T 44: 14782–14792. doi: 10.1039/C5DT00384A |
[160] | Chen C, Li P, Wang G, et al. (2013) Nanoporous nitrogen-doped titanium dioxide with excellent photocatalytic activity under visible light irradiation produced by molecular layer deposition. Angew Chem Int Edit 52: 9196–9200. doi: 10.1002/anie.201302329 |
[161] | Lee BH, Anderson VR, George SM (2014) Growth and properties of hafnicone and HfO2/hafnicone nanolaminate and alloy films using molecular layer deposition techniques. ACS Appl Mater Inter 6: 16880–16887. doi: 10.1021/am504341r |
[162] | Van de Kerckhove K, Mattelaer F, Dendooven J, et al. (2017) Molecular layer deposition of "vanadicone", a vanadium-based hybrid material, as an electrode for lithium-ion batteries. Dalton T 46: 4542–4553. doi: 10.1039/C7DT00374A |
[163] | Meng X (2017) An overview of molecular layer deposition for organic and organic–inorganic hybrid materials: Mechanisms, growth characteristics, and promising applications. J Mater Chem A 5: 18326–18378. doi: 10.1039/C7TA04449F |
[164] | Sveshnikova G, Kol'tsov S, Aleskovskii V (1967) Overview of early publications on atomic layer deposition. J Appl Chem USSR 40: 2644–2646. |
[165] | Kol'tsov S, Sveshnikova G, Aleskovskii V (1969) Reaction of titanium tetrachloride with silicon. Izv VUZ Khim Khim Tekhnol 12: 562–564. |
[166] | Suntola T (2014) From Ideas to global industry-40 years of ALD in Finland. 12th International Baltic ALD Conference. |
[167] | Yu M, Wang A, Wang Y, et al. (2014) An alumina stabilized ZnO-graphene anode for lithium ion batteries via atomic layer deposition. Nanoscale 6: 11419–11424. doi: 10.1039/C4NR02576H |
[168] | Boukhalfa S, Evanoff K, Yushin G (2012) Atomic layer deposition of vanadium oxide on carbon nanotubes for high-power supercapacitor electrodes. Energ Environ Sci 5: 6872–6879. doi: 10.1039/c2ee21110f |
[169] | Liu M, Li X, Karuturi SK, et al. (2012) Atomic layer deposition for nanofabrication and interface engineering. Nanoscale 4: 1522–1528. doi: 10.1039/c2nr11875k |
[170] | Meng X, Yang X, Sun X (2012) Emerging applications of atomic layer deposition for lithium–ion battery studies. Adv Mater 24: 3589–3615. doi: 10.1002/adma.201200397 |
[171] | Sun X, Xie M, Wang G, et al. (2012) Atomic layer deposition of TiO2 on graphene for supercapacitors. J Electrochem Soc 159: A364–A369. doi: 10.1149/2.025204jes |
[172] | Meng X, Wang X, Geng D, et al. (2017) Atomic layer deposition for nanomaterial synthesis and functionalization in energy technology. Mater Horiz 4: 133–154. doi: 10.1039/C6MH00521G |
[173] | Johansson A, Törndahl T, Ottosson L, et al. (2003) Copper nanoparticles deposited inside the pores of anodized aluminium oxide using atomic layer deposition. Mat Sci Eng C-Mater 23: 823–826. doi: 10.1016/j.msec.2003.09.139 |
[174] | Ferguson J, Buechler K, Weimer A, et al. (2005) SnO2 atomic layer deposition on ZrO2 and Al nanoparticles: Pathway to enhanced thermite materials. Powder Technol 156: 154–163. doi: 10.1016/j.powtec.2005.04.009 |
[175] | Hakim LF, Portman JL, Casper MD, et al. (2004) Conformal coating of nanoparticles using atomic layer deposition in a fluidized bed reactor. AIChE Annual Meeting, Conference Proceedings, 6543–6563. |
[176] | Hakim LF, Blackson J, George SM, et al. (2005) Nanocoating individual silica nanoparticles by atomic layer deposition in a fluidized bed reactor. Chem Vapor Depos 11: 420–425. doi: 10.1002/cvde.200506392 |
[177] | Hakim LF, George SM, Weimer AW (2005) Conformal nanocoating of zirconia nanoparticles by atomic layer deposition in a fluidized bed reactor. Nanotechnology 16: S375–S381. doi: 10.1088/0957-4484/16/7/010 |
[178] | Standridge SD, Schatz GC, Hupp JT (2009) Toward plasmonic solar cells: protection of silver nanoparticles via atomic layer deposition of TiO2. Langmuir 25: 2596–2600. doi: 10.1021/la900113e |
[179] | Wank JR, George SM, Weimer AW (2004) Nanocoating individual cohesive boron nitride particles in a fluidized bed by ALD. Powder Technol 142: 59–69. doi: 10.1016/j.powtec.2004.03.010 |
