Citation: Lyudmyla V. Borkovska, Olexander Gudymenko, Olexander Stroyuk, Alexandra Raevskaya, Olena Fesenko, Tetyana Kryshtab. Photoinduced transformations of optical properties of CdSe and Ag-In-S nanocrystals embedded in the films of polyvinyl alcohol[J]. AIMS Materials Science, 2016, 3(2): 658-668. doi: 10.3934/matersci.2016.2.658
[1] | Wenya Shi, Xinpeng Yan, Zhan Huan . Faster free pseudoinverse greedy block Kaczmarz method for image recovery. Electronic Research Archive, 2024, 32(6): 3973-3988. doi: 10.3934/era.2024178 |
[2] | Ranran Li, Hao Liu . On global randomized block Kaczmarz method for image reconstruction. Electronic Research Archive, 2022, 30(4): 1442-1453. doi: 10.3934/era.2022075 |
[3] | Yimou Liao, Tianxiu Lu, Feng Yin . A two-step randomized Gauss-Seidel method for solving large-scale linear least squares problems. Electronic Research Archive, 2022, 30(2): 755-779. doi: 10.3934/era.2022040 |
[4] | Yun Ni, Jinqing Zhan, Min Liu . Topological design of continuum structures with global stress constraints considering self-weight loads. Electronic Research Archive, 2023, 31(8): 4708-4728. doi: 10.3934/era.2023241 |
[5] | Jun Guo, Yanchao Shi, Weihua Luo, Yanzhao Cheng, Shengye Wang . Exponential projective synchronization analysis for quaternion-valued memristor-based neural networks with time delays. Electronic Research Archive, 2023, 31(9): 5609-5631. doi: 10.3934/era.2023285 |
[6] | Yanlong Zhang, Rui Zhang, Li Wang . Oblique impact dynamic analysis of wedge friction damper with Dankowicz dynamic friction. Electronic Research Archive, 2024, 32(2): 962-978. doi: 10.3934/era.2024047 |
[7] | Dongmei Yu, Yifei Yuan, Yiming Zhang . A preconditioned new modulus-based matrix splitting method for solving linear complementarity problem of $ H_+ $-matrices. Electronic Research Archive, 2023, 31(1): 123-146. doi: 10.3934/era.2023007 |
[8] | Haoqing Wang, Wen Yi, Yannick Liu . Optimal assignment of infrastructure construction workers. Electronic Research Archive, 2022, 30(11): 4178-4190. doi: 10.3934/era.2022211 |
[9] | Yu Wang . Bi-shifting semantic auto-encoder for zero-shot learning. Electronic Research Archive, 2022, 30(1): 140-167. doi: 10.3934/era.2022008 |
[10] | Yaguo Guo, Shilin Yang . Projective class rings of the category of Yetter-Drinfeld modules over the $ 2 $-rank Taft algebra. Electronic Research Archive, 2023, 31(8): 5006-5024. doi: 10.3934/era.2023256 |
Fractional differential equations (FDEs) appeared as an excellent mathematical tool for, modeling of many physical phenomena appearing in various branches of science and engineering, such as viscoelasticity, statistical mechanics, dynamics of particles, etc. Fractional calculus is a recently developing work in mathematics which studies derivatives and integrals of functions of fractional order [26].
The most used fractional derivatives are the Riemann-Liouville (RL) and Caputo derivatives. These derivatives contain a non-singular derivatives but still conserves the most important peculiarity of the fractional operators [1,2,10,11,23,24]. Atangana and Baleanu described a derivative with a generalized Mittag-leffler (ML) function. This derivative is often called the Atangana-Baleanu (AB) fractional derivative. The AB-derivative in the senses of Riemman-Liouville and Caputo are denoted by ABR-derivative and ABC-derivative, respectively.
The AB fractional derivative is a nonlocal fractional derivative with nonsingular kernel which is connected with various applications [3,5,6,8,9,13,14,15,16]. Using the advantage of the non-singular ML kernal present in the AB fractional derivatives, operators, many authors from various branches of applied mathematics have developed and studied mathematical models involving AB fractional derivatives [18,22,29,30,31,32,35,36,37].
Mohamed et al. [25] considered a system of multi-derivatives for Caputo FDEs with an initial value problem, examined the existence and uniqueness results and obtained numerical results. Sutar et al. [32,33] considered multi-derivative FDEs involving the ABR derivative and examined existence, uniqueness and dependence results. Kucche et al. [12,19,20,21,34] enlarged the work of multi-derivative fractional differential equations involving the Caputo fractional derivative and studied the existence, uniqueness and continuous dependence of the solution.
Inspired by the preceding work, we perceive the multi-derivative nonlinear neutral fractional integro-differential equation with AB fractional derivative of the Riemann-Liouville sense of the problem:
$ dVdȷ+⋆0Dδȷ[V(ȷ)−x(ȷ,y(ȷ))]=φ(ȷ,V(ȷ),∫ȷ0K(ȷ,θ,V(θ))dθ,∫T0χ(ȷ,θ,V(θ))dθ),ȷ∈I $
|
(1.1) |
$ \mathcal{V}\left(0\right) = \mathcal{V}_{0} \in \mathscr{R}, $ | (1.2) |
where $ ^{\star}_{0} D^{\delta}_{\jmath} $ denotes the ABR fractional derivative of order $ \delta\in(0, 1) $, and $ \varphi \in \mathscr{C}(\mathscr{I} \times \mathscr{R} \times \mathscr{R} \times \mathscr{R}, \mathscr{R}) $ is a non-linear function. Let $ \mathcal{P}_{1}\mathcal{V}(\jmath) = \int^{\jmath}_{0}\mathcal{K}(\jmath, \theta, \mathcal{V}(\theta))d\theta $ and $ \mathcal{P}_{2}\mathcal{V}(\jmath) = \int^{T}_{0}\chi(\jmath, \theta, \mathcal{V}(\theta))d\theta $. Now, (1.1) becomes,
$ dVdȷ+⋆0Dδȷ[V(ȷ)−x(ȷ,y(ȷ))]=φ(ȷ,V(ȷ),P1V(ȷ),P2V(ȷ)),ȷ∈I, $
|
(1.3) |
$ V(0)=V0∈R. $
|
(1.4) |
In this work, we derive a few supplemental results using the characteristics of the fractional integral operator $ \varepsilon^{\alpha}_{\delta, \eta, \mathcal{V}; c+} $. The existence results are obtained by Krasnoselskii's fixed point theorem and the uniqueness and data dependence results are obtained by the Gronwall-Bellman inequality.
Definition 2.1. [14] The Sobolev space $ H^{\mathfrak{q}}(X) $ is defined as $ H^{\mathfrak{q}}\left(X\right) = \left\{\varphi\in L^{2}\left(X\right):D^{\beta}\varphi\in L^{2}(X), \forall \left|\beta\right|\leq \mathfrak{q}\right\}. $ Let $ \mathfrak{q}\in[1, \infty) $ and $ X $ be open, $ X\subset\mathbb{R} $.
Definition 2.2. [11,17] The generalized ML function $ E^{\alpha}_{\delta, \beta}\left(u\right) $ for complex $ \delta, \beta, \alpha $ with Re$ (\delta) > 0 $ is defined by
$ Eαδ,β(u)=∞∑t=0(α)tα(δt+β)utt!, $
|
and the Pochhammer symbol is $ (\alpha)_{t} $, where $ (\alpha)_{0} = 1, (\alpha)_{t} = \alpha(\alpha+1)...(\alpha+t-1), $ $ t = 1, 2...., $ and $ E^{1}_{\delta, \beta}\left(u\right) = E_{\delta, \beta}\left(u\right), E^{1}_{\delta, 1}\left(u\right) = E_{\delta}\left(u\right). $
Definition 2.3. [4] The ABR fractional derivative of $ \mathcal{V} $ of order $ \delta $ is
$ ⋆0Dδȷ[V(ȷ)−x(ȷ,y(ȷ))]=B(δ)1−δddȷ∫ȷ0Eδ[−δ1−δ(ȷ−θ)δ]V(θ)dθ, $
|
where $ \mathcal{V} \in H^{1}(0, 1) $, $ \delta \in(0, 1) $, $ B(\delta) > 0 $. Here, $ E_{\delta} $ is a one parameter ML function, which shows $ B(0) = B(1) = 1 $.
