Citation: Claas Hüter, Mingxuan Lin, Diego Schicchi, Martin Hunkel, Ulrich Prahl, Robert Spatschek. A multiscale perspective on the kinetics of solid state transformations with application to bainite formation[J]. AIMS Materials Science, 2015, 2(4): 319-345. doi: 10.3934/matersci.2015.4.319
[1] | Smith CS (1960) A History of Metallography, University of Chicago Press. |
[2] | Fielding L (2013) The bainite controversy. Mater Sci Techn 29:383–399. doi: 10.1179/1743284712Y.0000000157 |
[3] | van Bohemen S, Siemtsma J (2008) Modeling of isothermal bainite formation based on nucleation kinetics. Int J Mat Res 99:739–747. doi: 10.3139/146.101695 |
[4] | Gaude-Fugarolas D, Jacques PJ (2006) A new physical model for the kinetics of the bainite transformation. ISIJ Inter 46:712–717. doi: 10.2355/isijinternational.46.712 |
[5] | Rees GI, Bhadeshia H (1992) Bainite transformation kinetics Part 1: Modified model. Mater Sci Techn 8:985–993. doi: 10.1179/mst.1992.8.11.985 |
[6] | Tzeng TC (2000) Autocatalysis in bainite transformations. Mater Sci Eng A 293:185–190. doi: 10.1016/S0921-5093(00)01221-1 |
[7] | Zolotoresvky N, Nesterova E, Titovets Y, et al. (2013) Modeling the effect of austenite deformation on the bainite structure parameters in low carbon microalloyed steels. Int J Mat Res 104:337–343. doi: 10.3139/146.110872 |
[8] | Hunkel M, Lübben T, Hoffmann F, et al. (1999) Modellierung der bainitischen und perlitischen Umwandlung bei Stählen. HTM Härterei-Techn Mitt 54:365–373. |
[9] | Quidort D, Brechet YJM (2002) A model of isothermal and non isothermal transformation kinetics of bainite in 0.5% C steels. ISIJ Inter 42:1010–1017. |
[10] | Maier H-J, Ahrens U (2002) Isothermal bainitic transformation on low alloy steels: factors limiting prediction of the resulting material’s properties. Z Metallk 93:712–718. doi: 10.3139/146.020712 |
[11] | Freiwillig R, Kudrman J, Chraska P (1976) Bainite transformation in deformed austenite. Metall Trans A 7:1091–1097. doi: 10.1007/BF02656591 |
[12] | Holzweissig M, Canadinc D, Maier H-J (2012) In-situ characterization of transformation plasticity during an isothermal austenite-to-bainite phase transformation. Mater Char 65:100–108. doi: 10.1016/j.matchar.2012.01.007 |
[13] | Su T, Veaus M, Aeby-Gautier E, et al. (2003) Effect of tensile stresses on bainitic isothermal transformation. J Phys IV France 112:293–296. doi: 10.1051/jp4:2003886 |
[14] | Su T, Aeby-Gautier E, Denis S (2006) Morphology changes in bainite formed under stress. Scripta Mater 54:2185–2189. doi: 10.1016/j.scriptamat.2006.02.031 |
[15] | Hase K, Garcia-Mateo C, Bhadeshia H (2004) Bainite Formation influenced by large stress. Mater Sci Techn 20:1499–1505. doi: 10.1179/026708304X6130 |
[16] | Kundu S, Hase K, Bhadeshia S (2007) Crystallographic texture of stress affected bainite. Proc Royal Soc A 463:2309–2328. doi: 10.1098/rspa.2007.1881 |
[17] | Fuijiwara K, Okaguchi S, Ohtani H (1995) Effect of hot deformation on bainite structure in low carbon steels. ISIJ Inter 15:1006–1012. |
[18] | Min J, Lin J, Min Y, et al. (2012) On the ferrite and bainite transformation in isothermally deformed 22MnB5 steels. Mater Sci Eng A 550:375–387. doi: 10.1016/j.msea.2012.04.091 |
[19] | Nikravesh M, Naderi M, Akbari GH (2012) Influence of hot plastic deformation and cooling rate on martensite and bainite start temperatures in 22MnB5 steel. Mater Sci Eng A A 540:24–29. doi: 10.1016/j.msea.2012.01.018 |
[20] | Karbasian H, Tekkaya AE (2010) A review on hot stamping. J Mat Proc Tech 210:2103. doi: 10.1016/j.jmatprotec.2010.07.019 |
[21] | Feuser P, Schweiker T, Merklein M (2011) Partially hot-formed parts from 22MnB5 - process window. ICTP Aachen 10:408. |
[22] | Chen L (2002) Phase fields models for microstructure evolution. Annu Rev Mater Res 32:113. doi: 10.1146/annurev.matsci.32.112001.132041 |
[23] | Wang Y, Jin YM, Khachaturyan AG (2004) The effects of free surfaces on martensite microstructures: 3D phase field microelasticity simulation study. Acta Mat 52:1039. doi: 10.1016/j.actamat.2003.10.037 |
[24] | Micress microstructure evolution simulation software, www.micress.de. |