[180] | Wang G, Peng X, Yu L, et al. (2015) Enhanced microwave absorption of ZnO coated with Ni nanoparticles produced by atomic layer deposition. J Mater Chem A 3: 2734–2740. doi: 10.1039/C4TA06053A |
[181] | Kei C, Cheng P, Liu D, et al. (2006) Smooth and conformal Al2O3 coating on polystyrene nanospheres by using atomic layer deposition. J Vac Soc R.O.C. 19: 48–51. |
[182] | Ras RH, Kemell M, de Wit J, et al. (2007) Hollow inorganic nanospheres and nanotubes with tunable wall thicknesses by atomic layer deposition on self‐assembled polymeric templates. Adv Mater 19: 102–106. doi: 10.1002/adma.200600728 |
[183] | Justh N, Bakos LP, Hernádi K, et al. (2017) Photocatalytic hollow TiO2 and ZnO nanospheres prepared by atomic layer deposition. Sci Rep 7: 4337. doi: 10.1038/s41598-017-04090-0 |
[184] | Park HK, Yoon SW, Do YR (2013) Fabrication of wafer-scale TiO2 nanobowl arrays via a scooping transfer of polystyrene nanospheres and atomic layer deposition for their application in photonic crystals. J Mater Chem C 1: 1732–1738. doi: 10.1039/c2tc00652a |
[185] | Qin Y, Kim Y, Zhang L, et al. (2010) Preparation and elastic properties of helical nanotubes obtained by atomic layer deposition with carbon nanocoils as templates. Small 6: 910–914. doi: 10.1002/smll.200902159 |
[186] | Weimer MA, Hakim LF, King DM, et al. (2008) Ultrafast metal-insulator varistors based on tunable Al2O3 tunnel junctions. Appl Phys Lett 92: 164101. doi: 10.1063/1.2913763 |
[187] | King DM, Liang X, Carney CS, et al. (2008) Atomic layer deposition of UV-absorbing ZnO films on SiO2 and TiO2 nanoparticles using a fluidized bed reactor. Adv Funct Mater 18: 607–615. doi: 10.1002/adfm.200700705 |
[188] | Hakim LF, King DM, Zhou Y, et al. (2007) Nanoparticle coating for advanced optical, mechanical and rheological properties. Adv Funct Mater 17: 3175–3181. doi: 10.1002/adfm.200600877 |
[189] | Wank JR, George SM, Weimer AW (2001) Vibro-fluidization of fine boron nitride powder at low pressure. Powder Technol 121: 195–204. doi: 10.1016/S0032-5910(01)00337-0 |
[190] | Solanki R, Huo J, Freeouf J, et al. (2002) Atomic layer deposition of ZnSe/CdSe superlattice nanowires. Appl Phys Lett 81: 3864–3866. doi: 10.1063/1.1521570 |
[191] | Min Y, Bae EJ, Jeong KS, et al. (2003) Ruthenium oxide nanotube arrays fabricated by atomic layer deposition using a carbon nanotube template. Adv Mater 15: 1019–1022. doi: 10.1002/adma.200304452 |
[192] | Liu J, Meng X, Banis MN, et al. (2012) Crystallinity-controlled synthesis of zirconium oxide thin films on nitrogen-doped carbon nanotubes by atomic layer deposition. J Phys Chem C 116: 14656–14664. doi: 10.1021/jp3028462 |
[193] | Meng X, Liu J, Li X, et al. (2013) Atomic layer deposited Li4Ti5O12 on nitrogen-doped carbon nanotubes. RSC Adv 3: 7285–7288. doi: 10.1039/c3ra00033h |
[194] | Meng X, Zhong Y, Sun Y, et al. (2011) Nitrogen-doped carbon nanotubes coated by atomic layer deposited SnO2 with controlled morphology and phase. Carbon 49: 1133–1144. doi: 10.1016/j.carbon.2010.11.028 |
[195] | Meng X, Banis MN, Geng D, et al. (2013) Controllable atomic layer deposition of one-dimensional nanotubular TiO2. Appl Surf Sci 266: 132–140. doi: 10.1016/j.apsusc.2012.11.116 |
[196] | Meng X, Riha SC, Libera JA, et al. (2015) Tunable core–shell single-walled carbon nanotube–Cu2S networked nanocomposites as high-performance cathodes for lithium-ion batteries. J Power Sources 280: 621–629. doi: 10.1016/j.jpowsour.2015.01.151 |
[197] | Meng X, He K, Su D, et al. (2014) Gallium sulfide–single-walled carbon nanotube composites: high-performance anodes for lithium-ion batteries. Adv Funct Mater 24: 5435–5442. doi: 10.1002/adfm.201401002 |
[198] | Meng X, Ionescu M, Banis MN, et al. (2011) Heterostructural coaxial nanotubes of CNT@Fe2O3 via atomic layer deposition: effects of surface functionalization and nitrogen-doping. J Nanopart Res 13: 1207–1218. doi: 10.1007/s11051-010-0113-1 |
[199] | Elam JW, Xiong G, Han CY, et al. (2006) Atomic layer deposition for the conformal coating of nanoporous materials. J Nanomater 2006: 64501. |