Definition 2.4. [4] The ABC fractional derivative of $ \mathcal{V} $ of order $ \delta $ is
$ ⋆0Dδȷ[V(ȷ)−x(ȷ,y(ȷ))]=B(δ)1−δ∫ȷ0Eδ[−δ1−δ(ȷ−θ)δ]V′(θ)dθ, $
|
where $ \mathcal{V} \in H^{1}(0, 1) $, $ \delta \in(0, 1) $, and $ B(\delta) > 0 $. Here, $ E_{\delta} $ is a one parameter ML function, which shows $ B(0) = B(1) = 1 $.
Lemma 2.5. [4] If $ L\left\{g(\jmath); b\right\} = \bar{G}(b) $, then $ L\left\{^{\star}_{0}D^{\delta}_{\jmath}g(\jmath); b\right\} = \frac{B(\delta)}{1-\delta}\frac{b^{\delta}\bar{G}(b)}{b^{\delta}+\frac{\delta}{1-\delta}}. $
Lemma 2.6. [26] $ L\left[\jmath^{m\delta+\beta-1}E^{(m)}_{\delta, \beta}\left(\pm a\jmath^{\delta}\right); b\right] = \frac{m!b^{\delta-\beta}}{\left(b^{\delta}\pm a\right)^{m+1}}, E^{m}(\jmath) = \frac{d^{m}}{d\jmath^{m}}E(\jmath). $
Definition 2.7. [17,27] The operator $ \varepsilon^{\alpha}_{\delta, \eta, \mathcal{V}; c+} $ on class $ L(m, n) $ is
$ (εαδ,η,V;c+)[V(ȷ)−x(ȷ,y(ȷ))]=∫t0(ȷ−θ)α−1Eαδ,η[V(ȷ−θ)δ]Θ(θ)dθ,ȷ∈[c,d], $
|
where $ \delta, \eta, \mathcal{V}, \alpha\in \mathbb{C}\left(Re(\delta), Re(\eta) > 0\right) $, and $ n > m $.
Lemma 2.8. [17,27] The operator $ \varepsilon^{\alpha}_{\delta, \eta, \mathcal{V}; c+} $ is bounded on $ C[m, n] $, such that $ \left\|\left(\varepsilon^{\alpha}_{\delta, \eta, \mathcal{V}; c+}\right)[\mathcal{V}(\jmath)-x(\jmath, y(\jmath))]\right\| \leq \mathcal{P} \left\|\Theta\right\|, $ where
$ P=(n−m)Re(η)∞∑t=0|(α)t||α(δt+η)|[Re(δ)t+Re(η)]|V(n−m)Re(δ)|tt!. $
|
Here, $ \delta, \eta, \mathcal{V}, \alpha\in \mathbb{C}\left(Re(\delta), Re(\eta) > 0\right) $, and $ n > m $.
Lemma 2.9. [17,27] The operator $ \varepsilon^{\alpha}_{\delta, \eta, \mathcal{V}; c+} $ is invertible in the space $\textrm{L}(m, n) $ and $ \varphi \in \textrm{L}(m, n) $ its left inversion is given by
$ ([εαδ,η,V;c+]−1)[V(ȷ)−x(ȷ,y(ȷ))]=(Dη+ςc+ε−αδ,η,V;c+)[V(ȷ)−x(ȷ,y(ȷ))],ȷ∈(m,n], $
|
where $ \delta, \eta, \mathcal{V}, \alpha\in \mathbb{C}\left(Re(\delta), Re(\eta) > 0\right) $, and $ n > m $.
Lemma 2.10. [17,27] Let $ \delta, \eta, \mathcal{V}, \alpha\in \mathbb{C}\left(Re(\delta), Re(\eta) > 0\right), n > m $ and suppose that the integral equation is
$ ∫ȷ0(ȷ−θ)α−1Eαδ,η[V(ȷ−θ)δ]Θ(θ)dθ=φ(ȷ),ȷ∈(m,n], $
|
is solvable in the space $ \textrm{L}(m, n) $.Then, its unique solution $ \Theta(\jmath) $ is given by
$ Θ(ȷ)=(Dη+ςc+ε−αδ,η,V;c+)[V(ȷ)−x(ȷ,y(ȷ))],ȷ∈(m,n]. $
|
Lemma 2.11. [7] (Krasnoselskii's fixed point theorem) Let $ A $ be a Banach space and $ X $ be bounded, closed, convex subset of $ A $. Let $ \mathscr{F}_{1}, \mathscr{F}_{2} $ be maps of S into $ A $ such that $ \mathscr{F}_{1}\mathcal{V}+\mathscr{F}_{2}\varphi \in X $ $ \forall $ $ \mathcal{V}, \varphi \in U $. The equation $ \mathscr{F}_{1}\mathcal{V}+\mathscr{F}_{2}\mathcal{V} = \mathcal{V} $ has a solution on S, and $ \mathscr{F}_{1} $, $ \mathscr{F}_{2} $ is a contraction and completely continuous.
Lemma 2.12. [28] (Gronwall-Bellman inequality) Let $ \mathcal{V} $ and $ \varphi $ be continuous and non-negative functions defined on $ \mathscr{I} $. Let $ \mathcal{V}(\jmath)\leq \mathcal{A}+\int^{\jmath}_{a}\varphi(\theta)\mathcal{V}(\theta)d\theta, \jmath \in \mathscr{I} $; here, $ \mathcal{A} $ is a non-negative constant.
$ V(ȷ)≤Aexp(∫ȷaφ(θ)dθ),ȷ∈I. $
|
In this part, we need some fixed-point-techniques-based hypotheses for the results:
$ ({\rm{H1}}) $ Let $ \mathcal{V} \in C\left[0, T\right] $, function $ \varphi \in \left(C[0, T]\times \mathscr{R} \times \mathscr{R} \times \mathscr{R}, \mathscr{R} \right) $ is a continuous function, and there exist $ +^{ve} $ constants $ \zeta _{1}, \zeta_{2} $ and $ \zeta $. $ \left\|\varphi(\jmath, \mathcal{V}_{1}, \mathcal{V}_{2}, \mathcal{V}_{3})-\varphi(\jmath, \varphi_{1}, \varphi_{2}, \varphi_{3})\right\|\leq \zeta_{1}\left(\left\|\mathcal{V}_{1}-\varphi_{1}\right\|+\left\|\mathcal{V}_{2}-\varphi_{2}\right\|+\left\|\mathcal{V}_{3}-\varphi_{3}\right\|\right) $ for all $ \mathcal{V}_{1}, \mathcal{V}_{2}, \mathcal{V}_{3}, \varphi_{1}, \varphi_{2}, \varphi_{3} $ in $ Y $, $ \zeta _{2} = max_{\mathcal{V} \in \mathscr{R}}\left\|f(\jmath, 0, 0, 0)\right\| $, and $ \zeta = max\left\{ \zeta _{1}, \zeta _{2}\right\} $.
$ ({\rm{H2}}) $ $ \mathcal{P}_{1} $ is a continuous function, and there exist $ +^{ve} $ constants $ \mathscr{C}_{1}, \mathscr{C}_{2} $ and $ \mathscr{C} $. $ \left\|\mathcal{P}_{1}(\jmath, \theta, \mathcal{V}_{1})-\mathcal{P}_{1}(\jmath, \theta, \varphi_{1})\right\| \leq \mathscr{C}_{1} \left(\left\|\mathcal{V}_{1}-\varphi_{1}\right\|\right) \forall \, \mathcal{V}_{1}, \varphi_{1} $ in $ Y $, $ \mathscr{C}_{2} = max_{(\jmath, \theta) \in D}\left\|\mathcal{P}_{1}(\jmath, \theta, 0)\right\| $, and $ \mathscr{C} = max\left\{ \mathscr{C} _{1}, \mathscr{C} _{2} \right\} $.
