Research article Special Issues

Synthesis, structural characterization and thermal stability of a 2D layered Cd(II) coordination polymer constructed from squarate (C4O42) and 2,2’-bis(2-pyridyl)ethylene (2,2’-bpe) ligands

  • Received: 29 December 2017 Accepted: 26 February 2018 Published: 09 December 2018
  • A mixed-ligands Cd(II) coordination polymer, [Cd(2,2’-bpe)(C4O4)(H2O)2] (1) (2,2’-bpe = 1,2-bis(2-pyridyl)ethylene; C4O42− = dianion of squaric acid), has been synthesized and structurally characterized by single-crystal X-ray diffraction method. The coordination environment of Cd(II) ions in compound 1 is six-coordinate bonded to four oxygen atoms from two μ1,3-squarate (C4O42−) and two water molecules, and two nitrogen atoms from two 2,2’-bpe ligands. The squarate and 2,2’-bpe both act as bridging ligands with bis-monodentate coordination modes, connecting the Cd(II) ions to form a two-dimensional (2D) layered metal-organic framework (MOF). Adjacent 2D layers are then arranged in an ABAB parallel non-interpenetrating manner to construct its three dimensional (3D) supramolecular network. Intra- and inter-layers hydrogen bonding interactions between the C4O42− and water molecules in 1 provide an extra-stabilization energy on the construction of its 3D supramolecular network. The thermal stability of 1 is studied and discussed in details by TG analysis and in-situ PXRD measurement.

    Citation: Chih-Chieh Wang, Yu-Fan Wang, Szu-Yu Ke, Yanbin Xiu, Gene-Hsiang Lee, Bo-Hao Chen, Yu-Chun Chuang. Synthesis, structural characterization and thermal stability of a 2D layered Cd(II) coordination polymer constructed from squarate (C4O42−) and 2,2’-bis(2-pyridyl)ethylene (2,2’-bpe) ligands[J]. AIMS Materials Science, 2018, 5(1): 145-155. doi: 10.3934/matersci.2018.1.145

    Related Papers:

  • A mixed-ligands Cd(II) coordination polymer, [Cd(2,2’-bpe)(C4O4)(H2O)2] (1) (2,2’-bpe = 1,2-bis(2-pyridyl)ethylene; C4O42− = dianion of squaric acid), has been synthesized and structurally characterized by single-crystal X-ray diffraction method. The coordination environment of Cd(II) ions in compound 1 is six-coordinate bonded to four oxygen atoms from two μ1,3-squarate (C4O42−) and two water molecules, and two nitrogen atoms from two 2,2’-bpe ligands. The squarate and 2,2’-bpe both act as bridging ligands with bis-monodentate coordination modes, connecting the Cd(II) ions to form a two-dimensional (2D) layered metal-organic framework (MOF). Adjacent 2D layers are then arranged in an ABAB parallel non-interpenetrating manner to construct its three dimensional (3D) supramolecular network. Intra- and inter-layers hydrogen bonding interactions between the C4O42− and water molecules in 1 provide an extra-stabilization energy on the construction of its 3D supramolecular network. The thermal stability of 1 is studied and discussed in details by TG analysis and in-situ PXRD measurement.