[200] | Meng X, Zhang Y, Sun S, et al. (2011) Three growth modes and mechanisms for highly structure-tunable SnO2 nanotube arrays of template-directed atomic layer deposition. J Mater Chem 21: 12321–12330. doi: 10.1039/c1jm11511a |
[201] | Hwang YJ, Hahn C, Liu B, et al. (2012) Photoelectrochemical properties of TiO2 nanowire arrays: a study of the dependence on length and atomic layer deposition coating. ACS Nano 6: 5060–5069. doi: 10.1021/nn300679d |
[202] | Göbelt M, Keding R, Schmitt SW, et al. (2015) Encapsulation of silver nanowire networks by atomic layer deposition for indium-free transparent electrodes. Nano Energy 16: 196–206. doi: 10.1016/j.nanoen.2015.06.027 |
[203] | Tak Y, Yong K (2005) ZrO2-coated SiC nanowires prepared by plasma-enhanced atomic layer chemical vapor deposition. Surf Rev Lett 12: 215–219. doi: 10.1142/S0218625X05006962 |
[204] | Gopireddy D, Takoudis CG, Gamota D, et al. (2005) Fabrication of silicon nanowires using atomic layer deposition. 2005 NSTI Nanotechnology Conference and Trade Show-NSTI Nanotech, 2: 515–517. |
[205] | Lu Y, Bangsaruntip S, Wang X, et al. (2006) DNA functionalization of carbon nanotubes for ultrathin atomic layer deposition of high κ dielectrics for nanotube transistors with 60 mV/decade switching. J Am Chem Soc 128: 3518–3519. doi: 10.1021/ja058836v |
[206] | Bachmann J, Jing J, Knez M, et al. (2007) Ordered iron oxide nanotube arrays of controlled geometry and tunable magnetism by atomic layer deposition. J Am Chem Soc 129: 9554–9555. doi: 10.1021/ja072465w |
[207] | Min Y, Bae EJ, Park JB, et al. (2007) ZnO nanoparticle growth on single-walled carbon nanotubes by atomic layer deposition and a consequent lifetime elongation of nanotube field emission. Appl Phys Lett 90: 263104. doi: 10.1063/1.2745226 |
[208] | Nakashima Y, Ohno Y, Kishimoto S, et al. (2010) Fabrication process of carbon nanotube field effect transistors using atomic layer deposition passivation for biosensors. J Nanosci Nanotechno 10: 3805–3809. doi: 10.1166/jnn.2010.1983 |
[209] | Kukli K, Ihanus J, Ritala M, et al. (1997) Properties of Ta2O5-based dielectric nanolaminates deposited by atomic layer epitaxy. J Electrochem Soc 144: 300–306. doi: 10.1149/1.1837399 |
[210] | Elam J, Sechrist Z, George S (2002) ZnO/Al2O3 nanolaminates fabricated by atomic layer deposition: growth and surface roughness measurements. Thin Solid Films 414: 43–55. doi: 10.1016/S0040-6090(02)00427-3 |
[211] | Zhang H, Solanki R (2001) Atomic layer deposition of high dielectric constant nanolaminates. J Electrochem Soc 148: F63–F66. doi: 10.1149/1.1355690 |
[212] | Ishii M, Iwai S, Kawata H, et al. (1997) Atomic layer epitaxy of AlP and its application to X-ray multilayer mirror. J Cryst Growth 180: 15–21. doi: 10.1016/S0022-0248(97)00198-X |
[213] | Zhong L, Daniel WL, Zhang Z, et al. (2006) Atomic layer deposition, characterization, and dielectric properties of HfO2/SiO2 nanolaminates and comparisons with their homogeneous mixtures. Chem Vapor Depos 12: 143–150. doi: 10.1002/cvde.200506375 |
[214] | Ginestra CN, Sreenivasan R, Karthikeyan A, et al. (2007) Atomic layer deposition of Y2O3/ZrO2 nanolaminates a route to ultrathin solid-state electrolyte membranes. Electrochem Solid-State Lett 10: B161–B165. doi: 10.1149/1.2759606 |
[215] | Zaitsu S, Jitsuno T, Nakatsuka M, et al. (2002) Optical thin films consisting of nanoscale laminated layers. Appl Phys Lett 80: 2442–2444. doi: 10.1063/1.1467622 |
[216] | Härkönen E, Díaz B, Światowska J, et al. (2011) Corrosion protection of steel with oxide nanolaminates grown by atomic layer deposition. J Electrochem Soc 158: C369–C378. doi: 10.1149/2.061111jes |
[217] | Graugnard E, King JS, Gaillot DP, et al. (2006) Sacrificial-layer atomic layer deposition for fabrication of non-close-packed inverse-opal photonic crystals. Adv Funct Mater 16: 1187–1196. doi: 10.1002/adfm.200500841 |