$ ({\rm{H3}}) $ $ \mathcal{P}_{2} $ is a continuous function and there are $ +^{ve} $ constants $ \mathcal{D}_{1}, \mathcal{D}_{2} $ and $ \mathcal{D} $. $ \left\|\mathcal{P}_{2}(\jmath, \theta, \mathcal{V}_{1})-\mathcal{P}_{2}(\jmath, \theta, \varphi_{1})\right\| \leq \mathcal{D}_{1} \left(\left\|\mathcal{V}_{1}-\varphi_{1}\right\|\right) $ for all $ \mathcal{V}_{1}, \varphi_{1} $ in $ Y $, $ \mathcal{D}_{2} = max_{(\jmath, \theta) \in D}\left\|\mathcal{P}_{2}(\jmath, \theta, 0)\right\| $ and $ \mathcal{D} = max\left\{ \mathcal{D} _{1}, \mathcal{D} _{2} \right\} $.
$ ({\rm{H4}}) $ Let $ x \in c[0, I] $, function $ u \in (c[0, I] \times \mathscr{R}, \mathscr{R}) $ is a continuous function, and there is a $ +^{ve} $ constant $ k > 0 $, such that $ \left\|u(\jmath, x)-u(\jmath, y)\right\|\leq k \left\| x-y \right\| $. Let $ Y = C[\mathscr{R}, X] $ be the set of continuous functions on $ \mathscr{R} $ with values in the Banach space $ X $.
Lemma 2.13. If $ {\bf{(H_2)}} $ and $ {\bf{(H_3)}} $ are satisfied the following estimates, $ \left\|\mathcal{P}_{1}\mathcal{V}(\jmath)\right\|\leq \jmath(\mathscr{C}_{1}\left\|\mathcal{V}\right\|+\mathscr{C} _{2}), \left\|\mathcal{P}_{1}\mathcal{V}(\jmath)-\mathcal{P}_{1}\varphi(\jmath)\right\|\leq \mathscr{C}\jmath\left\|\mathcal{V}-\varphi\right\| $, and $ \left\|\mathcal{P}_{2}\mathcal{V}(\jmath)\right\|\leq \jmath(\mathcal{D}_{1}\left\|\mathcal{V}\right\|+\mathcal{D} _{2}), \left\|\mathcal{P}_{2}\mathcal{V}(\jmath)-\mathcal{P}_{2}\varphi(\jmath)\right\|\leq \mathcal{D}\jmath\left\|\mathcal{V}-\varphi\right\| $.
Theorem 3.1. The function $ \varphi \in \mathscr{C}\left(\mathscr{I} \times \mathscr{R} \times \mathscr{R} \times \mathscr{R}, \mathscr{R}\right) $ and $ \mathcal{V}\in\mathscr{C}(\mathscr{I}) $ is a solution for the problem of Eqs (1.3) and (1.4), iff $ \mathcal{V} $ is a solution of the fractional equation
$ V(ȷ)=V0−B(δ)1−δ∫ȷ0Eδ[−δ1−δ(ȷ−θ)δ][V(ȷ)−x(ȷ,y(ȷ))]dθ+∫ȷ0φ(θ,V(θ),P1V(θ),P2V(θ))dθ,ȷ∈I. $
|
(3.1) |
Proof. (1) By using Definition 2.3 and Eq (1.3), we get
$ ddȷ(V(ȷ)+B(δ)1−δ∫ȷ0Eδ[−δ1−δ(ȷ−θ)δ][V(ȷ)−x(ȷ,y(ȷ))]dθ)=φ(ȷ,V(ȷ),P1V(ȷ),P2V(ȷ)). $
|
Integrating both sides of the above equation with limits $ 0 $ to $ \jmath $, we get
$ V(ȷ)+B(δ)1−δ∫ȷ0Eδ[−δ1−δ(ȷ−θ)δ][V(ȷ)−x(ȷ,y(ȷ))]dθ−V(0)=∫ȷ0φ(θ,V(θ),P1V(θ),P2V(θ))dθ,ȷ∈I. $
|
Conversely, with differentiation on both sides of Eq (3.1) with respect to $ \jmath $, we get
$ dVdȷ+B(δ)1−δddȷ∫ȷ0Eδ[−δ1−δ(ȷ−θ)δ][V(ȷ)−x(ȷ,y(ȷ))]dθ=φ(ȷ,V(ȷ),P1V(ȷ),P2V(ȷ)),ȷ∈I. $
|
Using Definition 2.3, we get Eq (1.3) and substitute $ \jmath = 0 $ in Eq (3.1), we get Eq (1.4).
Proof. (2) In Equation (1.3), taking the Laplace Transform on both sides, we get
$ L[V′(ȷ);b]+L[⋆0Dδȷ;b][V(ȷ)−x(ȷ,y(ȷ))]=L[φ(ȷ,V(ȷ),P1V(ȷ),P2V(ȷ));b]. $
|
Now, using the Laplace Transform formula for the AB fractional derivative of the RL sense, as given in Lemma 2.5, we get
$ bˉX(b)−[V(ȷ)−x(ȷ,y(ȷ))]−V(0)+B(δ)1−δbδˉX(b)bδ+δ1−δ=ˉG(b), $
|
$ \bar{X}(b) = \left[\mathcal{V}(\jmath); b\right] $ and $ \bar{G}(b) = L\left[\varphi\left(\jmath, \mathcal{V}\left(\jmath\right), P_{1}\mathcal{V}(\jmath), P_{2}\mathcal{V}(\jmath)\right); b\right]. $ Using Eq (1.4), we get
$ ˉX(b)=V01b−B(δ)1−δbδ−1ˉX(b)bδ+δ1−δ[V(ȷ)−x(ȷ,y(ȷ))]+1bˉG(b). $
|
(3.2) |
In Eq (3.2) applying the inverse Laplace Transform on both sides using Lemma 2.6 and the convolution theorem, we get
$ L−1[ˉX(b);ȷ]=V0L−1[1b;ȷ]−B(δ)1−δ(L−1[bδ−1bδ+δ1−δ][V(ȷ)−x(ȷ,y(ȷ))]∗L−1[ˉX(b);ȷ])+L−1[ˉG(b);ȷ]∗L−1[1b;ȷ]=V0−B(δ)1−δ(Eδ[−δ1−δȷδ][V(ȷ)−x(ȷ,y(ȷ))])+φ(ȷ,V(ȷ),P1V(ȷ),P2V(ȷ))=V0−B(δ)1−δ∫ȷ0Eδ[−δ1−δ(ȷ−θ)δ][V(ȷ)−x(ȷ,y(ȷ))]dθ+∫ȷ0φ(θ,V(θ),P1V(θ),P2V(θ))dθ.V(ȷ)=V0−B(δ)1−δ∫ȷ0Eδ[−δ1−δ(ȷ−θ)δ][V(ȷ)−x(ȷ,y(ȷ))]dθ+∫ȷ0φ(θ,V(θ),P1V(θ),P2V(θ))dθ. $
|
(3.3) |
Theorem 3.2. Let $ \delta\in(0, 1) $. Define the operator $ \mathscr{F} $ on $ \mathscr{C}(\mathscr{I}) $:
$ (FV)(ȷ)=V0−B(δ)1−δ(ε1δ,1,−δ1−δ;0+)[V(ȷ)−x(ȷ,y(ȷ))],V∈C(I). $
|
(3.4) |
$(A)$ $ \mathscr{F} $ is a bounded linear operator on $ \mathscr{C}(\mathscr{I}) $.
$(B)$ $ \mathscr{F} $ satisfying the hypotheses.
$(C)$ $ \mathscr{F}(X) $ is equicontinuous, and $ X $ is a bounded subset of $ \mathscr{C}(\mathscr{I}) $.
$(D)$ $ \mathscr{F} $ is invertible, function $ \varphi\in \mathscr{C}(\mathscr{I}) $, and the operator equation $ \mathscr{F}\mathcal{V} = \varphi $ has a unique solution in $ \mathscr{C}(\mathscr{I}) $.
Proof. (A) From Definition 2.7 and Lemma 2.8, the fractional integral operator $ \varepsilon^{1}_{\delta, 1, \frac{-\delta}{1-\delta}; 0^{+}} $ is a bounded linear operator on $ \mathscr{C}(\mathscr{I}) $, such that
$ ‖ε1δ,1,−δ1−δ;0+‖‖[V(ȷ)−x(ȷ,y(ȷ))]‖≤P‖V‖,ȷ∈I,where $
|
$ P=T∞∑n=0(1)nα(δn+1)(δn+1)|−δ1−δTδ|nn!=T∞∑n=0(δ1−δ)nTδnα(δn+2)=TEδ,2(δ1−δTδ), $
|
and we have
$ ‖FV‖=|B(δ)1−δ|‖ε1δ,1,−δ1−δ;0+‖‖[V(ȷ)−x(ȷ,y(ȷ))]‖≤PB(δ)1−δ‖V‖,∀V∈C(I). $
|
(3.5) |
Thus, $ \mathscr{F}\mathcal{V} = \varphi $ is a bounded linear operator on $ \mathscr{C}(\mathscr{I} $).
(B) We consider $ \mathcal{V}, \varphi\in \mathscr{C}(\mathscr{I}) $. By using linear operator $ \mathscr{F} $ and bounded operator $ \varepsilon^{1}_{\delta, 1, \frac{-\delta}{1-\delta}; 0^{+}} $, for any $ \jmath \in \mathscr{I} $,
$ |(FV)(ȷ)−(Fφ)(ȷ)|=|F(V−φ)[V(ȷ)−x(ȷ,y(ȷ))]|≤B(δ)1−δ‖(ε1δ,1,−δ1−δ;0+V−φ)[V(ȷ)−x(ȷ,y(ȷ))]‖≤PB(δ)1−δ‖V−φ‖. $
|
Where, $ P = TE_{\delta, 2}\left(\frac{\delta}{1-\delta}T^{\delta}\right) $, then the operator $ \mathscr{F} $ is satisfied the hypotheses with constant $ P\frac{B(\delta)}{1-\delta} $.
(C) Let $ U = \left\{\mathcal{V}\in \mathscr{C}(\mathscr{I}) : \left\|\mathcal{V}\right\|\leq R\right\} $ be a bounded and closed subset of $ \mathscr{C}(\mathscr{I}) $, $ \mathcal{V}\in U $, and $ \jmath_{1}, \jmath_{2}\in \mathscr{I} $ with $ \jmath_{1}\leq \jmath_{2} $.
$ |(FV)(ȷ1)−(FV)(ȷ2)|=|B(δ)1−δ(ε1δ,1,−δ1−δ;0+)[V(ȷ1)−u(l1,x(l))]−B(δ)1−δ(ε1δ,1,−δ1−δ;0+)[V(ȷ2)−u(l2,x(l))]|≤B(δ)1−δ|∫ȷ10{Eδ[−δ1−δ(ȷ1−θ)δ]−Eδ[−δ1−δ(ȷ2−θ)δ]}[V(ȷ)−x(ȷ,y(ȷ))]dθ|+B(δ)1−δ|∫ȷ2ȷ1Eδ[−δ1−δ(ȷ2−θ)δ][V(ȷ)−x(ȷ,y(ȷ))]dθ|≤B(δ)1−δ∞∑n=0|(−δ1−δ)n|1α(nδ+1)∫ȷ10|(ȷ1−θ)nδ−(ȷ2−θ)nδ||[V(ȷ)−x(ȷ,y(ȷ))]|dθ+B(δ)1−δ∞∑n=0|(−δ1−δ)n|1α(nδ+1)∫ȷ2ȷ1|(ȷ2−θ)nδ||[V(ȷ)−x(ȷ,y(ȷ))]|dθ≤LB(δ)1−δ∞∑n=0(δ1−δ)n1α(nδ+1)∫ȷ10(ȷ2−θ)nδ−(ȷ1−θ)nδdθ+LB(δ)1−δ∞∑n=0(δ1−δ)n1α(nδ+1)∫ȷ2ȷ1(ȷ2−θ)nδdθ≤RB(δ)1−δ∞∑n=0(δ1−δ)n1α(nδ+1){−(ȷ2−ȷ1)nδ+1+ȷnδ+12−ȷnδ+11+(ȷ2−ȷ1)nδ+1}≤RB(δ)1−δ∞∑n=0(δ1−δ)n1α(nδ+2){ȷnδ+12−ȷnδ+11}|(FV)(ȷ1)−(FV)(ȷ2)|≤RB(δ)1−δ∞∑n=0(δ1−δ)n1α(nδ+2){ȷnδ+12−ȷnδ+11}. $
|
(3.6) |
Hence, if $ \left|\jmath_{1}-\jmath_{2}\right|\rightarrow 0 $ then $ \left|(\mathscr{F}\mathcal{V})(\jmath_{1})-(\mathscr{F}\mathcal{V})(\jmath_{2})\right|\rightarrow 0. $
$ \therefore $ $ (\mathscr{F}\mathcal{V}) $ is equicontinuous on $ \mathscr{I}. $
(D) By Lemmas 2.9 and 2.10, $ \varphi\in \mathscr{C}(\mathscr{I}) $, and we get
$ (ε1δ,1,−δ1−δ;0+)−1[V(ȷ)−x(ȷ,y(ȷ))]=(D1+β0+ε−1δ,β,−δ1−δ;0+)[V(ȷ)−x(ȷ,y(ȷ))],ȷ∈(m,n). $
|
(3.7) |
By Eqs (3.4) and (3.5), we have
$ (F−1)[V(ȷ)−x(ȷ,y(ȷ))]=(B(δ)1−δε1δ,1,−δ1−δ;0+)−1[V(ȷ)−x(ȷ,y(ȷ))]=1−δB(δ)(D1+β0+ε−1δ,β,−δ1−δ;0+)[V(ȷ)−x(ȷ,y(ȷ))],ȷ∈(m,n), $
|
where $ \beta \in \mathbb{C} $ with $ Re(\beta) > 0 $. This shows $ \mathscr{F} $ is invertible on $ \mathscr{C}(\mathscr{I}) $ and
$ (FV)[V(ȷ)−x(ȷ,y(ȷ))]=[V(ȷ)−x(ȷ,y(ȷ))],ȷ∈I, $
|
has the unique solution,
$ V(ȷ)=(F−1[V(ȷ)−x(ȷ,y(ȷ))])=1−δB(δ)(D1+β0+ε−1δ,β,−δ1−δ;0+)[V(ȷ)−x(ȷ)),y(ȷ))],ȷ∈(m,n). $
|
(3.8) |
Theorem 4.1. Let $ \varphi \in \mathscr{C}\left(\mathscr{I}\times \mathscr{R} \times \mathscr{R} \times \mathscr{R}, \mathscr{R} \right) $. Then, the ABR derivative $ ^{\star}_{0}D^{\delta}_{\jmath}[\mathcal{V}(\jmath)-x(\jmath, y(\jmath))] = \varphi\left(\jmath, \mathcal{V}\left(\jmath\right), \mathcal{P}_{1}\mathcal{V}(\jmath), \mathcal{P}_{2}\mathcal{V}(\jmath)\right), \jmath \in \mathscr{I} $, is solvable in $ \mathscr{C}(\mathscr{I} $), and the solution in $ \mathscr{C}(\mathscr{I}) $ is
$ V(ȷ)=1−δB(δ)(D1+β0+ε−1δ,β,−δ1−δ;0+)[V(ȷ)−x(ȷ,y(ȷ))],ȷ∈I, $
|
(4.1) |
where $ \beta\in \mathbb{C}, Re(\beta) > 0 $, and $ \hat{\varphi}(\jmath) = \int^{\jmath}_{0}\varphi\left(\theta, \mathcal{V}\left(\theta\right), \mathcal{P}_{1}\mathcal{V}(\theta), \mathcal{P}_{2}\mathcal{V}(\theta)\right)d\theta, \jmath \in \mathscr{I} $.
