Citation: Jiřina Vontorová, Petra Váňová. Determination of carburized layer thickness by GDOES method[J]. AIMS Materials Science, 2018, 5(1): 34-43. doi: 10.3934/matersci.2018.1.34
[1] | Thelning KE (1984) Steel and its Heat Treatment, 2 Eds. |
[2] | Mohyla P, Kubon Z, Cep R, et al. (2014) Secondary hardening of low-alloyed creep-resistant steel welds. Metalurgija 53: 25–28. |
[3] | Kula P, Dybowski K, Wolowiec E, et al. (2014) "Boost-diffusion" vacuum carburising-Process optimisation. Vacuum 99: 175–179. doi: 10.1016/j.vacuum.2013.05.021 |
[4] | Widanka K (2010) Effect of interconnected porosity on carbon diffusion depth in vacuum carburising process of iron compacts. Powder Metall 53: 318–322. doi: 10.1179/174329009X449332 |
[5] | Krauss G (1990) Steels: Heat Treatment and Processing principles. |
[6] | Váňová P, Sojka J, Volodarskaja A, et al. (2016) The evaluation of retained austenite in the carburized layers. METAL 2016-25th Anniversary International Conference on Metallurgy and Materials, Conference Proceedings, 879–884. |
[7] | Singer F, Kufner M (2017) Model based laser-ultrasound determination of hardness gradients of gas-carburized steel. NDT&E Int 88: 24–32. |
[8] | Balanovskii AE, Huy VV (2017) Plasma surface carburizing with graphite paste. Lett Mater 7: 175–179. doi: 10.22226/2410-3535-2017-2-175-179 |
[9] | Sugimoto KI, Hojo T, Mizuno Y (2017) Effects of vacuum-carburizing conditions on surface-hardened layer properties of transformation-induced plasticity-aided martensitic steel. Metals 7: 301. doi: 10.3390/met7080301 |
[10] | Jo B, Sharifimehr S, Shim Y, et al. (2017) Cyclic deformation and fatigue behavior of carburized automotive gear steel and predictions including multiaxial stress states. Int J Fatigue 100: 454–465. doi: 10.1016/j.ijfatigue.2016.12.023 |
[11] | Jo B, Shim Y, Sharifimehr S, et al. (2016) Deformation and fatigue behaviors of carburized automotive gear steel and predictions. Frattura ed Integritá Strutturale 10: 28–37. |
[12] | ČSN EN ISO 2639 (2002) Steels-Determination and verification of the depth of carburized and hardened cases. |
[13] | ISO 18203:2016 (2016) Steel-Determination of the thickness of surface-hardened layers. |
[14] | Vontorová J, Dobiáš V, Mohyla P (2017) Utilization of GDOES for the study of friction layers formed on the surface of brake discs during the friction process. Chem Pap 71: 1507–1514. doi: 10.1007/s11696-017-0145-4 |
[15] | Vontorová J, Mohyla P, Ševčíková X (2012) Influence of CMT and MIG soldering on zinc layer thickness. METAL 2012-21st International Conference on Metallurgy and Materials, Conference Proceedings. |
[16] | Liu Y, Jian W, Wang JY, et al. (2015) Quantitative reconstruction of the GDOES sputter depth profile of a monomolecular layer structure of thiourea on copper. Appl Surf Sci 331: 140–149. doi: 10.1016/j.apsusc.2015.01.065 |
[17] | Galindo RE, Forniés E, Albella JM (2006) Compositional depth profiling analysis of thin and ultrathin multilayer coatings by radio-frequency glow discharge optical emission spectroscopy. Surf Coat Tech 200: 6185–6189. doi: 10.1016/j.surfcoat.2005.11.064 |