Citation: Kah Hon Leong, Azrina Abd Aziz, Yee Li Kang, Sheau Wei Goh, Kulhar Vijay Singh, Lan Ching Sim, Pichiah Saravanan. Synergized mechanistic and solar photocatalysis features of N-TiO2 functionalised activated carbon[J]. AIMS Materials Science, 2017, 4(3): 800-813. doi: 10.3934/matersci.2017.3.800
[1] | Ada K, Ergene A, Tan S, et al. (2009) Adsorption of remazol brilliant blue R using ZnO fine powder: equilibrium, kinetic and thermodynamic modeling studies. J Hazard Mater 165: 637–644. doi: 10.1016/j.jhazmat.2008.10.036 |
[2] | Mechichi T, Mhiri N, Sayadi S (2006) Remazol brilliant blue R decolourization by the laccase from Trametestrogii. Chemosphere 64: 998–1005. doi: 10.1016/j.chemosphere.2005.12.061 |
[3] | Ahmad AL, Harris WA, Ooi BS (2002) Removal of dye from wastewater of textile industry using membrane technology. Jurnal Teknologi 36: 31–44. |
[4] | Bhatnagar A, Jain A (2005) A comparative adsorption study with different industrial wastes as adsorbents for the removal of cationic dyes from water. J Colloid Interf Sci 281: 49–55. doi: 10.1016/j.jcis.2004.08.076 |
[5] | Foo K, Hameed B (2010) Decontamination of textile wastewater via TiO2/activated carbon composite materials. Adv Colloid Interfac 159: 130–143. doi: 10.1016/j.cis.2010.06.002 |
[6] | Chu SY, Xiao JB, Tian GM, et al. (2014) Preparation and characterization of activated carbon from aquatic macrophyte debris and its ability to adsorb anthraquinone dyes. J Ind Eng Chem 20: 3461–3466. doi: 10.1016/j.jiec.2013.12.035 |
[7] | Mahmoodi NM, Sadeghi U, Maleki A, et al. (2014) Synthesis of cationic polymeric adsorbent and dye removal isotherm, kinetic and thermodynamic. J Ind Eng Chem 20: 2745–2753. doi: 10.1016/j.jiec.2013.11.002 |
[8] | Sharon M, Modi F, Sharon M (2016) Titania based nanocomposites as a photocatalyst: A review. AIMS Mater Sci 3: 1236–1254. doi: 10.3934/matersci.2016.3.1236 |
[9] | Collazzo GC, Foletto EL, Jahn SL, et al. (2012) Degradation of direct black 38 dye under visible light and sunlight irradiation by N-doped anatase TiO2 as photocatalyst. J Environ Manage 98: 107–111. doi: 10.1016/j.jenvman.2011.12.029 |
[10] | Velmurugan R, Krishnakumar B, Subash B, et al. (2013) Preparation and characterization of carbon nanoparticles loaded TiO2 and its catalytic activity driven by natural sunlight. Sol Energ Mat Sol C 108: 205–212. doi: 10.1016/j.solmat.2012.09.018 |
[11] | Asiltürk M, ŞenerŞ (2012) TiO2-activated carbon photocatalysts: Preparation, characterization and photocatalytic activities. Chem Eng J 180: 354–363. doi: 10.1016/j.cej.2011.11.045 |
[12] | Baek MH, Jung WC, Yoon JW, et al. (2013) Preparation, characterization and photocatalytic activity evaluation of micro and mesoporous TiO2/spherical activated carbon. J Ind Eng Chem 19: 469–477. doi: 10.1016/j.jiec.2012.08.026 |
[13] | Lee SY, Park SJ (2013) TiO2 photocatalyst for water treatment applications. J Ind Eng Chem 19: 1761–1769. doi: 10.1016/j.jiec.2013.07.012 |
[14] | Sun JH, Wang YK, Sun RX, et al. (2009) Photodegradation of azo dye Congo Red from aqueous solution by the WO3-TiO2/activated carbon (AC) photocatalyst under the UV irradiation. Mater Chem Phys 115: 303–308. doi: 10.1016/j.matchemphys.2008.12.008 |