[218] | King J, Heineman D, Graugnard E, et al. (2005) Atomic layer deposition in porous structures: 3D photonic crystals. Appl Surf Sci 244: 511–516. doi: 10.1016/j.apsusc.2004.10.110 |
[219] | Kim E, Vaynzof Y, Sepe A, et al. (2014) Gyroid-structured 3D ZnO networks made by atomic layer deposition. Adv Funct Mater 24: 863–872. doi: 10.1002/adfm.201302238 |
[220] | Meng X, Geng D, Liu J, et al. (2010) Non-aqueous approach to synthesize amorphous/crystalline metal oxide–graphene nanosheet hybrid composites. J Phys Chem C 114: 18330–18337. doi: 10.1021/jp105852h |
[221] | Liu J, Meng X, Hu Y, et al. (2013) Controlled synthesis of zirconium oxide on graphene nanosheets by atomic layer deposition and its growth mechanism. Carbon 52: 74–82. doi: 10.1016/j.carbon.2012.09.007 |
[222] | Liang X, Yu M, Li J, et al. (2009) Ultra-thin microporous–mesoporous metal oxide films prepared by molecular layer deposition (MLD). Chem Commun 7140–7142. |
[223] | Yang P, Wang G, Gao Z, et al. (2013) Uniform and conformal carbon nanofilms produced based on molecular layer deposition. Materials 6: 5602–5612. doi: 10.3390/ma6125602 |
[224] | Lee S, Baek G, Lee J, et al. (2018) Facile fabrication of p-type Al2O3/carbon nanocomposite films using molecular layer deposition. Appl Surf Sci 458: 864–871. doi: 10.1016/j.apsusc.2018.07.158 |
[225] | Liang X, Evanko BW, Izar A, et al. (2013) Ultrathin highly porous alumina films prepared by alucone ABC molecular layer deposition (MLD). Micropor Mesopor Mat 168: 178–182. doi: 10.1016/j.micromeso.2012.09.035 |
[226] | Liang X, King DM, Li P, et al. (2009) Nanocoating hybrid polymer films on large quantities of cohesive nanoparticles by molecular layer deposition. AIChE J 55: 1030–1039. doi: 10.1002/aic.11757 |
[227] | Abdulagatov AI, Terauds KE, Travis JJ, et al. (2013) Pyrolysis of titanicone molecular layer deposition films as precursors for conducting TiO2/carbon composite films. J Phys Chem C 117: 17442–17450. doi: 10.1021/jp4051947 |
[228] | Qin L, Yan N, Hao H, et al. (2018) Surface engineering of zirconium particles by molecular layer deposition: Significantly enhanced electrostatic safety at minimum loss of the energy density. Appl Surf Sci 436: 548–555. doi: 10.1016/j.apsusc.2017.12.042 |
[229] | DuMont JW, George SM (2015) Pyrolysis of alucone molecular layer deposition films studied using in situ transmission Fourier transform infrared spectroscopy. J Phys Chem C 119: 14603–14612. doi: 10.1021/jp512074n |
[230] | Luo L, Yang H, Yan P, et al. (2015) Surface-coating regulated lithiation kinetics and degradation in silicon nanowires for lithium ion battery. ACS Nano 9: 5559–5566. doi: 10.1021/acsnano.5b01681 |
[231] | Qin Y, Yang Y, Scholz R, et al. (2011) Unexpected oxidation behavior of Cu nanoparticles embedded in porous alumina films produced by molecular layer deposition. Nano Lett 11: 2503–2509. doi: 10.1021/nl2010274 |
[232] | Loebl AJ, Oldham CJ, Devine CK, et al. (2013) Solid electrolyte interphase on lithium-ion carbon nanofiber electrodes by atomic and molecular layer deposition. J Electrochem Soc 160: A1971–A1978. doi: 10.1149/2.020311jes |
[233] | Gong B, Peng Q, Parsons GN (2011) Conformal organic–inorganic hybrid network polymer thin films by molecular layer deposition using trimethylaluminum and glycidol. J Phys Chem B 115: 5930–5938. doi: 10.1021/jp201186k |
[234] | Chen Y, Zhang B, Gao Z, et al. (2015) Functionalization of multiwalled carbon nanotubes with uniform polyurea coatings by molecular layer deposition. Carbon 82: 470–478. doi: 10.1016/j.carbon.2014.10.090 |
[235] | Lushington A, Liu J, Bannis MN, et al. (2015) A novel approach in controlling the conductivity of thin films using molecular layer deposition. Appl Surf Sci 357: 1319–1324. doi: 10.1016/j.apsusc.2015.09.155 |
[236] | Nisula M, Karppinen M (2018) In situ lithiated quinone cathode for ALD/MLD-fabricated high-power thin-film battery. J Mater Chem A 6: 7027–7033. doi: 10.1039/C8TA00804C |
[237] | Lee BH, Im KK, Lee KH, et al. (2009) Molecular layer deposition of ZrO2-based organic–inorganic nanohybrid thin films for organic thin film transistors. Thin Solid Films 517: 4056–4060. doi: 10.1016/j.tsf.2009.01.173 |