Proof. The corresponding fractional equation of the ABR derivative
$ ⋆0Dδȷ[V(ȷ)−x(ȷ,y(ȷ))]=φ(ȷ,V(ȷ),P1V(ȷ),P2V(ȷ)),ȷ∈I, $
|
is given by
$ B(δ)1−δ∫ȷ0Eδ[−δ1−δ(ȷ−θ)δ][V(ȷ)−x(ȷ,y(ȷ))]dθ=∫ȷ0φ(θ,V(θ),P1V(θ),P2V(θ))dθ,ȷ∈I. $
|
Using operator $ \mathscr{F} $ of Eq (3.4), we get
$ (FV)(s)=∫ȷ0φ(θ,V(θ),P1V(θ),P2V(θ))dθ=ˆφ(ȷ),ȷ∈I. $
|
(4.2) |
Equations (3.7) and (4.2) are solvable, and we get
$ V(ȷ)=1−δB(δ)(D1+β0+ε−1δ,β,−δ1−δ;0+)[V(ȷ)−x(ȷ,y(ȷ))],ȷ∈I;β∈C,Re(β)>0. $
|
(4.3) |
Theorem 4.2. Let $ \varphi \in \mathscr{C}\left(\mathscr{I}\times {R \times R \times R}, \mathscr{R}\right) $ satisfy $ {\bf{(H_1)}} $–$ {\bf{(H_3)}} $ with $ L = \sup_{\jmath\in \mathscr{I}}\omega(\jmath), $ where $ \omega(\jmath) = \zeta(1+\mathscr{C}\jmath+\mathcal{D}T) $, if $ L = \min\left\{1, \frac{1}{2T}\right\} $. Then problem of (1.3) and (1.4) has a solution in $ \mathscr{C}(\mathscr{I}) $ provided
$ 2B(δ)TEδ,2(δ1−δ)Tδ1−δ≤1. $
|
(4.4) |
Proof. Define
$ R=‖V0‖+NφT1−LT−B(δ)TEδ,2(δ1−δ)Tδ1−δ, $
|
where $ N_{\varphi} = \sup_{\jmath\in \mathscr{I}}\left\|\varphi(\jmath, 0, 0, 0)\right\|. $ Let $ U = \left\{\mathcal{V}\in \mathscr{C}(\mathscr{I}):\left\|\mathcal{V}\right\|\leq R\right\} $. Consider $ \mathscr{F}_{1}:X\rightarrow A $ and $ \mathscr{F}_{2}:X\rightarrow A $ given as
$ (F1V)(ȷ)=V0+∫ȷ0φ(θ,V(θ),P1V(θ),P2V(θ))dθ,ȷ∈I,(F2V)(ȷ)=−(F)[V(ȷ)−x(ȷ,y(ȷ))],ȷ∈I. $
|
Let $ \mathcal{V} = \mathscr{F}_{1}\mathcal{V}+\mathscr{F}_{2}\mathcal{V}, \mathcal{V}\in \mathscr{C}(\mathscr{I}) $ is the fractional Eq (3.1) to the problems (1.3) and (1.4).
Hence, the operators $ \mathscr{F}_{1} $ and $ \mathscr{F}_{2} $ satisfy the Krasnoselskii's fixed point theorem.
Step (ⅰ) $ \mathscr{F}_{1} $ is a contraction.
By $ {\bf{(H_1)}} $–$ {\bf{(H_3)}} $ on $ \varphi $, $ \forall $ $ \mathcal{V}, \varphi\in \mathscr{C}(\mathscr{I}) $ and $ \jmath\in \mathscr{I} $,
$ |F1V(ȷ)−F2φ(ȷ)|≤ω(ȷ)|V(ȷ)−φ(ȷ)|≤R‖V−φ‖. $
|
(4.5) |
This gives, $ \left\|\mathscr{F}_{1}\mathcal{V}-\mathscr{F}_{2}\varphi\right\|\leq RT\left\|\mathcal{V}-\varphi\right\|, \mathcal{V}, \varphi\in \mathscr{C}(\mathscr{I}). $
Step (ⅱ) $ \mathscr{F}_{2} $ is completely continuous. By using Theorem 3.3 and Ascoli-Arzela theorem, $ \mathscr{F}_{2} = -\mathscr{F} $ is completely continuous.
Step (ⅲ) $ \mathscr{F}_{1}\mathcal{V}+\mathscr{F}_{2}\varphi\in U $, for any $ \mathcal{V}, \varphi\in U $, using Theorem 3.3, we obtain
$ ‖(F1V+F2φ)(ȷ)‖≤‖(F1V)(ȷ)‖+‖(F2φ)(ȷ)‖≤‖V0‖+∫ȷ0‖φ(θ,V(θ),P1V(θ),P2V(θ))‖dθ+‖ε1δ,1,−δ1−δ;0+φ‖≤‖V0‖+∫ȷ0‖φ(θ,V(θ),P1V(θ),P2V(θ))‖dθ+B(δ)1−δTEδ,2(δ1−δTδ)‖φ‖≤‖V0‖+∫ȷ0‖φ(θ,V(θ),P1V(θ),P2V(θ))−φ(θ,0,0,0)‖dθ+∫ȷ0‖φ(θ,0,0,0)‖dθ+B(δ)1−δTEδ,2(δ1−δTδ)L≤‖V0‖+∫ȷ0ζ(‖V‖+Cȷ‖V‖+DT‖V‖)dθ+Nφ∫ȷ0dθ+B(δ)1−δTEδ,2(δ1−δTδ)L≤‖V0‖+ζ(1+Cȷ+DT)∫ȷ0‖V‖dθ+Nφ∫ȷ0dθ+B(δ)1−δTEδ,2(δ1−δTδ)L≤‖V0‖+ω(ȷ)R∫ȷ0dθ+Nφ∫ȷ0dθ+B(δ)1−δTEδ,2(δ1−δTδ)L≤‖V0‖+LRT+NφT+B(δ)1−δTEδ,2(δ1−δTδ)L. $
|
(4.6) |
By definition of $ R $, we get
$ ‖V0‖+NφT=L(1−RT+B(δ)TEδ,2(δ1−δTδ)1−δ). $
|
(4.7) |
Using the Eq (4.5) in (4.7), we get condition of Eq (4.4).
$ ‖(F1V+F2φ)(ȷ)‖≤L(2B(δ)TEδ,2(δ1−δ)Tδ1−δ),ȷ∈I. $
|
(4.8) |
$ \therefore\; \left\|(\mathscr{F}_{1}\mathcal{V}+\mathscr{F}_{2}\varphi)(\jmath)\right\|\leq L, \jmath\in \mathscr{I}. $ This gives, $ \mathscr{F}_{1}\mathcal{V}+\mathscr{F}_{2}\varphi\in U $, $ \forall\; \mathcal{V}, \varphi\in X. $
From Steps (ⅰ)–(ⅲ), all the conditions of Lemma 2.11 follow.