[15] | Leong KH, Gan BL, Ibrahim S, et al. (2014) Synthesis of surface plasmon resonance (SPR) triggered Ag/TiO2 photocatalyst for degradation of endocrine disturbing compounds. Appl Surf Sci 319: 128–135. doi: 10.1016/j.apsusc.2014.06.153 |
[16] | Eslami A, Amini MM, Yazdanbakhsh AR, et al. (2016) N, S co-doped TiO2 nanoparticles and nanosheets in simulated solar light for photocatalytic degradation of non-steroidal anti-inflammatory drugs in water: a comparative study. J Chem Technol Biot 91: 2693–2704. doi: 10.1002/jctb.4877 |
[17] | Adhikari SP, Awasthi GP, Kim HJ, et al. (2016) Electrospinning directly synthesized porous TiO2 nanofibers modified by graphitic carbon nitride sheets for enhanced photocatalytic degradation activity under solar light irradiation. Langmuir 32: 6163–6175. doi: 10.1021/acs.langmuir.6b01085 |
[18] | Fan JM, Zhao ZH, Liu WH, et al. (2016) Solvothermal synthesis of different phase N-TiO2 and their kinetics, isotherm and thermodynamic studies on the adsorption of methyl orange. J Colloid Interf Sci 470: 229–236. doi: 10.1016/j.jcis.2016.02.045 |
[19] | Fagan R, McCormack DE, Hinder S, et al. (2016) Improved high temperature stability of anatase TiO2 Photocatalysts by N, F, P co-doping. Mater Des 96: 44–53. doi: 10.1016/j.matdes.2016.01.142 |
[20] | Lei XF, Xue XX, Yang H, et al. (2015) Visible light-responded C, N and S co-doped anatase TiO2 for photocatalytic reduction of Cr(VI). J Alloy Compd 646: 541–549. doi: 10.1016/j.jallcom.2015.04.233 |
[21] | Wang X, Hu Z, Chen Y, et al. (2009) A novel approach towards high-performance composite photocatalyst of TiO2 deposited on activated carbon. Appl Surf Sci 255: 3953–3958. doi: 10.1016/j.apsusc.2008.10.083 |
[22] | Ragupathy S, Raghu K, Prabu P (2015) Synthesis and characterization of TiO2 loaded cashew nut shell activated carbon and photocatalytic activity on BG and MB dyes under sunlight radiation. Spectrochim Acta A 138: 314–320. doi: 10.1016/j.saa.2014.11.087 |
[23] | Alalm MG, Tawfik A, Ookawara S (2016) Solar photocatalytic degradation of phenol by TiO2/AC prepared by temperature impregnation method. Desalin Water Treat 57: 835–844. doi: 10.1080/19443994.2014.969319 |
[24] | Liu C, Li YJ, Xu P, et al. (2015) Controlled synthesis of ordered mesoporous TiO2 supported on activated carbon and pore-pore synergistic photocatalytic performance. Mater Chem Phys 149: 69–76. |
[25] | Liu D, Wu Z, Tian F, et al. (2016) Synthesis of N and La co-doped TiO2/AC photocatalyst by microwave irradiation for the photocatalytic degradation of naphthalene. J Alloy Compd 676: 489–498. doi: 10.1016/j.jallcom.2016.03.124 |
[26] | Berrios M, Martín MA, Martín A (2012) Treatment of pollutants in wastewater: Adsorption of methylene blue onto olive-based activated carbon. J Ind Eng Chem 18: 780–784. doi: 10.1016/j.jiec.2011.11.125 |
[27] | Wang X, Hu Z, Chen Y, et al. (2009) A novel approach towards high-performance composite photocatalyst of TiO2 deposited on activated carbon. Appl Surf Sci 255: 3953–3958. doi: 10.1016/j.apsusc.2008.10.083 |
[28] | Gu L, Chen Z, Sun C, et al. (2010) Photocatalytic degradation of 2,4-dichlorophenol using granular activated carbon supported TiO2. Desalination 263: 107–112. doi: 10.1016/j.desal.2010.06.045 |
[29] | Aziz AA, Yong KS, Ibrahim S, et al. (2012) Enhanced magnetic separation and photocatalytic activity of nitrogen doped titania photocatalyst supported on strontium ferrite. J Hazard Mater 199: 143–150. |
[30] | Arana J, Dona-Rodrıguez J, Tello Rendón E, et al. (2003) TiO2 activation by using activated carbon as a support: Part 1. Surface characterisation and decantability study. Appl Catal B-Environ 44: 161–172. |
[31] | Ravichandran L, Selvam K, Swaminathan M (2010) Highly efficient activated carbon loaded TiO2 for photodefluoridation of pentafluorobenzoic acid. J Mol Catal A-Chem 317: 89–96. doi: 10.1016/j.molcata.2009.10.029 |
[32] | Lee DK, Kim SC, Cho IC, et al. (2004) Photocatalytic oxidation of microcystin-LR in a fluidized bed reactor having TiO2-coated activated carbon. Sep Purif Technol 34: 59–66. doi: 10.1016/S1383-5866(03)00175-8 |
[33] | Subramani AK, Byrappa K, Kumaraswamy GN, et al. (2007) Hydrothermal preparation and characterization of TiO2: AC composites. Mater Lett 61: 4828–4831. doi: 10.1016/j.matlet.2007.03.050 |
[34] | Ao Y, Xu J, Fu D, et al. (2008) Low temperature preparation of anatase TiO2-coated activated carbon. Colloid Surface A 312: 125–130. doi: 10.1016/j.colsurfa.2007.06.039 |
[35] | Han C, Wang Y, Lei Y, et al. (2015) In situ synthesis of graphitic-C3N4 nanosheet hybridized N-doped TiO2 nanofibers for efficient photocatalytic H2 production and degradation. Nano Res 8: 1199–1209. doi: 10.1007/s12274-014-0600-2 |
[36] | Abdullah AM, Al-Thani NJ, Tawbi K, et al. (2016) Carbon/nitrogen-doped TiO2: New synthesis route, characterization and application for phenol degradation. Arab J Chem 2: 229–237. |
[37] | Fu X, Yang H, Sun H, et al. (2016) The multiple roles of ethylenediamine modification at TiO2/activated carbon in determining adsorption and visible-light-driven photoreduction of aqueous Cr(VI). J Alloy Compd 662: 165–172. doi: 10.1016/j.jallcom.2015.12.019 |
[38] | Li Y, Zhou X, Chen W, et al. (2012) Photodecolorization of Rhodamine B on tungsten-doped TiO2/activated carbon under visible-light irradiation. J Hazard Mater 227: 25–33. |
[39] | Bedja I, Hotchandani S, Kamat PV (1993) Photoelectrochemistry of quantized tungsten trioxide colloids: electron storage, electrochromic, and photoelectrochromic effects. J Phys Chem 97: 11064–11070. doi: 10.1021/j100144a027 |
[40] | Kannan N, Sundaram MM (2001) Kinetics and mechanism of removal of methylene blue by adsorption on various carbons-a comparative study. Dyes Pigments 51: 25–40. doi: 10.1016/S0143-7208(01)00056-0 |
[41] | Zhou J, Li F, Du C, et al. (2016) Photodegradation performance and recyclability of a porous nitrogen and carbon co-doped TiO2/activated carbon composite prepared by an extremely fast one-step microwave method. RSC Adv 6: 84457–84463. doi: 10.1039/C6RA19757D |
[42] | Le HA, Linh LT, Chin S, et al. (2012) Photocatalytic degradation of methylene blue by a combination of TiO2-anatase and coconut shell activated carbon. Powder Technol 225: 167–175. doi: 10.1016/j.powtec.2012.04.004 |