[238] | Lee BH, Ryu MK, Choi S, et al. (2007) Rapid vapor-phase fabrication of organic–inorganic hybrid superlattices with monolayer precision. J Am Chem Soc 129: 16034–16041. doi: 10.1021/ja075664o |
[239] | Huang J, Lee M, Lucero A, et al. (2013) Organic–inorganic hybrid nano-laminates fabricated by ozone-assisted molecular–atomic layer deposition. Chem Vapor Depos 19: 142–148. doi: 10.1002/cvde.201207041 |
[240] | Tynell T, Yamauchi H, Karppinen M (2014) Hybrid inorganic–organic superlattice structures with atomic layer deposition/molecular layer deposition. J Vac Sci Technol A 32: 01A105. |
[241] | Lee BH, Yoon B, Anderson VR, et al. (2012) Alucone alloys with tunable properties using alucone molecular layer deposition and Al2O3 atomic layer deposition. J Phys Chem C 116: 3250–3257. doi: 10.1021/jp209003h |
[242] | Xiao W, Yu D, Bo SF, et al. (2014) The improvement of thin film barrier performances of organic–inorganic hybrid nanolaminates employing a low-temperature MLD/ALD method. RSC Adv 4: 43850–43856. doi: 10.1039/C4RA06638C |
[243] | Loscutoff PW, Zhou H, Clendenning SB, et al. (2009) Formation of organic nanoscale laminates and blends by molecular layer deposition. ACS Nano 4: 331–341. |
[244] | Yoon KH, Kim HS, Han KS, et al. (2017) Extremely high barrier performance of organic–inorganic nanolaminated thin films for organic light-emitting diodes. ACS Appl Mater Inter 9: 5399–5408. doi: 10.1021/acsami.6b15404 |
[245] | Yoon K, Han K, Sung M (2012) Fabrication of a new type of organic–inorganic hybrid superlattice films combined with titanium oxide and polydiacetylene. Nanoscale Res Lett 7: 71. doi: 10.1186/1556-276X-7-71 |
[246] | Ahvenniemi E, Karppinen M (2016) Atomic/molecular layer deposition: a direct gas-phase route to crystalline metal–organic framework thin films. Chem Commun 52: 1139–1142. doi: 10.1039/C5CC08538A |
[247] | Lausund KB, Petrovic V, Nilsen O (2017) All-gas-phase synthesis of amino-functionalized UiO-66 thin films. Dalton T 46: 16983–16992. doi: 10.1039/C7DT03518G |
[248] | Lemaire PC, Zhao J, Williams PS, et al. (2016) Copper benzenetricarboxylate metal–organic framework nucleation mechanisms on metal oxide powders and thin films formed by atomic layer deposition. ACS Appl Mater Inter 8: 9514–9522. doi: 10.1021/acsami.6b01195 |
[249] | Stassen I, De Vos D, Ameloot R (2016) Vapor-phase deposition and modification of metal–organic frameworks: State-of-the-art and future directions. Chem-Eur J 22: 14452–14460. doi: 10.1002/chem.201601921 |
[250] | Ahvenniemi E, Karppinen M (2016) In situ atomic/molecular layer-by-layer deposition of inorganic–organic coordination network thin films from gaseous precursors. Chem Mater 28: 6260–6265. doi: 10.1021/acs.chemmater.6b02496 |
[251] | Salmi LD, Heikkilä MJ, Vehkamäki M, et al. (2015) Studies on atomic layer deposition of IRMOF-8 thin films. J Vac Sci Technol A 33: 01A121. |
[252] | Salmi LD, Heikkilä MJ, Puukilainen E, et al. (2013) Studies on atomic layer deposition of MOF-5 thin films. Micropor Mesopor Mat 182: 147–154. doi: 10.1016/j.micromeso.2013.08.024 |
[253] | Herrera JE, Kwak JH, Hu JZ, et al. (2006) Synthesis of nanodispersed oxides of vanadium, titanium, molybdenum, and tungsten on mesoporous silica using atomic layer deposition. Top Catal 39: 245–255. doi: 10.1007/s11244-006-0063-0 |
[254] | Kemell M, Pore V, Tupala J, et al. (2007) Atomic layer deposition of nanostructured TiO2 photocatalysts via template approach. Chem Mater 19: 1816–1820. doi: 10.1021/cm062576e |
[255] | Sander MS, Côté MJ, Gu W, et al. (2004) Template-assisted fabrication of dense, aligned arrays of titania nanotubes with well-controlled dimensions on substrates. Adv Mater 16: 2052–2057. doi: 10.1002/adma.200400446 |
[256] | Biercuk M, Monsma D, Marcus C, et al. (2003) Low-temperature atomic-layer-deposition lift-off method for microelectronic and nanoelectronic applications. Appl Phys Lett 83: 2405–2407. doi: 10.1063/1.1612904 |