Theorem 4.3. By Theorem 4.2, the Eqs (1.3) and (1.4) have a unique solution in $ \mathscr{C}(\mathscr{I}). $
Proof. (1) The problems (1.3) and (1.4) have an operator equation form as:
$ (ε1δ,1,−δ1−δ;0+)[V(ȷ)−x(ȷ,y(ȷ))]=ˆφ(ȷ),ȷ∈I, $
|
(4.9) |
where,
$ ˆφ(ȷ)=1−δB(δ)(V0−V(ȷ)+∫ȷ0φ(θ,V(θ),P1V(θ),P2V(θ))dθ),ȷ∈I. $
|
By Theorem 4.2, Eq (4.7) is solvable in $ \mathscr{C}(\mathscr{I}) $, by Lemma 2.10 we get a unique solution of Eqs (1.3) and (1.4),
$ V(ȷ)=(D1+β0+ε−1δ,β,−δ1−δ;0+)[V(ȷ)−x(ȷ,y(ȷ))],V∈C(I). $
|
Proof. (2) Let $ \mathcal{V}, \varphi $ be solutions of Eqs (1.3) and (1.4). By fractional integral operators and $ {\bf{(H_1)}} $–$ {\bf{(H_3)}}, $ we find, for any $ \jmath\in \mathscr{I} $,
$ |V(ȷ)−φ(ȷ)|≤|B(δ)1−δ(ε1δ,1,−δ1−δ;0+(V−φ))[V(ȷ)−x(ȷ,y(ȷ))]|+∫ȷ0|φ(θ,V(θ),P1V(θ),P2V(θ))−φ(θ,φ(θ),P1φ(θ),P2φ(θ))|dθ≤|B(δ)1−δ∫ȷ0Eδ[−δ1−δ(ȷ−θ)δ](V(θ)−φ(θ))dθ|+∫ȷ0ζ(|V(θ)−φ(θ)|+C|V(θ)−φ(θ)|+D|V(θ)−φ(θ)|)dθ≤B(δ)1−δ∫ȷ0Eδ(|−δ1−δTδ|)|V(θ)−φ(θ)|dθ+∫ȷ0ζ(1+C+D)|V(θ)−φ(θ)|dθ≤B(δ)1−δ∫ȷ0Eδ(δ1−δTδ)|V(θ)−φ(θ)|dθ+∫ȷ0[V(ȷ)−x(ȷ,y(ȷ))]|V(θ)−φ(θ)|dθ≤∫ȷ0[B(δ)1−δEδ(δ1−δTδ)+[V(ȷ)−x(ȷ,y(ȷ))]]|V(θ)−φ(θ)|dθ|V(ȷ)−φ(ȷ)|≤∫ȷ0[B(δ)1−δEδ(δ1−δTδ)+[V(ȷ)−x(ȷ,y(ȷ))]]|V(θ)−φ(θ)|dθ. $
|
(4.10) |
Theorem 5.1. By Theorem 4.2, if $ \mathcal{V}(\jmath) $ is a solution of Eqs (1.3) and (1.4), then
$ |V(ȷ)|≤{|V0|+NφT}exp(∫ȷ0[B(δ)1−δEδ(δ1−δTδ)+[V(ȷ)−x(ȷ,y(ȷ))]]dθ),ȷ∈I, $
|
(5.1) |
where, $ N_{\varphi} = \sup_{\jmath\in \mathscr{I}}\left|\varphi(\jmath, 0, 0, 0)\right|. $
Proof. If $ \mathcal{V}(\jmath) $ is a solution of Eqs (1.3) and (1.4), for all $ \jmath\in \mathscr{I}, $
$|V(ȷ)|≤|V0|−B(δ)1−δ∫ȷ0Eδ(|−δ1−δ(ȷ−θ)δ|)|V(θ)|dθ+∫ȷ0|φ(θ,V(θ),P1V(θ),P2V(θ))|dθ $
|
$ ≤|V0|−B(δ)1−δ∫ȷ0Eδ(δ1−δ(ȷ−θ)δ)|V(θ)|dθ+∫ȷ0|φ(θ,V(θ),P1V(θ),P2V(θ))−φ(θ,0,0,0)|dθ+∫ȷ0|φ(θ,0,0,0)|dθ≤|V0|−B(δ)1−δ∫ȷ0Eδ(δ1−δTδ)|V(θ)|dθ+∫ȷ0ζ(|V(θ)|+C|V(θ)|+D|V(θ)|)dθ+Nφȷ≤|V0|−B(δ)1−δ∫ȷ0Eδ(δ1−δTδ)|V(θ)|dθ+∫ȷ0ζ(1+C+D)|V(ȷ)|dθ+NφT≤|V0|−B(δ)1−δ∫ȷ0Eδ(δ1−δTδ)|V(θ)|dθ+∫ȷ0[V(ȷ)−x(ȷ,y(ȷ))]|V(θ)|dθ+NφT≤{|V0|+NφT}+∫ȷ0[B(δ)1−δEδ(δ1−δTδ)+[V(ȷ)−x(ȷ,y(ȷ))]]|V(θ)|dθ. $
|
By Lemma 2.12, we get
$ |V(ȷ)|≤{|V0|+NφT}exp(∫ȷ0[B(δ)1−δEδ(δ1−δTδ)+[V(ȷ)−x(ȷ,y(ȷ))]]dθ),ȷ∈I. $
|
(5.2) |
We discuss data dependence results for the problem
$ dφdȷ+⋆0Dδȷ[V(ȷ)−x(ȷ,y(ȷ))]=˜φ(ȷ,φ(ȷ),P1φ(ȷ),P2φ(ȷ)),ȷ∈I, $
|
(6.1) |
$ φ(0)=φ0∈R. $
|
(6.2) |
Theorem 6.1. Equation (4.2) holds, and $ \xi_{k} > 0, $ where $ k = 1, 2 $ are real numbers such that,
$ |V0−φ0|≤ξ1,|φ(ȷ,V(ȷ),P1V(ȷ),P2V(ȷ))−˜φ(ȷ,φ(ȷ),P1φ(ȷ),P2φ(ȷ))|≤ξ2,ȷ∈I. $
|
(6.3) |
$ \varphi(\jmath) $ is a solution of ABR fractional derivative Eqs (6.1) and (6.2), and $ \mathcal{V}(\jmath) $ is a solution of Eqs (1.3) and (1.4).
