Research article Topical Sections

Assessment of extrusion-sonication process on flame retardant polypropylene by rheological characterization

  • Received: 14 April 2016 Accepted: 23 May 2016 Published: 25 May 2016
  • In this work, the rheological behavior of flame retardant polypropylene composites produced by two methods: 1) twin-screw extrusion and 2) ultrasound application combined with a static mixer die single-screw extrusion is analyzed in detail; results are related to the morphology of the composites. The flame retardant polymer composites are composed of a polypropylene matrix, an intumescent flame retardant system and functionalized clay. Scanning electron microscopy revealed that the combination of the static mixer die and on-line sonication reduced particle size and improved the dispersion and distribution of the intumescent additives in the polypropylene matrix at the micrometric level. From linear viscoelastic properties, the Han, Cole-Cole and van Gurp-Palmen diagrams characterized the improved particle dispersion of the flame retardant additives. Two well-defined rheological behaviors were observed in these diagrams. These behaviors are independent on clay presence and concentration. In fact, the ultrasound device generates a 3D highly interconnected structure similar to a co-continuous pattern observed in polymer blends as evidenced by rheological measurements. This improvement in the dispersion and distribution of the additives is attributed to the combined effect of the static mixer die and on-line sonication that allowed reducing the additive content while achieving the optimum classification UL94-V0.

    Citation: Guadalupe Sanchez-Olivares, Fausto Calderas, Antonio Sanchez-Solis, Luis Medina-Torres, Leonardo R. Moreno, Octavio Manero. Assessment of extrusion-sonication process on flame retardant polypropylene by rheological characterization[J]. AIMS Materials Science, 2016, 3(2): 620-633. doi: 10.3934/matersci.2016.2.620

    Related Papers:

  • In this work, the rheological behavior of flame retardant polypropylene composites produced by two methods: 1) twin-screw extrusion and 2) ultrasound application combined with a static mixer die single-screw extrusion is analyzed in detail; results are related to the morphology of the composites. The flame retardant polymer composites are composed of a polypropylene matrix, an intumescent flame retardant system and functionalized clay. Scanning electron microscopy revealed that the combination of the static mixer die and on-line sonication reduced particle size and improved the dispersion and distribution of the intumescent additives in the polypropylene matrix at the micrometric level. From linear viscoelastic properties, the Han, Cole-Cole and van Gurp-Palmen diagrams characterized the improved particle dispersion of the flame retardant additives. Two well-defined rheological behaviors were observed in these diagrams. These behaviors are independent on clay presence and concentration. In fact, the ultrasound device generates a 3D highly interconnected structure similar to a co-continuous pattern observed in polymer blends as evidenced by rheological measurements. This improvement in the dispersion and distribution of the additives is attributed to the combined effect of the static mixer die and on-line sonication that allowed reducing the additive content while achieving the optimum classification UL94-V0.


