Citation: Tian Hao. Defining temperatures of granular powders analogously with thermodynamics to understand jamming phenomena[J]. AIMS Materials Science, 2018, 5(1): 1-33. doi: 10.3934/matersci.2018.1.1
[1] | Edwards SF, Mehta A (1989) Statistical mechanics of powder mixtures. Physica A 157: 1091–1100. doi: 10.1016/0378-4371(89)90035-6 |
[2] | Edwards SF, Oakeshott RBS (1989) Theory of powders. Physica A 157: 1080–1090. doi: 10.1016/0378-4371(89)90034-4 |
[3] | Edwards SF (2001) Can one learn glasses from advances in granular materials? J Non-Cryst Solids 293–295: 279–282. |
[4] | Reis PM, Ingale RA, Shattuck MD (2007) Caging Dynamics in a Granular Fluid. Phys Rev Lett 98: 188301. doi: 10.1103/PhysRevLett.98.188301 |
[5] | Reis PM, Ingale RA, Shattuck MD (2007) Forcing independent velocity distributions in an experimental granular fluid. Phys Rev E 75: 051311. doi: 10.1103/PhysRevE.75.051311 |
[6] | Pacheco-Vázquez F, Caballero-Robledo GA, Ruiz-Suárez JC (2009) Superheating in Granular Matter. Phys Rev Lett 102: 170601. doi: 10.1103/PhysRevLett.102.170601 |
[7] | Reis PM, Ingale RA, Shattuck MD (2006) Crystallization of a Quasi-Two-Dimensional Granular Fluid. Phys Rev Lett 96: 258001. doi: 10.1103/PhysRevLett.96.258001 |
[8] | Coniglio A, De Candia A, Fierro A, et al. (2004) On Edwards' theory of powders. Physica A 339: 1–6. doi: 10.1016/j.physa.2004.03.038 |
[9] | Song C, Wang P, Makse HA (2008) A phase diagram for jammed matter. Nature 453: 629–632. doi: 10.1038/nature06981 |
[10] | Onoda GY, Liniger EG (1990) Random loose packings of uniform spheres and the dilatancy onset. Phys Rev Lett 64: 2727–2730. doi: 10.1103/PhysRevLett.64.2727 |
[11] | Liu C, Nagel SR, Schecter DA, et al. (1995) Force Fluctuations in Bead Packs. Science 269: 513–515. doi: 10.1126/science.269.5223.513 |
[12] | Edwards SF, Grinev DV (1999) Statistical Mechanics of Stress Transmission in Disordered Granular Arrays. Phys Rev Lett 82: 5397. doi: 10.1103/PhysRevLett.82.5397 |
[13] | Edwards SF (2005) The full canonical ensemble of a granular system. Physica A 353: 114–118. doi: 10.1016/j.physa.2005.01.045 |
[14] | Henkes S, O'Hern CS, Chakraborty B (2007) Entropy and Temperature of a Static Granular Assembly: An Ab Initio Approach. Phys Rev Lett 99: 038002. doi: 10.1103/PhysRevLett.99.038002 |
[15] | Henkes S, Chakraborty B (2009) Statistical mechanics framework for static granular matter. Phys Rev E 79: 061301. doi: 10.1103/PhysRevE.79.061301 |
[16] | Majmudar TS, Sperl M, Luding S, et al. (2007) Jamming Transition in Granular Systems. Phys Rev Lett 98: 058001. doi: 10.1103/PhysRevLett.98.058001 |
[17] | Tighe BP, Vlugt TJH (2011) Stress fluctuations in granular force networks. J Stat Mech-Theory E 2011: P04002. |
[18] | Wu Y, Teitel S (2015) Maximum Entropy and the Stress Distribution in Soft Disk Packings Above Jamming. Phys Rev E 92: 022207. doi: 10.1103/PhysRevE.92.022207 |
[19] | Xia C, Cao Y, Kou B, et al. (2014) Angularly anisotropic correlation in granular packings. Phys Rev E 90: 062201. doi: 10.1103/PhysRevE.90.062201 |
[20] | Chandler D (1978) Introduction to Modern Statistical Mechanics, New York: Oxford University. |
[21] | Bertin E, Dauchot O, Droz M (2006) Definition and relevance of nonequilibrium intensive thermodynamic parameters. Phys Rev Lett 96: 120601. doi: 10.1103/PhysRevLett.96.120601 |
[22] | Makse HA, Kurchan J (2002) Testing the thermodynamic approach to granular matter with a numerical model of a decisive experiment. Nature 415: 614–617. doi: 10.1038/415614a |
[23] | Song C, Wang P, Makse HA (2005) Experimental measurement of an effective temperature for jammed granular materials. P Natl Acad Sci USA 102: 2299–2304. doi: 10.1073/pnas.0409911102 |
[24] | Wang P, Song C, Briscoe C, et al. (2008) Particle dynamics and effective temperature of jammed granular matter in a slowly sheared 3D Couette cell. Phys Rev E 77: 061309. doi: 10.1103/PhysRevE.77.061309 |
[25] | Saksenaa RS, Woodcock LV (2004) Quasi-thermodynamics of powders and granular dynamics. Phys Chem Chem Phys 6: 5195–5202. doi: 10.1039/b407699k |
[26] | Ciamarra MP, Coniglio A, Nicodemi M (2006) Thermodynamics and Statistical Mechanics of Dense Granular Media. Phys Rev Lett 97: 158001. doi: 10.1103/PhysRevLett.97.158001 |
[27] | Casas-Vazquez J, Jou D (2003) Temperature in non-equilibrium states: a review of open problems and current proposals. Rep Prog Phys 66: 1937–2023. doi: 10.1088/0034-4885/66/11/R03 |
[28] | Lu K, Brodsky EE, Kavehpour HP (2008) A thermodynamic unification of jamming. Nat Phys 4: 404–407. doi: 10.1038/nphys934 |
[29] | Chen Q, Hou M (2014) Effective temperature and fluctuation-dissipation theorem in athermal granular systems: A review. Chinese Phys B 23: 074501. doi: 10.1088/1674-1056/23/7/074501 |
[30] | Hao T (2015) Understanding empirical powder flowability criteria scaled by Hausner ratio or Carr index with the analogous viscosity concept. RSC Adv 5: 57212–57215. doi: 10.1039/C5RA07197F |
[31] | Hao T (2015) Analogous Viscosity Equations of Granular Powders Based on Eyring's Rate Process Theory and Free Volume Concept. RSC Adv 5: 95318–95333. doi: 10.1039/C5RA16706J |
[32] | Fermi F (1956) Thermodynamics, New York: Dover. |
[33] | Atkins P (2007) The four laws that drive the universe, New York: Oxford University Press. |
[34] | Janssen HA (1895) Versuche uber Getreidedruck in Silozellen. Z Ver Deut Ing 39: 1045–1049. |
[35] | Schulze D (2008) Powders and Bulk Solids: Behavior, Characterization, Storage and Flow, Berlin, Heidelberg: Springer-Verlag. |
[36] | Savage S, Jeffery D (1981) The stress tensor in a granular flow at high shear rates. J Fluid Mech 110: 255–272. doi: 10.1017/S0022112081000736 |
[37] | Jenkins JT, Richman MW (1985) Grad's 13-moment system for a dense gas of inelastic spheres. Arch Ration Mech An 87: 355–377. |
[38] | Lun C, Savage SB, Jeffrey DJ, et al. (1984) Kinetic theories for granular flow: inelastic particles in Couette flow and slightly inelastic particles in a general flowfield. J Fluid Mech 140: 223–256. doi: 10.1017/S0022112084000586 |
[39] | Lun C (1991) Kinetic theory for granular flow of dense, slightly inelastic, slightly rough spheres. J Fluid Mech 233: 539–559. doi: 10.1017/S0022112091000599 |
[40] | Goldshtein A, Shapiro M (1995) Mechanics of collisional motion of granular materials. Part 1. General hydrodynamic equations. J Fluid Mech 282: 75–114. |
[41] | Sela N, Goldhirsch I, Noskowicz SH (1996) Kinetic theoretical study of a simply sheared two-dimensional granular gas to Burnett order. Phys Fluids 8: 2337–2353. doi: 10.1063/1.869012 |
[42] | Brey JJ, Moreno F, Dufty JW (1996) Model kinetic equation for low-density granular flow. Phys Rev E 54: 445–456. doi: 10.1103/PhysRevE.54.445 |
[43] | Brey JJ, Dufty JW (2003) Hydrodynamic modes for granular gases. Phys Rev E 68: 030302. doi: 10.1103/PhysRevE.68.030302 |
[44] | Brey JJ, Ruiz-Montero MJ (2004) Simulation study of the Green-Kubo relations for dilute granular gases. Phys Rev E 70: 051301. doi: 10.1103/PhysRevE.70.051301 |
[45] | Brey JJ, Dufty JW (2005) Hydrodynamic modes for a granular gas from kinetic theory. Phys Rev E 72: 011303. doi: 10.1103/PhysRevE.72.011303 |
[46] | Lutsko JF (2006) Chapman-Enskog expansion about nonequilibrium states with application to the sheared granular fluids. Phys Rev E 73: 021302. doi: 10.1103/PhysRevE.73.021302 |
[47] | Loeb LB (2004) The Kinetic Theory of Gases, New York: Dover. |
[48] | Shabana AA (1995) Theory of Vibration: An Introduction, Springer. |
[49] | Dong RG, Schopper AW, McDowell TW, et al. (2004) Vibration energy absorption (VEA) in human fingers-hand-arm system. Med Eng Phys 26: 483–492. doi: 10.1016/j.medengphy.2004.02.003 |
[50] | Santos A, Montanero JM, Dufty JW, et al. (1998) Kinetic model for the hard-sphere fluid and solid. Phys Rev E 57: 1644–1660. |
[51] | Garzó V, Dufty JW (1999) Homogeneous cooling state for a granular mixture. Phys Rev E 60: 5706–5713. doi: 10.1103/PhysRevE.60.5706 |
[52] | Dufty JW, Baskaran A, Zogaib L (2004) Gaussian kinetic model for granular gases. Phys Rev E 69: 051301. doi: 10.1103/PhysRevE.69.051301 |
[53] | Kumaran V (2005) Kinetic Model for Sheared Granular Flows in the High Knudsen Number Limit. Phys Rev Lett 95: 108001. doi: 10.1103/PhysRevLett.95.108001 |
[54] | Jenkins J, Richman M (1985) Kinetic theory for plane flows of a dense gas of identical, rough, inelastic, circular disks. Phys Fluids 28: 3485–3494. doi: 10.1063/1.865302 |
[55] | Coussot P (2014) Rheophysics: Matter in all its States, Springer. |
[56] | Müller CR, Holland DJ, Sederman AJ, et al. (2008) Granular temperature: Comparison of Magnetic Resonance measurements with Discrete Element Model simulations. Powder Technol 184: 241–253. doi: 10.1016/j.powtec.2007.11.046 |
[57] | Jaeger HM (2015) Celebrating Soft Matter's 10th Anniversary: Toward jamming by design. Soft Matter 11: 12–27. doi: 10.1039/C4SM01923G |
[58] | Bi D, Zhang J, Chakraborty B, et al. (2011) Jamming by shear. Nature 480: 355–358. doi: 10.1038/nature10667 |
[59] | Trappe V, Prasad V, Cipelletti L, et al. (2001) Jamming phase diagram for attractive particles. Nature 411: 772–775. doi: 10.1038/35081021 |
[60] | Zhang Z, Xu N, Chen DTN, et al. (2009) Thermal vestige of the zero-temperature jamming transition. Nature 459: 230–233. doi: 10.1038/nature07998 |
[61] | Silbert LE, Ertas D, Grest GS, et al. (2002) Analogies between granular jamming and the liquid-glass transition. Phys Rev E 65: 051307. doi: 10.1103/PhysRevE.65.051307 |
[62] | Hao T (2005) Electrorheological Fluids: The Non-aqueous Suspensions, Amsterdam: Elsevier Science. |
[63] | Hao T (2015) Tap density equations of granular powders based on the rate process theory and the free volume concept. Soft Matter 11: 1554–1561. doi: 10.1039/C4SM02472A |
[64] | Kuwabara S (1959) The Forces experienced by Randomly Distributed Parallel Circular Cylinders or Spheres in a Viscous Flow at Small Reynolds Numbers. J Phys Soc Jpn 14: 527–532. doi: 10.1143/JPSJ.14.527 |
[65] | Torquato S, Stillinger FH (2010) Jammed hard-particle packings: From Kepler to Bernal and beyond. Rev Mod Phys 82: 2633–2672. doi: 10.1103/RevModPhys.82.2633 |
[66] | Hao T (2015) Derivation of stretched exponential tap density equations of granular powders. Soft Matter 11: 3056–3061. doi: 10.1039/C4SM02892A |
[67] | Vivanco F, Rica S, Melo F (2012) Dynamical arching in a two dimensional granular flow. Granul Matter 4: 563–576. |
[68] | Duran J (2000) Sands, Powders, and Grains, An Introduction to the Physics of Granular Materials, Springer. |
[69] | Behringer RP, Dijksman J, Ren J, et al. (2013) Jamming and shear for granular materials. AIP Conf Proc 1542: 12–19. |
[70] | Peters IR, Majumdar S, Jaeger HM (2016) Direct observation of dynamic shear jamming in dense suspensions. Nature 532: 214–217. doi: 10.1038/nature17167 |
[71] | Lu K, Brodsky EE, Kavehpour HP (2007) Shear-weakening of the transitional regime for granular flow. J Fluid Mech 587: 347–372. |
[72] | Glasstone S, Laidler K, Eyring H (1941) The theory of rate process, New York: McGraw-Hill. |
[73] | Kou B, Cao Y, Li J, et al. (2017) Granular materials flow like complex fluids. Nature 551: 360–363. |