Proof. Let $ \mathcal{V}, \varphi $ are the solution of Eqs (1.3) and (1.4), (6.1) and (6.2) respectively. We find for any
$ |V(ȷ)−φ(ȷ)|≤|V0−φ0|+B(δ)1−δ∫ȷ0Eδ(|−δ1−δ(ȷ−θ)δ|)|V(θ)−φ(θ)|dθ+∫ȷ0|φ(θ,V(θ),P1V(θ),P2V(θ))−˜φ(s,φ(θ),P1φ(θ),P2φ(θ))|dθ≤|V0−φ0|+B(δ)1−δ∫ȷ0Eδ(|−δ1−δ(ȷ−θ)δ|)|V(θ)−φ(s)|dθ+∫ȷ0|φ(θ,V(θ),P1V(θ),P2V(θ))−φ(θ,φ(θ),P1φ(θ),P2φ(θ))|dθ+∫ȷ0|φ(θ,V(θ),P1V(θ),P2V(θ))−˜φ(θ,φ(θ),P1φ(θ),P2φ(θ))|dθ≤ξ1+B(δ)1−δ∫ȷ0Eδ(δ1−δTδ)|V(θ)−φ(θ)|dθ+∫ȷ0ζ(|V(θ)−φ(θ)|+C|V(θ)−φ(θ)|+D|V(θ)−φ(θ)|)dθ+ξ2∫ȷ0dθ≤ξ1+B(δ)1−δ∫ȷ0Eδ(δ1−δTδ)|V(θ)−φ(θ)|dθ+∫ȷ0ζ(1+C+D)|V(θ)−φ(θ)|dθ+ξ2ȷ≤ξ1+B(δ)1−δ∫ȷ0Eδ(δ1−δTδ)|V(θ)−φ(θ)|dθ+∫ȷ0[V(ȷ)−x(ȷ,y(ȷ))]|V(θ)−φ(θ)|dθ+ξ2T|V(ȷ)−φ(ȷ)|≤ξ1+ξ2T+∫ȷ0[B(δ)1−δEδ(δ1−δTδ)+[V(ȷ)−x(ȷ,y(ȷ))]]|V(ȷ)−φ(θ)|dθ. $
|
By Lemma 2.12, we get
$ |V(ȷ)−φ(ȷ)|≤(ξ1+ξ2T)exp(∫ȷ0[B(δ)1−δEδ(δ1−δTδ)+[V(ȷ)−x(ȷ,y(ȷ))]]dθ),ȷ∈I. $
|
(6.4) |
Let any $ \lambda, \lambda_{0}\in \mathscr{R} $ and
$ dVdȷ+⋆0Dδȷ[V(ȷ)−x(ȷ,y(ȷ))]=Θ(ȷ,V(ȷ),P1V(ȷ),P2V(ȷ),λ),ȷ∈I, $
|
(7.1) |
$ V(0)=V0∈R. $
|
(7.2) |
$ dVdȷ+⋆0Dδȷ[V(ȷ)−x(ȷ,y(ȷ)]=Θ(ȷ,V(ȷ),P1V(ȷ),P2V(ȷ),λ0),ȷ∈I, $
|
(7.3) |
$ V(0)=V0∈R. $
|
(7.4) |
Theorem 7.1. Let the function $ \Theta $ satisfy Theorem 4.2. Suppose there exists $ \omega, u \in \mathscr{C}(\mathscr{I}, \mathscr{R}^{+}) $ such that,
$ |Θ(ȷ,V,P1V,P2V,λ)−Θ(ȷ,φ,P1φ,P2φ,λ)|≤ω(ȷ)|V−φ|,|Θ(ȷ,V,P1V,P2V,λ)−Θ(ȷ,V,P1V,P2V,λ0)|≤u(ȷ)|λ−λ0|. $
|
If $ \mathcal{V}_{1}, \mathcal{V}_{2} $ are the solutions of Eqs (7.1) and (7.3), then
$ |V1(ȷ)−V2(ȷ)|≤PT|λ−λ0|exp(∫ȷ0[B(δ)1−δEδ(−δ1−δTδ)+[V(ȷ)−x(ȷ,y(ȷ))]]dθ),ȷ∈I, $
|
(7.5) |
where $ \mathcal{P} = \sup_{\jmath \in \mathscr{I}}u(\jmath). $
Proof. Let, for any $ \jmath\in \mathscr{I} $,
$ |V1(ȷ)−V2(ȷ)|≤B(δ)1−δ|∫ȷ0Eδ[−δ1−δ(ȷ−θ)δ](V2(θ)−V1(θ)dθ)|+∫ȷ0|Θ(θ,V1(θ),P1V1(θ),P2V1(θ),λ)−Θ(θ,V2(θ),P1V2(θ),P2V2(θ),λ0)|dθ≤B(δ)1−δ∫ȷ0Eδ(|−δ1−δ(ȷ−θ)δ|)|V1(θ)−V2(θ)|dθ+∫ȷ0|Θ(θ,V1(θ),P1V1(θ),P2V1(θ),λ)−Θ(θ,V2(θ),P1V2(θ),P2V2(θ),λ)|dθ+∫ȷ0|Θ(θ,V2(θ),P1V2(θ),P2V2(θ),λ)−Θ(θ,V2(θ),P1V2(θ),P2V2(θ),λ0)|dθ≤B(δ)1−δ∫ȷ0Eδ(δ1−δ(ȷ−θ)δ)|V1(θ)−V2(θ)|dθ+∫ȷ0ζ(|V1(θ)−V2(θ)|+C|V1(θ)−V2(θ)|+D|V1(θ)−V2(θ)|)dθ+∫ȷ0u(θ)|λ−λ0|dθ≤B(δ)1−δ∫ȷ0Eδ(δ1−δTδ)|V1(θ)−V2(θ)|dθ+∫ȷ0ζ(1+C+D)|V1(θ)−V2(θ)|dθ+Pȷ|λ−λ0|≤B(δ)1−δ∫ȷ0Eδ(δ1−δTδ)|V1(θ)−V2(θ)|dθ+∫ȷ0[V(ȷ)−x(ȷ,y(ȷ))]|V1(θ)−V2(θ)|dθ+PT|λ−λ0|≤∫ȷ0[B(δ)1−δEδ(δ1−δTδ)+[V(ȷ)−x(ȷ,y(ȷ))]]|V1(θ)−V2(θ)|dθ+PT|λ−λ0|. $
|
By Lemma 2.12,
$ |V1(ȷ)−V2(ȷ)|≤PT|λ−λ0|exp(∫ȷ0[B(δ)1−δEδ(δ1−δTδ)+[V(ȷ)−x(ȷ,y(ȷ))]]dθ),ȷ∈I. $
|
(7.6) |
Consider a nonlinear ABR fractional derivative with neutral integro-differential equations of the form:
$ dVdȷ+⋆0D12ȷ[V(ȷ)−x(ȷ,y(ȷ))]=φ(ȷ,V(ȷ),P1V(ȷ),P2V(ȷ)),ȷ∈I=[0,2], $
|
(8.1) |
$ V(0)=1∈R. $
|
(8.2) |
$ \varphi:(\mathscr{I}\times \mathscr{R}\times \mathscr{R}\times \mathscr{R})\rightarrow \mathscr{R} $ is a continuous nonlinear function such that,
$ φ(ȷ,V(ȷ),P1V(ȷ),P2V(ȷ))=|V(ȷ)|+13+M(ȷ)+N(ȷ),ȷ∈I, $
|
and
$ M(ȷ)=B(12){ȷE12,2(−ȷ12)+E12(−ȷ12)−ȷ−1},N(ȷ)=B(12){E12,2(−ȷ12)+ȷE12(−ȷ12)−1}. $
|
We observe that for all $ \mathcal{V}, \varphi\in \mathscr{R} $ and $ \jmath\in \mathscr{I}, $
$ |φ(ȷ,V,P1V,P2V)−φ(ȷ,φ,P1φ,P2φ)|=|(|V(ȷ)|+13+M(ȷ)+N(ȷ))−(|φ(ȷ)|+13+M(ȷ)+N(ȷ))|≤13|V−φ|. $
|
(8.3) |
The function $ \varphi $ satisfies $ (H_{1}) $–$ (H_{4}) $ with constant $ \frac{1}{3} $. From Theorem 4.2, we have $ \delta = \frac{1}{2} $ and T = 2 which is substitute in Eq (4.2), and we get
$ B(12)<18E12,2(212). $
|
(8.4) |
If the function $ B(\delta) $ satisfies Eq (8.4), then Eqs (8.1) and (8.2) have a unique solution.
$ V(ȷ)=ȷ3+1,ȷ∈[0,2]. $
|
(8.5) |
In this research article, we explored multi-derivative nonlinear neutral fractional integro-differential equations involving the ABR fractional derivative. The elementary results of the existence, uniqueness and dependence solution on various data are based on the Prabhakar fractional integral operator $ \varepsilon^{\alpha}_{\delta, \eta, \mathcal{V}; c+} $ involving a generalized ML function. The existence results are obtained by Krasnoselskii's fixed point theorem, and the uniqueness and data dependence results are obtained by the Gronwall-Bellman inequality with continuous functions.
The research on Existence and data dependence results for neutral fractional order integro-differential equations by Khon Kaen University has received funding support from the National Science, Research and Innovation Fund.
The authors declare no conflict of interest.
[1] |
Talapin DV, Lee J-S, Kovalenko MV, et al. (2010) Prospects of Colloidal Nanocrystals for Electronic and Optoelectronic Applications. Chem Rev 110: 389–458. doi: 10.1021/cr900137k
![]() |
[2] | Mattoussi H, Palui G, Na HB (2012) Luminescent quantum dots as platforms for probing in vitro and in vivo biological process. Adv Drug Deliv Rev 64: 138–166. |
[3] |
Murray CB, Norris DJ, Bawendi MG (1993) Synthesis and characterization of nearly monodisperse CdE (E = S, Se, Te) semiconductor nanocrystallites. J Am Chem Soc 115: 8706–8715. doi: 10.1021/ja00072a025
![]() |
[4] | Wang W, Geng Y, Yan P, et al. (1999) A novel mild route to nanocrystalline selenides at room temperature. J Am Chem Soc 121: 4062–4063. |
[5] |
Nguyen CQ, Afzaal M, Malik MA, et al. (2007) Novel inorganic rings and materials deposition. J Organometal Chem 692: 2669–2677. doi: 10.1016/j.jorganchem.2006.11.043
![]() |
[6] |
Afzaal M, Crouch D, Malik MA, et al. (2003) Deposition of CdSe thin films using a novel single-source precursor; [MeCd{(SePiPr2)2N}]2. J Mater Chem 13: 639–640. doi: 10.1039/b300608p
![]() |
[7] |
Peng Q, Dong Y, Deng Z, et al. (2001) Low-temperature elemental direct- reaction route to II–VI semiconductor nanocrystalline ZnSe and CdSe. Inorg Chem 40: 3840–3841. doi: 10.1021/ic0100424
![]() |
[8] | Zhu J, Koltypin Y, Gedanken A (2000) General sonochemical method for the preparation of nanophasic selenides: synthesis of ZnSe nanoparticles. Chem Mater 12: 73–78. |
[9] |
Nafees M, Ali S, Idrees S, et al. (2013) A simple microwave assisted aqueous route to synthesis CuS nanoparticles and further aggregation to spherical shape. Appl Nanosci 3: 119–124. doi: 10.1007/s13204-012-0113-9
![]() |
[10] |
Isac L, Duta A, Kariza A, et al. (2007) Copper sulphide obtained by spray pyrolysis-possible absorbers in solid state solar cells. Thin Sol Films 515: 5755–5758. doi: 10.1016/j.tsf.2006.12.073
![]() |
[11] |
Chang W, Wu C, Jeng M, et al. (2010) Ternary Ag-In-S polycrystalline films deposited using chemical bath deposition for photoelectrochemical applications. Mater Chem Phys 120: 307–312. doi: 10.1016/j.matchemphys.2009.11.003
![]() |
[12] |
Raevskaya AE, Ivanchenko MV, Stroyuk OL, et al. (2015) Luminescent Ag-doped In2S3 nanoparticles stabilized by mercaptoacetate in water and glycerol. J Nanopart Res 17: 135. doi: 10.1007/s11051-015-2953-1
![]() |
[13] |
Tomczak N, Janczewski D, Han M, et al. (2009) Designer polymer-quantum dot architectures. Progr Polym Sci 34: 393–430. doi: 10.1016/j.progpolymsci.2008.11.004
![]() |
[14] | Pritchad JG (1970) Polyvinyl Alcohol. Basic Properties and Uses, London: Gordon and Breach. |
[15] |
DeMerlis C C, Schoneker D R (2003) Review of the oral toxicity of polyvinyl alcohol (PVA). Food Chem Toxicol 41: 319–326. doi: 10.1016/S0278-6915(02)00258-2
![]() |
[16] |
Borkovska L, Korsunska N, Stara T, et al. (2013) Enhancement of the photoluminescence in CdSe quantum dot–polyvinyl alcohol composite by light irradiation. Appl Surf Sci 281: 118–122. doi: 10.1016/j.apsusc.2012.12.146
![]() |
[17] |
Raevskaya AE, Stroyuk AL, Kuchmiy SY (2006) Preparation of colloidal CdSe and CdS/CdSe nanoparticles from sodium selenosulfate in aqueous polymers solutions. J Colloid Interface Sci 302: 133–141. doi: 10.1016/j.jcis.2006.06.018
![]() |
[18] |
Meulenberg RW, Jennings T, Strouse G (2004) Compressive and tensile stress in colloidal CdSe semiconductor quantum dots. Phys Rev B 70: 235311. doi: 10.1103/PhysRevB.70.235311
![]() |
[19] | Ohrendorf FW, Hauseler H (1999) Lattice Dynamics of Chalcopyrite Type Compounds. Part I. Vibrational Frequencies. Cryst Res Technol 34: 339–349. |
[20] |
Badr YA, Abd El-Kader KM, Khafagy RM (2004) Raman spectroscopic study of CdS, PVA composite films. J Appl Polym Sci 92: 1984–1992. doi: 10.1002/app.20017
![]() |
[21] | Iwamoto R, Miya M, Mima S (1979) Determination of crystallinity of swollen poly(vinyl alcohol) by laser Raman spectroscopy. J Polymer Sci Polym Phys Ed 17: 1507–1515. |
[22] |
Baskoutas S, Terzis AF (2006) Size-dependent band gap of colloidal quantum dots. J Appl Phys 99: 013708. doi: 10.1063/1.2158502
![]() |
[23] |
Hong SP, Park HK, Oh JH, et al. (2012) Comparisons of the structural and optical properties of o-AgInS2, t-AgInS2, and c-AgIn5S8 nanocrystals and their solid-solution nanocrystals with ZnS. J Mater Chem 22: 18939–18949. doi: 10.1039/c2jm33879c
![]() |
[24] |
Borkovska L, Romanyuk А, Strelchuk V, et al. (2015) Optical characterization of the AgInS2 nanocrystals synthesized in aqueous media under stoichiometric conditions. Mat Sci Semicond Proces 37: 135–142. doi: 10.1016/j.mssp.2015.02.041
![]() |
[25] | Lifshitz E, Dag I, Litvin I, et al. (1998) Optically Detected Magnetic Resonance Study of Electron/Hole Traps on CdSe Quantum Dot Surfaces. J Phys Chem B 102: 9245–9250. |
[26] | Carrillo-Carrión C, Cárdenas S, Simonet BM, et al. (2009) Quantum dotsluminescence enhancement due to illumination withUV/Vislight. Chem Commun 5214–5226. |
[27] | Shtareva DS, Makarevich KS, Syuya AV (2011) Behavioral features of photostimulated processes in the heterogeneous composition of polymer–semiconductor–salt of a metal. J Photochem Photobiol A Chem 222: 146–158. |
[28] |
Henglein A (1993) Physicochemical Properties of Small Metal Particles in Solution: “Microelectrode” Reactions, Chemisorption, Composite Metal particles, and The Atom-to-Metal Transition. J Phys Chem 97: 5457–5471. doi: 10.1021/j100123a004
![]() |
[29] |
Stroyuk AL, Shvalagin VV, Kuchmiy SY (2007) Photochemical synthesis of ZnO/Ag nanocomposites. J Nanopart Res 9: 427–440. doi: 10.1007/s11051-006-9086-5
![]() |
[30] |
Kryukov AI, Zinchuk NN, Korzhak AV, et al. (2004) Optical and catalytic properties of Ag2S nanoparticles. J Mol Catal A Chem 221: 209–221. doi: 10.1016/j.molcata.2004.07.009
![]() |
[31] | Ershov BG (1999) Short-lived metal clusters in aqueous solutions: synthesis, identification and properties. Izvestia AN Ser Khim No 1: 1–15 (In Russian). |
1. | Andreas Frommer, Daniel B. Szyld, On the convergence of randomized and greedy relaxation schemes for solving nonsingular linear systems of equations, 2023, 92, 1017-1398, 639, 10.1007/s11075-022-01431-7 | |
2. | Yansheng Su, Deren Han, Yun Zeng, Jiaxin Xie, On greedy multi-step inertial randomized Kaczmarz method for solving linear systems, 2024, 61, 0008-0624, 10.1007/s10092-024-00621-0 |