[257] | Seo EK, Lee JW, Sung-Suh HM, et al. (2004) Atomic layer deposition of titanium oxide on self-assembled-monolayer-coated gold. Chem Mater 16: 1878–1883. doi: 10.1021/cm035140x |
[258] | Wang XD, Graugnard E, King JS, et al. (2004) Large-scale fabrication of ordered nanobowl arrays. Nano Lett 4: 2223–2226. doi: 10.1021/nl048589d |
[259] | Romanes MC (2008) Structure and low-temperature tribology of lubricious nanocrystalline zinc oxide/aluminium oxide nanolaminates and zirconium dioxide monofilms grown by atomic layer deposition [PhD thesis]. University of North Texas. |
[260] | Miikkulainen V, Leskelä M, Ritala M, et al. (2013) Crystallinity of inorganic films grown by atomic layer deposition: Overview and general trends. J Appl Phys 113: 2. |
[261] | Sechrist Z, Schwartz B, Lee J, et al. (2006) Modification of opal photonic crystals using Al2O3 atomic layer deposition. Chem Mater 18: 3562–3570. doi: 10.1021/cm060263d |
[262] | Halbur JC, Padbury RP, Jur JS (2013) Induced wetting of polytetrafluoroethylene by atomic layer deposition for application of aqueous-based nanoparticle inks. Mater Lett 101: 25–28. doi: 10.1016/j.matlet.2013.03.063 |
[263] | Dafinone MI, Feng G, Brugarolas T, et al. (2011) Mechanical reinforcement of nanoparticle thin films using atomic layer deposition. ACS Nano 5: 5078–5087. doi: 10.1021/nn201167j |
[264] | Gong B, Spagnola JC, Parsons GN (2012) Hydrophilic mechanical buffer layers and stable hydrophilic finishes on polydimethylsiloxane using combined sequential vapor infiltration and atomic/molecular layer deposition. J Vac Sci Technol A 30: 01A156. |
[265] | Doll G, Mensah B, Mohseni H, et al. (2010) Chemical vapor deposition and atomic layer deposition of coatings for mechanical applications. J Therm Spray Techn 19: 510–516. doi: 10.1007/s11666-009-9364-8 |
[266] | Miller DC, Foster RR, Zhang Y, et al. (2009) The mechanical robustness of atomic-layer-and molecular-layer-deposited coatings on polymer substrates. J Appl Phys 105: 093527. doi: 10.1063/1.3124642 |
[267] | Miller DC, Foster RR, Jen S, et al. (2009) Thermomechanical properties of aluminum alkoxide (alucone) films created using molecular layer deposition. Acta Mater 57: 5083–5092. doi: 10.1016/j.actamat.2009.07.015 |
[268] | Sun S, Zhang G, Gauquelin N, et al. (2013) Single-atom catalysis using Pt/graphene achieved through atomic layer deposition. Sci Rep 3: 1775. doi: 10.1038/srep01775 |
[269] | Christensen ST, Feng H, Libera JL, et al. (2010) Supported Ru–Pt bimetallic nanoparticle catalysts prepared by atomic layer deposition. Nano Lett 10: 3047–3051. doi: 10.1021/nl101567m |
[270] | Ishchuk S, Taffa DH, Hazut O, et al. (2012) Transformation of organic–inorganic hybrid films obtained by molecular layer deposition to photocatalytic layers with enhanced activity. ACS Nano 6: 7263–7269. doi: 10.1021/nn302370y |
[271] | Sarkar D, Ishchuk S, Taffa DH, et al. (2016) Oxygen-deficient titania with adjustable band positions and defects; molecular layer deposition of hybrid organic–inorganic thin films as precursors for enhanced photocatalysis. J Phys Chem C 120: 3853–3862. doi: 10.1021/acs.jpcc.5b11795 |
[272] | Argyle MD, Bartholomew CH (2015) Heterogeneous catalyst deactivation and regeneration: a review. Catalysts 5: 145–269. doi: 10.3390/catal5010145 |
[273] | O'Neill BJ, Jackson DH, Crisci AJ, et al. (2013) Stabilization of copper catalysts for liquid‐phase reactions by atomic layer deposition. Angew Chem 125: 14053–14057. doi: 10.1002/ange.201308245 |
[274] | Feng H, Lu J, Stair PC, et al. (2011) Alumina over-coating on Pd nanoparticle catalysts by atomic layer deposition: Enhanced stability and reactivity. Catal Lett 141: 512–517. doi: 10.1007/s10562-011-0548-8 |
[275] | Liang X, Li J, Yu M, et al. (2011) Stabilization of supported metal nanoparticles using an ultrathin porous shell. ACS Catal 1: 1162–1165. doi: 10.1021/cs200257p |
[276] | Gould TD, Izar A, Weimer AW, et al. (2014) Stabilizing Ni catalysts by molecular layer deposition for harsh, dry reforming conditions. ACS Catal 4: 2714–2717. doi: 10.1021/cs500809w |
[277] | Zhang B, Chen Y, Li J, et al. (2015) High efficiency Cu–ZnO hydrogenation catalyst: the tailoring of Cu–ZnO interface sites by molecular layer deposition. ACS Catal 5: 5567–5573. doi: 10.1021/acscatal.5b01266 |
[278] | Avni A, Blázquez MA (2011) Can plant biotechnology help in solving our food and energy shortage in the future? Curr Opin Biotech 22: 220–223. doi: 10.1016/j.copbio.2011.01.007 |
[279] | Papon P (2008) Énergie: science et technique, remparts contre la pénurie? Futuribles 346: 39–54. |
[280] | Armaroli N, Balzani V (2007) The future of energy supply: challenges and opportunities. Angew Chem Int Edit 46: 52–66. doi: 10.1002/anie.200602373 |
[281] | Cook TR, Dogutan DK, Reece SY, et al. (2010) Solar energy supply and storage for the legacy and nonlegacy worlds. Chem Rev 110: 6474–6502. doi: 10.1021/cr100246c |
[282] | Nicoletti G, Arcuri N, Nicoletti G, et al. (2015) A technical and environmental comparison between hydrogen and some fossil fuels. Energ Convers Manage 89: 205–213. doi: 10.1016/j.enconman.2014.09.057 |
[283] | Petrakopoulou F, Iribarren D, Dufour J (2015) Life-cycle performance of natural gas power plants with pre-combustion CO2 capture. Greenh Gases 5: 268–276. doi: 10.1002/ghg.1457 |
[284] | Modahl IS, Askham C, Lyng K, et al. (2012) Weighting of environmental trade-offs in CCS-an LCA case study of electricity from a fossil gas power plant with post-combustion CO2 capture, transport and storage. Int J Life Cycle Ass 17: 932–943. doi: 10.1007/s11367-012-0421-z |
[285] | Korner C, Basler D (2010) Phenology under global warming. Science 327: 1461–1462. doi: 10.1126/science.1186473 |
[286] | Koven CD, Ringeval B, Friedlingstein P, et al. (2011) Permafrost carbon-climate feedbacks accelerate global warming. P Natl Acad Sci USA 108: 14769–14774. doi: 10.1073/pnas.1103910108 |
[287] | Cox PM, Betts RA, Jones CD, et al. (2000) Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature 408: 184–187. doi: 10.1038/35041539 |
[288] | Root TL, Price JT, Hall KR, et al. (2003) Fingerprints of global warming on wild animals and plants. Nature 421: 57–60. doi: 10.1038/nature01333 |
[289] | Yoshimura T, Tatsuura S, Sotoyama W (1991) Polymer films formed with monolayer growth steps by molecular layer deposition. Appl Phys Lett 59: 482–484. doi: 10.1063/1.105415 |
[290] | Adamczyk N, Dameron A, George S (2008) Molecular layer deposition of poly(p-phenylene terephthalamide) films using terephthaloyl chloride and p-phenylenediamine. Langmuir 24: 2081–2089. doi: 10.1021/la7025279 |
[291] | Du Y, George S (2007) Molecular layer deposition of nylon 66 films examined using in situ FTIR spectroscopy. J Phys Chem C 111: 8509–8517. |
[292] | Loscutoff PW, Lee H, Bent SF (2010) Deposition of ultrathin polythiourea films by molecular layer deposition. Chem Mater 22: 5563–5569. doi: 10.1021/cm1016239 |
[293] | Yoshimura T, Tatsuura S, Sotoyama W, et al. (1992) Quantum wire and dot formation by chemical vapor deposition and molecular layer deposition of one‐dimensional conjugated polymer. Appl Phys Lett 60: 268–270. doi: 10.1063/1.106681 |
[294] | Ivanova TV, Maydannik PS, Cameron DC (2012) Molecular layer deposition of polyethylene terephthalate thin films. J Vac Sci Technol A 30: 01A121. |
[295] | Meng X, Comstock DJ, Fister TT, et al. (2014) Vapor-phase atomic-controllable growth of amorphous Li2S for high-performance lithium–sulfur batteries. ACS Nano 8: 10963–10972. doi: 10.1021/nn505480w |
[296] | Cao Y, Meng X, Elam JW (2016) Atomic layer deposition of LixAlyS solid-state electrolytes for stabilizing lithium–metal anodes. ChemElectroChem 3: 858–863. doi: 10.1002/celc.201600139 |
[297] | Yan B, Li X, Bai Z, et al. (2017) A review of atomic layer deposition providing high performance lithium sulfur batteries. J Power Sources 338: 34–48. doi: 10.1016/j.jpowsour.2016.10.097 |