    加载中
    [1] Horrocks AR, Kandola B, Milnes GJ, et al. (2012) The potential for ultrasound to improve nanoparticle dispersion and increase flame resistance in fibre-forming polymers. Polym Degrad Stab 97: 2511–2523. doi: 10.1016/j.polymdegradstab.2012.07.003
    [2] Peng B, Wu H, Bao W, et al. (2011) Effects of ultrasound on the morphology and properties of propylene-based plastomer-nanosilica composites. Polym J 43: 91–96.
    [3] Li J, Zhao L, Guo SJ (2007) Ultrasound assisted development of structure and properties of polyamide 6/montmorillonite Nanocomposites. J Macromol Sci B 46: 423–439. doi: 10.1080/00222340701257455
    [4] Zhong J, Isayev AI (2015) Properties of Polyetherimide/Graphite Composites Prepared Using Ultrasonic Twin-Screw Extrusion. J Appl Polym Sci 132.
    [5] Sanchez-Olivares G, Sanchez-Solis A, Calderas F, et al. (2013) Extrusion with ultrasound applied on intumescent flame-retardant polypropylene. Polym Eng Sci 53: 2018–2026. doi: 10.1002/pen.23454
    [6] Sanchez-Olivares G, Sanchez-Solis A, Calderas F, et al. (2013) Flame retardant high density polyethylene optimized by on-line ultrasound extrusion. Polym Degrad Stab 98: 2153–2160. doi: 10.1016/j.polymdegradstab.2013.09.001
    [7] Chen G, Guo S, Li Y (2004) Dynamical rheological properties of high-density polyethylene/polystyrene blends extruded in the presence of ultrasonic oscillations. J Appl Polym Sci 92: 3153–3158. doi: 10.1002/app.20282
    [8] Kim KY, Nam GJ, Lee SM, et al. (2006) Rheological properties of polypropylene modified by high-intensity ultrasonic sonic waves. J Appl Polym Sci 99: 2132–2137. doi: 10.1002/app.22741
    [9] Lai SM, Huang CY, Li SC, et al. (2011) Preparation and properties of melt-mixed metallocene polyethylene/silica nanocomposites. Polym Eng Sci 51: 434–444. doi: 10.1002/pen.21844
    [10] Parbhakar A, Cuadros J M, Sephton A, et al. (2007) Adsorption of L-lysine on montmorillonite. Colloid Surface A 307: 142–149. doi: 10.1016/j.colsurfa.2007.05.022
    [11] Cuadros J, Aldega L, Vetterlein J, et al. (2009) Reactions of lysine with montmorillonite at 80 ºC: implications for optical activity, H + transfer and lysine-montmorillonite binding. J Colloid Interf Sci 333: 78–84. doi: 10.1016/j.jcis.2009.01.031
    [12] Kitadai N, Yokoyama T, Nakashima S (2009) In situ ATR-IR investigation of L-lysine adsorption on motmotillonite. J Colloid Interf Sci 338: 395–401. doi: 10.1016/j.jcis.2009.06.061
    [13] Shi D, Yang J, Yao Z, et al (2001) Functionalization of isotactic polypropylene with maleic anhydride by reactive extrusion: mechanism of melt grafting. Polym 42: 5549–5557. doi: 10.1016/S0032-3861(01)00069-6
    [14] Ibarra-Macias DA (2013) Estudio de materiales compuestos de poli(tereftalato de etileno) y polipropileno asistidos por ultrasonido. M. Sc. Thesis, Universidad Nacional Autónoma de México. Available http://www.dgbiblio.unam.mx/index.php/catalogos
    [15] Li J, Guo S, Li X (2005) Degradation kinetics of polystyrene and EPDM melts under ultrasonic irradiation. Polym Degrad Stabil 89: 6–14. doi: 10.1016/j.polymdegradstab.2004.12.017
    [16] Li Y, Li J, Guo S, et al. (2005) Mechanochemical degradation kinetics of high-density polyethylene melt and its mechanics in the presence of ultrasonic irradiation. Ultrason Sonochem 12: 183–189. doi: 10.1016/j.ultsonch.2003.10.011
    [17] Bourbigot S, Le Bras M, Duquesne S, et al. (2004) Recent advances for intumescent polymers. Macromol Mater Eng 289: 499–511. doi: 10.1002/mame.200400007
    [18] Gilman JW, Jackson CL, Morgan AB, et al. (2000) Flammability Properties of Polymer-Layered-Silicate Nanocomposites.Chem Mater12: 1866–1873.
    [19] Sanchez-Olivares G, Sanchez-Solis A, Camino G, et al. (2008) Study on the combustion behavior of high impact polystyrene nanocomposites produced by different extrusion processes. Express Polym Letters 2: 569–578. doi: 10.3144/expresspolymlett.2008.69
    [20] Kiliaris P, Papaspyrides CD (2010) Polymer/layered silicate (clay) nanocomposites: An overview of flame retardancy. Prog Polym Sci 35: 902–958. doi: 10.1016/j.progpolymsci.2010.03.001
    [21] Calderas F, Sanchez-Solis A, Maciel A, et al. (2009) The transient flow of the PET-PEN-Montmorillonite clay nanocomposite. Macromol Sympo 283: 354–360.
    [22] Isayev AI, Kumar R, Lewis TM (2009) Ultrasound assisted twin screw extrusion of polymer-nanocomposites containing carbon nanotubes. Polym 50: 250–260. doi: 10.1016/j.polymer.2008.10.052
    [23] Li Q, Zeng Q, Huang Y, et al. (2013) Dispersion and rheology of polypropylene/organoclay nanocomposites: effect of cation exchange capacity and number of alkyl tails. J Mater Sci 48: 948–959. doi: 10.1007/s10853-012-6820-5
    [24] Chen G, Guo S, Li H (2002) Ultrasonic improvement of the compatibility and rheological behvaior of high-density polyethylene/polystyrene blends. J Appl Polym Sci 86: 23–32. doi: 10.1002/app.10826
    [25] Bagheri H, Jahani Y, Haghighi MN, et al. (2011) Dynamic shear rheological behavior of PP/EPR in-reactor alloys synthetized by Multi-stage Sequential Polymerization Process. J Appl Polym Sci 120: 3635–3641. doi: 10.1002/app.33566
    [26] Kim SS, Han CD (1993) Effect of molecular weight on the rheological behavior of thermotropic liquid-crystalline polymer. Macromolecules 26: 6633–6642. doi: 10.1021/ma00076a050
    [27] Kwak H, Rana D, Choe SJ (2000) Melt rheology of binary blends of metallocene polyethylene with conventional polyolefins. J Ind Eng Chem 6: 107–114.
    [28] Ahmed J, Varshney SK, Auras RJ (2010) Rheological and thermal properties of polylactide /silicate nanocomposites films. J Food Sci 75: 17–24.
    [29] Luan L, Wu W, Wagner MH (2011) Rheological behavior of lubricating systems in polypropylene/seaweed composites. J Appl Polym Sci 121: 2143–2148. doi: 10.1002/app.33940
    [30] Li R, Yu W, Zhou CJ (2006) Rheological characterization of droplet-matrix versus co-continuous morphology. J Macromol Sci B 45: 889–898.
    [31] Ezzati P, Ghasemi I, Karrabi M, et al. (2008) Rheological behaviours of PP/EPDM Blends: The effect of Compatibilization. Iran Polym J 17: 669–679.
  • Reader Comments
  • © 2016 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(5700) PDF downloads(1206) Cited by(4)

Article outline

Figures and Tables

Figures(9)  /  Tables(3)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog