Citation: Zulzamri Salleh, Md Mainul Islam, Jayantha Ananda Epaarachchi, Haibin Su. Mechanical properties of sandwich composite made of syntactic foam core and GFRP skins[J]. AIMS Materials Science, 2016, 3(4): 1704-1727. doi: 10.3934/matersci.2016.4.1704
[1] | Klempner D, Sendijarevic V (2004) Handbook of polymeric foams and foam technology, Munich, Germany: Carl HandserVerlag. |
[2] | Khemani KC (1997) Polymer Foams: An Overview. Polymeric Foams. ACS Symposium Series, Washington, DC: American Chemical Society. |
[3] | Zenkert D (1995) An introduction to sandwich constructions. Engineering materials advisory services, London. |
[4] | Allen H (1969) Analysis and design of structural sandwich plates: Franklin Book Co. |
[5] | Gay D, Hoa S (2007) Composite materials: design and applications. 2nd Eds, Taylor & Francis group, LLC. |
[6] | Quilter A (2006) Composites in aerospace applications. ESDU International. Canada: An IHS White Paper. |
[7] | Johnson CF, Rudd C (1998) Manufacturing process selection for composite components, Cambridge Press. |
[8] | Tagliavia G, Porfiri M, Gupta N (2009) Vinyl ester-glass hollow particle composites: dynamic mechanical properties at high inclusion volume fraction. J Compos Mater 43: 561–582. doi: 10.1177/0021998308097683 |
[9] | Shen SY, Masters FJ, Upjohn HL, et al. (2013) Mechanical resistance properties of FRP/polyol-isocyanate foam sandwich panels. Compos Struct 99: 419–432. doi: 10.1016/j.compstruct.2012.11.025 |
[10] | Mostafa A, Shankar K, Morozov EV (2013) Insight into the shear behaviour of composite sandwich panels with foam core. Mater Design 50: 92–101. doi: 10.1016/j.matdes.2013.03.016 |
[11] | Salleh Z, Islam M, Ku H (2014) Study on Compressive Properties of Syntactic Foams for Marine Applications. J Multifunctional Compos 2: 21–27. doi: 10.12783/issn.2168-4286/2.1/Salleh |
[12] | Gupta N, Priya S, Islam R, et al. (2006) Characterization of mechanical and electrical properties of epoxy-glass microballoon syntactic composites. Ferroelectrics 345: 1–12. doi: 10.1080/00150190601018002 |
[13] | Wouterson EM, Boey FYC, Hu X, et al. (2007) Effect of fiber reinforcement on the tensile, fracture and thermal properties of syntactic foam. Polymer 48: 3183–3191. doi: 10.1016/j.polymer.2007.03.069 |
[14] | Shankar R, Sankaran S (2005) Short beam three point bend tests in syntactic foams. Part I: Microscopic characterization of the failure zones. J Appl Polym Sci 98: 673–679. |
[15] | Karthikeyan C, Sankaran S, Kumar M, et al. (2001) Processing and compressive strengths of syntactic foams with and without fibrous reinforcements. J Appl Polym Sci 81: 405–411. doi: 10.1002/app.1452 |
[16] | Wouterson E, Boey F, Hu X, et al. (2004) Fracture and impact toughness of syntactic foam. J Cell Plast 40: 145–154. doi: 10.1177/0021955X04041960 |
[17] | Bardella L, Genna F (2001) Elastic design of syntactic foamed sandwiches obtained by filling of three-dimensional sandwich-fabric panels. Int J Solids Struct 38: 307–333. doi: 10.1016/S0020-7683(00)00025-1 |
[18] | Bardella L, Genna F (2001) On the elastic behavior of syntactic foams. Int J Solids Struct 38: 7235–7260. doi: 10.1016/S0020-7683(00)00228-6 |
[19] | Sagi-Mana D, Narkis M, Siegmann A, et al. (1998) The effect of marine environment on a vinyl ester resin and its highly filled particulate quartz composites. J Appl Polym Sci 69: 2229–2234. |
[20] | Rajapakse Y, Hui D (2008) Marine composites and sandwich structures. Compos Part B-Eng 39: 1–4. |
[21] | Rajapakse Y, Hui D (2004) Marine composites: foreword. Compos Part B-Eng 35: 447–450. doi: 10.1016/j.compositesb.2004.05.001 |
[22] | Fam A, Sharaf T (2010) Flexural performance of sandwich panels comprising polyurethane core and GFRP skins and ribs of various configurations. Compos Struct 92: 2927–2935. doi: 10.1016/j.compstruct.2010.05.004 |
[23] | Cheng Q, Lee H, Lu C (2006) A numerical analysis approach for evaluating elastic constants of sandwich structures with various cores. Compos Struct 74: 226–236. doi: 10.1016/j.compstruct.2005.04.007 |
[24] | Sharaf T, Shawkat W, Fam A (2010) Structural performance of sandwich wall panels with different foam core densities in one-way bending. J Compos Mater 44: 2249–2263. doi: 10.1177/0021998310369577 |
[25] | Islam MM, Kim HS (2007) Novel syntactic foams made of ceramic hollow micro-spheres and starch: theory, structure and properties. J Mater Sci 42: 6123–6132. doi: 10.1007/s10853-006-1091-7 |
[26] | Awad ZK, Aravinthan T, Manalo A (2012) Geometry effect on the behaviour of single and glue-laminated glass fibre reinforced polymer composite sandwich beams loaded in four-point bending. Mater Design 39: 93–103. doi: 10.1016/j.matdes.2012.02.023 |
[27] | Zhang J, Kikuchi N, Li V, et al. (1996) Constitutive model of polymeric foam material subjected to dynamic crash loading. Int J Impact Eng 21: 369–386. |
[28] | Maji A, Schreyer H, Donald S, et al. (1995) Mechanical properties of polyurethane-foam impact limiters. J Eng Mech 121: 528–540. doi: 10.1061/(ASCE)0733-9399(1995)121:4(528) |
[29] | Ranade A, Hiltner A, Baer E, et al. (2004) Structure–property relationship in coextruded foam/film microlayers. J Cell Plast 40: 497–507. doi: 10.1177/0021955X04048425 |
[30] | Wouterson E, Boey F, Hu X, et al. (2005) Specific properties and fracture toughness of syntactic foam:effect of foam microstructures. Compos Sci Technol 65: 1840–1850. doi: 10.1016/j.compscitech.2005.03.012 |
[31] | Ruan D, Lu G, Chen F, et al. (2002) Compressive behavior of aluminum foams at low and medium strain rates. Compos Struct 57: 331–336. |
[32] | Sheng H, Gang Z (1999) The mechanical behavior of foamed aluminium. J Mater Sci 34: 291–299. doi: 10.1023/A:1004401521842 |
[33] | Avalle M, Belingardi G, Ibba A (2007) Mechanical models of cellular solids: parameters identification from experimental tests. Int J Impact Eng 34: 3–27. doi: 10.1016/j.ijimpeng.2006.06.012 |
[34] | Ashby M (1983) The mechanical properties of cellular solids. Metall Mater Trans A 14: 1755–1769. doi: 10.1007/BF02645546 |
[35] | Peroni L, Avalle M, Peroni M (2008) The mechanical behavior of aluminum foam structures in different loading conditions. Int J Impact Eng 35: 644–658. doi: 10.1016/j.ijimpeng.2007.02.007 |
[36] | Gupta N, Ye R, Porfiri M (2010) Comparison of tensile and compressive characteristics of vinyl ester/glass microballoon syntactic foams. Compos Part B-Eng 41: 236–245. doi: 10.1016/j.compositesb.2009.07.004 |
[37] | Viot P, Beani F, Lataillade J (2005) Polymeric foam behavior under dynamic compressive loading. J Mater Sci 40: 5829–5837. doi: 10.1007/s10853-005-4998-5 |
[38] | Lin H (1997) The structure and property relationships of commercial foamed plastics. Polym Test 16: 429–443. doi: 10.1016/S0142-9418(97)00003-2 |
[39] | Nambiar E, Ramamurthy K (2007) Air-void characterization of foam concrete. Cement Concrete Res 37: 221–330. doi: 10.1016/j.cemconres.2006.10.009 |
[40] | ASTM C297/C297M-04 (2004) Standard test method for flatwise tensile strength of sandwich constructions, USA. |
[41] | Cai K (2010) Effects of the Properties of Bi-modulus Material on Stiffness Design. Intelligent Computation Technology and Automation (ICICTA), 2010 International Conference on. IEEE 2: 192–195. |
[42] | Maharsia R, Gupta N, Jerro HD (2006) Investigation of flexural strength properties of rubber and nanoclay reinforced hybrid syntactic foams. Mat Sci Eng A 417: 249–258. doi: 10.1016/j.msea.2005.10.063 |
[43] | ASTM D790-03 PA (2003) Standard Test Methods for Flexural Properties of Unreinforcedand Reinforced Plastics and Electrical Insulating Materials, USA: ASTM International. |
[44] | ASTM C393/C393M (2012) Standard Test Method for Core Shear Properties of Sandwich Constructions by Beam Flexure., West Conshohocken, PA 19428–2959, USA: ASTM International. |
[45] | Manalo AC, Aravinthan T, Karunasena W (2010) Flexural behaviour of glue-laminated fibre composite sandwich beams. Compos Struct 92: 2703–2711. doi: 10.1016/j.compstruct.2010.03.006 |
[46] | Gupta N, Karthikeyan CS, Kishore SSa (1999) Correlation of processing methodology to the physical and mechanical properties of syntactic foams with and without fibers. Mater Charact 43: 271–277. doi: 10.1016/S1044-5803(99)00039-X |
[47] | Azimi H, Pearson R, Herztberg R (1996) Polymer Engineering Science. |