[298] | Lei Y, Lu J, Luo X, et al. (2013) Synthesis of porous carbon supported palladium nanoparticle catalysts by atomic layer deposition: application for rechargeable lithium–O2 battery. Nano Lett 13: 4182–4189. doi: 10.1021/nl401833p |
[299] | Jung YS, Cavanagh AS, Dillon AC, et al. (2010) Enhanced stability of LiCoO2 cathodes in lithium-ion batteries using surface modification by atomic layer deposition. J Electrochem Soc 157: A75–A81. doi: 10.1149/1.3258274 |
[300] | Jung YS, Cavanagh AS, Yan Y, et al. (2011) Effects of atomic layer deposition of Al2O3 on the Li[Li0.20Mn0.54Ni0.13Co0.13]O2 cathode for lithium-ion batteries. J Electrochem Soc 158: A1298–A1302. |
[301] | Zhao J, Wang Y (2013) Atomic layer deposition of epitaxial ZrO2 coating on LiMn2O4 nanoparticles for high-rate lithium ion batteries at elevated temperature. Nano Energy 2: 882–889. doi: 10.1016/j.nanoen.2013.03.005 |
[302] | Chen H, Lin Q, Xu Q, et al. (2014) Plasma activation and atomic layer deposition of TiO2 on polypropylene membranes for improved performances of lithium-ion batteries. J Membrane Sci 458: 217–224. doi: 10.1016/j.memsci.2014.02.004 |
[303] | Xie M, Sun X, George SM, et al. (2015) Amorphous ultrathin SnO2 films by atomic layer deposition on graphene network as highly stable anodes for lithium-ion batteries. ACS Appl Mater Inter 7: 27735–27742. doi: 10.1021/acsami.5b08719 |
[304] | Fang X, Ge M, Rong J, et al. (2014) Ultrathin surface modification by atomic layer deposition on high voltage cathode LiNi0.5Mn1.5O4 for lithium ion batteries. Energy Technol 2: 159–165. |
[305] | Li Y, Sun Y, Xu G, et al. (2014) Tuning electrochemical performance of Si-based anodes for lithium-ion batteries by employing atomic layer deposition alumina coating. J Mater Chem A 2: 11417–11425. doi: 10.1039/C4TA01562B |
[306] | Xie M, Sun X, Sun H, et al. (2016) Stabilizing an amorphous V2O5/carbon nanotube paper electrode with conformal TiO2 coating by atomic layer deposition for lithium ion batteries. J Mater Chem A 4: 537–544. doi: 10.1039/C5TA01949D |
[307] | Zhu B, Liu N, McDowell M, et al. (2015) Interfacial stabilizing effect of ZnO on Si anodes for lithium ion battery. Nano Energy 13: 620–625. doi: 10.1016/j.nanoen.2015.03.019 |
[308] | Piper DM, Travis JJ, Young M, et al. (2014) Reversible high-capacity Si nanocomposite anodes for lithium–ion batteries enabled by molecular layer deposition. Adv Mater 26: 1596–1601. doi: 10.1002/adma.201304714 |
[309] | Chen L, Huang Z, Shahbazian-Yassar R, et al. (2018) Directly formed alucone on lithium metal for high-performance Li batteries and Li–S batteries with high sulfur mass loading. ACS Appl Mater Inter 10: 7043–7051. doi: 10.1021/acsami.7b15879 |
[310] | Li X, Lushington A, Liu J, et al. (2014) Superior stable sulfur cathodes of Li–S batteries enabled by molecular layer deposition. Chem Commun 50: 9757–9760. doi: 10.1039/C4CC04097J |
[311] | Liu J, Xiao B, Banis MN, et al. (2015) Atomic layer deposition of amorphous iron phosphates on carbon nanotubes as cathode materials for lithium-ion batteries. Electrochim Acta 162: 275–281. doi: 10.1016/j.electacta.2014.12.158 |
[312] | Lu S, Wang H, Zhou J, et al. (2017) Atomic layer deposition of ZnO on carbon black as nanostructured anode materials for high-performance lithium-ion batteries. Nanoscale 9: 1184–1192. doi: 10.1039/C6NR07868K |
[313] | Lee M, Su C, Lin Y, et al. (2013) Atomic layer deposition of TiO2 on negative electrode for lithium ion batteries. J Power Sources 244: 410–416. doi: 10.1016/j.jpowsour.2012.12.005 |
[314] | Nisula M, Karppinen M (2016) Atomic/molecular layer deposition of lithium terephthalate thin films as high rate capability Li-ion battery anodes. Nano Lett 16: 1276–1281. doi: 10.1021/acs.nanolett.5b04604 |
[315] | Kim HG, Lee H (2017) Atomic layer deposition on 2D materials. Chem Mater 29: 3809–3826. doi: 10.1021/acs.chemmater.6b05103 |
[316] | Mondloch JE, Bury W, Fairen-Jimenez D, et al. (2013) Vapor-phase metalation by atomic layer deposition in a metal-organic framework. J Am Chem Soc 135: 10294–10297. doi: 10.1021/ja4050828 |