Citation: Tabinda Sattar, Muhammad Athar. Nano bio-MOFs: Showing drugs storage property among their multifunctional properties[J]. AIMS Materials Science, 2018, 5(3): 508-518. doi: 10.3934/matersci.2018.3.508
[1] | Rowsell JLC, Yaghi OM (2005) Strategies for hydrogen storage in metal–organic frameworks. Angew Chem Int Edit 44: 4670–4679. doi: 10.1002/anie.200462786 |
[2] | Moulton B, Zaworotko MJ (2001) From molecules to crystal engineering: supramolecular isomerism and polymorphism in network solids. Chem Rev 101: 1629–1658. doi: 10.1021/cr9900432 |
[3] | Kitagawa S, Kitaura R, Noro S (2004) Functional porous coordination polymers. Angew Chem Int Edit 43: 2334–2375. doi: 10.1002/anie.200300610 |
[4] | Rieter WJ, Taylor KML, Lin W (2007) Surface modification and functionalization of nanoscale metal–organic frameworks for controlled release and luminescence sensing. J Am Chem Soc 129: 9852–9853. doi: 10.1021/ja073506r |
[5] | Rieter WJ, Taylor KML, An H, et al. (2006) Nanoscale metal–organic frameworks as potential multimodal contrast enhancing agents. J Am Chem Soc 128: 9024–9025. doi: 10.1021/ja0627444 |
[6] | Taylor KML, Rieter WJ, Lin W (2008) Manganese-based nanoscale metal–organic frameworks for magnetic resonance imaging. J Am Chem Soc 130: 14358–14359. doi: 10.1021/ja803777x |
[7] | Taylor KML, Jin A, Lin W (2008) Surfactant-assisted synthesis of nanoscale gadolinium metal–organic frameworks for potential multimodal imaging. Angew Chem Int Edit 47: 7722–7725. doi: 10.1002/anie.200802911 |
[8] | Wuttke S, Lismont M, Escudero A, et al. (2017) Positioning metal–organic framework nanoparticles within the context of drug delivery—A comparison with mesoporous silica nanoparticles and dendrimers. Biomaterials 123: 172–183. doi: 10.1016/j.biomaterials.2017.01.025 |
[9] | Lismont M, Dreesen L, Wuttke S (2017) Metal–Organic Framework Nanoparticles in Photodynamic Therapy: Current Status and Perspectives. Adv Funct Mater 27: 1606314. doi: 10.1002/adfm.201606314 |
[10] | He C, Liu D, Nanomedicine applications of hybrid nanomaterials built from metal–ligand coordination bonds: nanoscale metal–organic frameworks and nanoscale coordination polymers. Chem Rev 115: 11079–11108. |
[11] | Röder R, Preiß T, Hirschle P, et al. (2017) Multifunctional Nanoparticles by Coordinative Self-Assembly of His-Tagged Units with Metal–Organic Frameworks. J Am Chem Soc 139: 2359–2368. |
[12] | Hidalgo T, Giménez-Marqués M, Bellido E, et al. (2017) Chitosan-coated mesoporous MIL-100(Fe) nanoparticles as improved bio-compatible oral nanocarriers. Sci Rep 7: 43099. doi: 10.1038/srep43099 |
[13] | Evans OR, Lin W (2002) Crystal engineering of NLO materials based on metal–organic coordination networks. Accounts Chem Res 35: 511–522. doi: 10.1021/ar0001012 |
[14] | Anand R, Borghi F, Manoli F, et al. (2014) Host–guest interactions in Fe (III)-trimesate MOF nanoparticles loaded with doxorubicin. J Phys Chem B 118: 8532–8539. doi: 10.1021/jp503809w |
[15] | Sattar T, Athar M (2017) Hydrothermally Synthesized NanobioMOFs, Evaluated by Photocatalytic Hydrogen Generation. Mod Res Catal 6: 80–99. doi: 10.4236/mrc.2017.62007 |