[25] | Loginova I, Agren J, Amberg G (2004) On the formation ofWidmanstätten ferrite in a binary Fe-C phase-field approach. Acta Materialia 52:4055–4063. doi: 10.1016/j.actamat.2004.05.033 |
[26] | Song W, Prahl U, Bleck W, et al. (2011) Phase field simulations of bainitic phase transformation in 100Cr6. Supplemental proceedings: Materials Fabrication, Properties, Characterization, and Modeling 2:417–425. |
[27] | Song W (2014) Characterization and simulation of bainite transformation in high carbon bearing steel 100Cr6, PhD thesis RWTH Aachen University. |
[28] | Arif T, Qin R (2013) A phase field model for bainitic transformation. Computational Materials Science 77:230–235. doi: 10.1016/j.commatsci.2013.04.044 |
[29] | Arif T, Qin R (2014) A phase field model for the formation of martensite and bainite. Advanced materials research 922:31–36. doi: 10.4028/www.scientific.net/AMR.922.31 |
[30] | Qin R, Bhadeshia H (2009) Phase field model to study the effect of interface anisotropy on the crystal morphological evolution of cubic metals. Acta Materialia 57:2210–2216. doi: 10.1016/j.actamat.2009.01.024 |
[31] | Bhadeshia H (1987)Worked examples in the geometry of crystals, Institute of metals, London and Brookfield. |
[32] | Bouville M, Ahluwalia R (2006) Interplay between diffusive and displacive phase transformations: Time-Temperature-Transformation diagrams and microstructures. Phys Rev Lett 97:055701. doi: 10.1103/PhysRevLett.97.055701 |
[33] | Kundin J, Raabe D, Emmerich H (2011) A phase field model for incoherent martensitic transformations including plastic accommodation processes in the austenite. Journal of the mechanics and physics of solids 59:2082–2102. doi: 10.1016/j.jmps.2011.07.001 |
[34] | Kundin J, Pogorelov E, Emmerich H (2015) Numerical investigation of the interaction between the martensitic transformation front and the plastic strain in austenite. Journal of the mechanics and physics of solids 76:65–83. doi: 10.1016/j.jmps.2014.12.007 |
[35] | Levitas V, Javanbakht M (2013) Phase field approach to interaction of phase transformation and dislocation evolution. Applied Physics Letters 102:251904. doi: 10.1063/1.4812488 |
[36] | Roters F, Eisenlohr P, Hantcherli L, et al. (2010) Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finite element modeling: Theory, experiments, applications. Acta Materialia 58:2210–2216. |
[37] | Johnson W, Mehl R (1939) Reaction kinetics in process of nucleation and growth. Trans AIME 135:416–458. |
[38] | Avrami M (1941) Kinetics of phase change III: granulation, phase change and microstructure. J Chem Phys 9:177–184. doi: 10.1063/1.1750872 |
[39] | Lee G, Kim S, Han H (2009) Finite element investigations for the role of transformation plasticity on springback in hot press forming process. Comp Mater Sci 47:556567. |
[40] | HunkelM(2012) Anisotropic transformation strain and transformation plasticity: two corresponding effects. Mat -wiss u Werkstofftech. 43:150–157. |
[41] | Lütjens J, Hunkel M (2013) The influence of the transformation plasticity effect on the simulation of partial press-hardening. Proc 4th Int Conf CHS2 319–327. |
[42] | Brener EA, Marchenko VI, Spatschek R (2007) Influence of strain on the kinetics of phase transitions in solids. Phys Rev E 75:041604. doi: 10.1103/PhysRevE.75.041604 |
[43] | Fratzl P, Penrose O, Lebowitz JL (1999) Modelling of Phase Separation in Alloys with Coherent Elastic Misfit. J Stat Phys 95:1429. doi: 10.1023/A:1004587425006 |
[44] | Freund L (1998) Dynamic fracture mechanics, Cambridge University Press. |
[45] | Spatschek R, Brener E, Karma A (2011) Phase field modeling of crack propagation. Phil Mag 91:75. doi: 10.1080/14786431003773015 |
[46] | Chien FR, Clifton RJ, Nutt SR (1995) Stress-induced phase transformation in single crystal titanium carbide. J Am Ceram Soc 78:1537. doi: 10.1111/j.1151-2916.1995.tb08849.x |
[47] | Spatschek R, Müller-Gugenberger C, Brener E A, et al. (2007) Phase field modelling of fracture and stress-induced phase transitions. Phys Rev E 75:066111. doi: 10.1103/PhysRevE.75.066111 |
[48] | Spatschek R, Eidel B (2013) Driving forces for interface kinetics and phase field models. Int J Solid and Structures 50:2424. doi: 10.1016/j.ijsolstr.2013.03.016 |
[49] | Steinbach I (2011) Phase field models in materials science. Modelling and Simulation in Materials Science and Engineering 17:073001. |
[50] | Steinbach I, Shchyglo O (2011) Phase field modelling of microstructure evolution in solids: Perspectives and challenges. Current opinion in solid state and materials science 15:87. doi: 10.1016/j.cossms.2011.01.001 |
[51] | Rao M, Sengupta S (2003) Nucleation of solids in solids: ferrite and martensite. Phys Rev Lett 91:045502. doi: 10.1103/PhysRevLett.91.045502 |
[52] | Brener EA, Iiordanskii SV, Marchenko VI (1999) Elastic effects on the kinetics of a phase transition. Phys Rev Lett 82:1506. doi: 10.1103/PhysRevLett.82.1506 |
[53] | Brener EA, Boussinot G, Hüter C, et al. (2009) Pattern formation during diffusional transformations in the presence of triple junctions and elastic effects. J Phys Cond Mat 21:464106. doi: 10.1088/0953-8984/21/46/464106 |
[54] | Pilipenko D, Brener EA, Hüter C (2008) Theory of dendritic growth in the presence of lattice strain. Phys Rev E 78:060603. doi: 10.1103/PhysRevE.78.060603 |
[55] | Ivantsov GP (1947) PhD thesis Akad. Nauk. SSSR. |
[56] | Steinbach I, Pezzolla F (1999) A generalized field method for multiphase transformations using interface fields. Physica D: Nonlinear Phenomena 134:385–393. doi: 10.1016/S0167-2789(99)00129-3 |
[57] | Song W, von Appen J, Choi P, et al. (2013) Atomic-scale investigation of epsilon and theta precipitates in bainite in 100Cr6 bearing steel by atom probe tomography and ab initio calculations. Acta Materialia 61(20):7582–7590. |
[58] | Eiken J, Boettger B, Steinbach I (2006) Multi-phase-field approach for multi-component alloys with extrapolation scheme for numerical application. Phys Rev E 73:066122. doi: 10.1103/PhysRevE.73.066122 |
[59] | Steinbach I, Pezzolla F, Prieler R (1995) Grain selection in faceted crystal growth using the phase field theory. In: The 7th conference on on modeling of casting, welding and advanced solidification processes. |
[60] | Lukas H, Fries S, Sundman B (2007) Computational thermodynamics: The CALPHAD method, Cambridge University Press. |
[61] | Rees GI, Shipway PH (1997) Modelling transformation plasticity during the growth of bainite under stress. Materials Science and Engineering A 223:168–178. doi: 10.1016/S0921-5093(96)10478-0 |
[62] | Wolff M, Böhm M, Dalgic M, et al. (2008) Evaluation of models for TRIP and stress-dependent transformation behavior for the martensitic transformation of the steel 100Cr6. Comput Mater Sci 43:108114. |
[63] | Denis S (1997) Considering stress-phase transformation interaction in the calculation of heat treatment residual stresses. Series: International Centre for Mechanical Sciences 368:293–317. |
[64] | Leblond J, Deveaux JC (1989) Mathematical modelling of transformation plasticity in steels I: Case of ideal-plastic phases. Int J Plasticity 5:551–572. doi: 10.1016/0749-6419(89)90001-6 |
[65] | Fisher FD, Sun QP, Tanaka K (1996) Transformation-induced plasticity. Appl Mech Rev 49:317364. |
[66] | Leblond JB, Deveaux J (1984) A new kinetic model for anisothermal metallurgical transformation in steels including effect of austenite grain size. Acta Metallurgica 32:137146. |
[67] | ASTM International standard test methods for tension testing of metallic materials (2011). Available from: www.astm.org. |
[68] | HunkelM(2009) Anisotropic transformation strain and transformation plasticity: two corresponding effects. Mat -wiss u Werkstofftech. 40(5-6):466–472. |
[69] | Devaux J, Leblond JB, Bergheau JM (2000) Numerical study of the plastic behaviour of a low alloy steel during phase transformation. Journal of Shanghai Jiaotong University 3:206–212. |
[70] | Zwigl P, Dunand DC (1997) A non-linear model for internal stress superplasticity. Acta Materialia 45(12):5285–5294. |
[71] | Schicchi DS, Hunkel M (2015) Transformation plasticity effect during bainite transformation on a 22MnB5 Steel Grade. IDE 2015, Bremen, Germany. |