    加载中
    [1] Chen B, Xiang S, Qian G (2010) Metal–Organic Frameworks with Functional Pores for Recognition of Small Molecules. Accounts Chem Res 43: 1115–1124. doi: 10.1021/ar100023y
    [2] Liu FL, Kozlevčar B, Strauch P, et al. (2015) Robust Cluster Building Unit: Icosanuclear Heteropolyoxocopperate Templated by Carbonate. Chem Eur J 21: 18847–18854. doi: 10.1002/chem.201502834
    [3] Wang XP, Chen WM, Qi H, et al. (2017) Solvent-Controlled Phase Transition of a CoII-Organic Framework: From Achiral to Chiral and Two to Three Dimensions. Chem Eur J 23: 7990–7996. doi: 10.1002/chem.201700474
    [4] Wang Z, Li XY, Liu LW, et al. (2016) Beyond Clusters: Supramolecular Networks Self-Assembled from Nanosized Silver Clusters and Inorganic Anions. Chem Eur J 22: 6830–6836. doi: 10.1002/chem.201504728
    [5] Yuan S, Deng YK, Sun D (2014) Unprecedented Second-Timescale Blue/Green Emissions and Iodine-Uptake-Induced Single-Crystal-to-Single-Crystal Transformation in ZnII/CdII Metal–Organic Frameworks. Chem Eur J 20: 10093–10098. doi: 10.1002/chem.201402211
    [6] Khan MI, Chang YD, Chen Q, et al. (1994) Synthesis and Characterization of Binuclear Oxo–Vanadium Complexes of Carbon Oxoanion Ligands. Crystal Structures of the Binuclear Vanadium(IV) Complex (NH4)[V2O2(OH)(C4O4)2(H2O)3]·H2O, of the Mixed-Valence Vanadium(V)/Vanadium(IV)–Squarate Species [(n-C4H9)4N][V2O3(C4O4)2(H2O)3]·3H2O and [(C4H9)4N]4[V4O6(C4O4)5(H2O)4]·6H2O, and of the Binuclear Vanadium(IV)–Oxalate Species [V2O2Cl2(C2O4)(CH3OH)4]·2Ph4PCl. Inorg Chem 33: 6340–6350.
    [7] Chen Q, Liu S, Zubieta J (1990) Coordination Chemistry of Polyoxomolybdates: The Structure of a Dodecanuclear Molybdate Cage Incorporating Hydrogen Squarate Ligands, [(C4H9)4N]4[Mo12O36(C4O4H)4]·10Et2O. Angew Chem Int Edit 29: 70–72. doi: 10.1002/anie.199000701
    [8] Lee CR, Wang CC, Wang Y (1996) Structural relationship of various squarates. Acta Crystallogr B 52: 966–975. doi: 10.1107/S0108768196009639
    [9] Bouayad A, Brouca-Cabarrecq C, Trombe JC, et al. (1992) Lanthanide(III)-copper(II) squarates: synthesis, crystal structure, magnetism and thermal behaviour of [La2Cu(C4O4)4(H2O)16]·2H2O and [Gd2Cu(C4O4)4(H2O)12]2H2O. Inorg Chim Acta 195: 193–201. doi: 10.1016/S0020-1693(00)85312-8
    [10] Petit JF, Gleizes A, Trombe JC (1990) Lanthanide(III) squarates 1. Five families of compounds obtained from aqueous solutions in an open system. Crystal structure and thermal behaviour. Inorg Chim Acta 167: 51–68.
    [11] Trombe JC, Petit JF, Gleizes A (1990) Lanthanide(III) squarates 2. High diversity of rare coordination modes of the squarate anion in a series of weakly hydrated cerium(III) squarates prepared by pseudo-hydrothermal methods. Inorg Chim Acta 167: 69–81.
    [12] Bouayad A, Trombe JC, Gleizes A (1995) Barium-copper(II) oxocarbon compounds: synthesis, crystal structures and thermal behaviours of [Ba(H2O)5][Cu(C2O4)2(H2O)] and [Ba(C4O4)0.5(H2O)2]2[Cu(C4O4)2(H2O)2]. Inorg Chim Acta 230: 1–7.
    [13] Trombe JC, Sabadie L, Millet P (2002) Synthesis and crystal structure of La(H2O)(C2O4)2·(CN3H6) and of [Nd(H2O)]2(C2O4)4·(NH4)(CN3H6). Solid State Sci 4: 1199–1028. doi: 10.1016/S1293-2558(02)01378-X
    [14] Trombe JC, Sabadie L, Millet P (2002) Hydrothermal synthesis and structural characterization of Fe(II)-squarate Fe2(OH)2(C4O4). Solid State Sci 4: 1209–1212.
    [15] Soules R, Dahan F, Laurent JP, et al. (1988) A novel coordination mode for the squarate ligand [dihydroxycyclobutenedionate(2–)]: synthesis, crystal structure, and magnetic properties of catena-diaqua(2,2'-bipyridyl)-µ-(squarato-O1,O2)-nickel(II) dehydrate. J Chem Soc Dalton Trans 587–590.
    [16] Beneto M, Soto L, Garcia-Lozano J, et al. (1991) Crystal and molecular structure and properties of the first characterized copper(II) one-dimensional polymer containing mepirizole [4-methoxy-2-(5-methoxy-3-methyl-1H-pyrazol-1-yl)-6-methylpyrimidine]. J Chem Soc Dalton Trans 1057–1061.
    [17] Hall LA, Williams DJ, Menzer S, et al. (1997) The Complexing Properties of 1-Aminosquarate Derivatives with Lead. Inorg Chem 36: 3096–3101. doi: 10.1021/ic961341+
    [18] Alleyne BD, Hall LA, Hosein HA, et al. (1998) Hydrogen-bonding interactions in the series of complexes [M(C4O4)(OH2)2(dmf)2] and [M(C4O4)(OH2)4] (M = Mn, Co, Ni, Cu, Zn). J Chem Soc Dalton Trans 3845–3850.
    [19] Crispini A, Pucci D, Aiello I, et al. (2000) Synthesis and crystal structure of dinuclear cyclopalladated 1,2- and 1,3-bridged squarato complexes. Inorg Chim Acta 304: 219–223. doi: 10.1016/S0020-1693(00)00091-8
    [20] Lin KJ , Lii KH (1997) Halozeotypes: a New Generation of Zeolite-Type Materials. Angew Chem Int Edit 36: 2076–2077.
    [21] Lai SF, Cheng CY, Lin KJ (2001) Hydrothermal synthesis of a thermally stable poroussupramolecular π–π framework: [{Co2(C12H8N2)4(μ-C4O4)(OH2)2}C4O4]·8H2O. Chem Commun 1082–1083.
    [22] Grove H, Sletten J, Julve M, et al. (2001) Syntheses, crystal structures and magnetic properties of one- and two-dimensional pap-containing copper(II) complexes (pap = pyrazino[2,3- f][4,7]phenanthroline). J Chem Soc Dalton Trans 259–265.
    [23] Nather C, Greve J, Jeβ I (2002) New Coordination Polymer Changing Its Color upon Reversible Deintercalation and Reintercalation of Water:  Synthesis, Structure, and Properties of Poly[Diaqua-(μ2-Squarato-O,O')-(μ2-4,4'-Bipyridine-N,N')- Manganese(II)] Trihydrate. Chem Mater 14: 4536–4542.
    [24] Piggott PMT, Hall LA, White AJP, et al. (2003) Attempted Syntheses of Lanthanide(III) Complexes of the Anisole- and Anilinosquarate Ligands. Inorg Chem 42: 8344–8352. doi: 10.1021/ic034922p
    [25] Yang BP, Mao JG (2005) New Types of Metal Squarato-phosphonates:  Condensation of Aminodiphosphonate with Squaric Acid under Hydrothermal Conditions. Inorg Chem 44: 566–571. doi: 10.1021/ic048685h
    [26] Maji TK, Mostafa G, Sain S, et al. (2001) Construction of a 3D array of cadmium(II) using squarate as a building block. CrystEngComm 3: 155–158. doi: 10.1039/b105080j
    [27] Konar S, Corbella M, Zangrando E, et al. (2003) The first unequivocally ferromagnetically coupled squarato complex: origin of the ferromagnetism in an interlocked 3D Fe(II) system. Chem Commun 1424–1425.
    [28] Manna SC, Zangrando E, Ribas J, et al. (2005) Squarato-bridged polymeric networks of iron(II) with N-donor coligands: Syntheses, crystal structures and magnetic properties. Inorg Chim Acta 358: 4497–4504. doi: 10.1016/j.ica.2005.07.014
    [29] Ghosh AK, Ghoshal D, Zangrando E, et al. (2006) Structural diversity in manganese squarate frameworks using N,N-donor chelating/bridging ligands: syntheses, crystal structures and magnetic properties. Dalton Trans 1554–1563.
    [30] Heinl U, Hinse P, Mattes RZ (2001) Oxalato- und Quadratato-Komplexe hochkoordinierter Metallionen: Die Raumnetzstrukturen von La2(C2O4)(C4O4)2(H2O)8 . 2,5 H2O und K[Bi(C2O4)2] ·5 H2O. Anorg Allg Chem 627: 2173–2177.
    [31] Habenschuss M, Gerstein BC (1974) An x-ray, spectroscopic, and magnetic study of the structure of nickel squarate dihydrate, NiC4O4.2H2O. J Chem Phys 61: 852–860.
    [32] Hosein HA, Hall LA, Lough AJ, et al. (1998) Attempted Syntheses of Transition Metal and Lanthanide (Dialkylamino)squarates. The Hydrolysis Problem. Inorg Chem 37: 4184–4189. doi: 10.1021/ic9801490
    [33] Hosein HA, Jaggernauth H, Alleyne BD, et al. (1999) First-Row Transition-Metal Complexes of the 1-Methoxycyclobutenedionate(1−) Ion. Inorg Chem 38: 3716–3720. doi: 10.1021/ic990199k
    [34] Spandl J, Brüdgam I, Hartl H (2001) Solvothermal Synthesis of a 24-Nuclear, Cube-Shaped Squarato-oxovanadium(IV) Framework: [N(nBu)4]8[V24O24(C4O4)12(OCH3)32]. Angew Chem Int Edit 40: 4018–4020. doi: 10.1002/1521-3773(20011105)40:21<4018::AID-ANIE4018>3.0.CO;2-7
    [35] Mukherjee PS, Konar S, Zangrando E, et al. (2002) Synthesis, crystal structure and magneto-structural correlation of two bi-bridging 1D copper(II) chains. J Chem Soc Dalton Trans 3471–3476.
    [36] Neeraj S, Noy ML, Rao CNR, et al. (2002) Sodalite networks formed by metal squarates. Solid State Sci 4: 1231–1236.
    [37] Dan M, Rao CNR (2003) An open-framework cobalt oxalato-squarate containing a ligated amine. Solid State Sci 5: 615–620. doi: 10.1016/S1293-2558(03)00047-5
    [38] Kurmoo M, Kumagai H, Chapman KW, et al. (2005) Reversible ferromagnetic–antiferromagnetic transformation upon dehydration–hydration of the nanoporous coordination framework, [Co3(OH)2(C4O4)2]·3H2O. Chem Commun 3012–3014.
    [39] Gandara F, Gomez-Lor B, Iglesias M, et al. (2009) A new scandium metal organic framework built up from octadecasil zeolitic cages as heterogeneous catalyst. Chem Commun 2393–2395.
    [40] Gutschke SOH, Molinier M, Powell AK, et al. (1997) Hydrothermal Synthesis of Microporous Transition Metal Squarates: Preparation and Structure of [CO33-OH)2(C4O4)2]·3H2O. Angew Chem Int Edit 36: 991–992. doi: 10.1002/anie.199709911
    [41] Yufit DS, Price DJ, Howard JAK, et al. (1999) New type of metal squarates. Magnetic and multi-temperature X-ray study of di-hydroxy(µ6-squarato)manganese. Chem Commun 1561–1562.
    [42] Robl C, Weiss AZ (1987) Darstellung und Struktur von Ag2C4O4. Anorg Allg Chem 546: 161–168. doi: 10.1002/zaac.19875460317
    [43] Yang CH, Chou CM, Lee GH, et al. (2003) Self-assembly of two mixed-ligands metal-organic coordination polymers, [MII2(DPA)2(C4O4)(C2O4)] (M = Cu, Zn). Inorg Chem Commun 6: 135–140. doi: 10.1016/S1387-7003(02)00705-0
    [44] Wang CC, Yang CH, Tseng SM, et al. (2004) A new moisture-sensitive metal-coordination solids {[Cd(C4O4)(bipy)(H2O)2]·3H2O} (bipy = 4,4'-bipyridine). Inorg Chim Acta 357: 3759–3764. doi: 10.1016/j.ica.2004.05.016
    [45] Wang CC, Yang CH, Lee GH, et al. (2005) Syntheses, Structures, and Magnetic Properties of Two 1D, Mixed-Ligand, Metal Coordination Polymers, [M(C4O4)(dpa)(OH2)] (M = CoII, NiII, and ZnII; dpa = 2,2'-dipyridylamine) and [Cu(C4O4)(dpa)(H2O)]2·(H2O). Eur J Inorg Chem 1334–1342.
    [46] Wang CC, Yang CH, Lee GH (2006) Hydrothermal Synthesis and Structural Characterization of Two pH-Controlled Cd–Squarate Coordination Frameworks, [Cd2(C4O4)2.5(H2O)4]·(dpaH)·1.5(H2O) and [Cd(C4O4)(dpa)(OH2)] (dpa = 2,2'-dipyridylamine). Eur J Inorg Chem 820–826.
    [47] Wang CC, Tseng SM, Lin SY, et al. (2007) Assemblies of Two Mixed-Ligand Coordination Polymers with Two-Dimensional Metal−Organic Frameworks Constructed from M(II) Ions with Croconate and 1,2-Bis-(4-pyridyl)ethylene (M = Cd and Zn). Cryst Growth Des 7: 1783–1790.
    [48] Smart V (1995) 4.043 Software for CCD Detector System, Siemens Analytical Instruments Division, Madison, WI, USA.
    [49] Saint V (1995) 4.035 Software for CCD Detector System, Siemens Analytical Instruments Division, Madison, WI, USA.
    [50] Sheldrick GM (1993) Program for the Refinement of Crystal Structures, University of Göttingen, Göttingen, Germany.
    [51] Sheldrick GM (1995) SHELXTL 5.03 (PC-Version), Program Liberary for Structure Solution and Molecular Graphics, Siemens Analytical Instruments Division, Madison, WI, USA.
    [52] Toby BH, Von Dreele RB (2013) GSAS-II: the genesis of a modern open-source all purpose crystallography software package. J Appl Crystallogr 46: 544–549. doi: 10.1107/S0021889813003531
    [53] Ito M, Weiss RJ (1963) New Aromatic Anions. IV. Vibrational Spectra and Force Constants for C4O4−2 and C5O5−2. J Am Chem Soc 85: 2580–2584.
    [54] Blatov VA, Shevchenko AP, Serezhkin VN (2000) TOPOS3.2: A new version of the program package for multipurpose crystal-chemical analysis. J Appl Crystallogr 33: 1193–1193.
    [55] Blatov VA, Carlucci L, Ciani G, et al. (2004) Interpenetrating metal–organic and inorganic 3D networks: A computer-aided systematic investigation. Part I. Analysis of the Cambridge structural database. CrystEngComm 6: 377–395.
  • Reader Comments
  • © 2018 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4851) PDF downloads(887) Cited by(3)

Article outline

Figures and Tables

Figures(2)  /  Tables(4)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog