Citation: Britta Muster, Alexander Rapp, M. Cristina Cardoso. Systematic analysis of DNA damage induction and DNA repair pathway activation by continuous wave visible light laser micro-irradiation[J]. AIMS Genetics, 2017, 4(1): 47-68. doi: 10.3934/genet.2017.1.47
[1] | Hegde ML, Hazra TK, Mitra S (2008) Early steps in the DNA base excision/single-strand interruption repair pathway in mammalian cells. Cell Res 18: 27-47. doi: 10.1038/cr.2008.8 |
[2] | Hoeijmakers JH (2009) DNA damage, aging, and cancer. N Engl J Med 361: 1475-1485. doi: 10.1056/NEJMra0804615 |
[3] | Goodarzi AA, Jeggo PA (2013) The repair and signaling responses to DNA double-strand breaks. Adv Genet 82: 1-45. |
[4] | Polo SE, Jackson SP (2011) Dynamics of DNA damage response proteins at DNA breaks: a focus on protein modifications. Genes Dev 25: 409-433. doi: 10.1101/gad.2021311 |
[5] | Mortusewicz O, Leonhardt H, Cardoso MC (2008) Spatiotemporal dynamics of regulatory protein recruitment at DNA damage sites. J CELL Biochem 104: 1562-1569. doi: 10.1002/jcb.21751 |
[6] | Gassman NR, Wilson SH (2015) Micro-irradiation tools to visualize base excision repair and single-strand break repair. DNA Repair 31: 52-63. doi: 10.1016/j.dnarep.2015.05.001 |
[7] | Lengert L, Lengert N, Drossel B, et al. (2015) Discrimination of Kinetic Models by a Combination of Microirradiation and Fluorescence Photobleaching. Biophys J 109: 1551-1564. doi: 10.1016/j.bpj.2015.08.031 |
[8] | Bekker-Jensen S, Lukas C, Kitagawa R, et al. (2006) Spatial organization of the mammalian genome surveillance machinery in response to DNA strand breaks. J Cell Biol 173: 195-206. doi: 10.1083/jcb.200510130 |
[9] | Cremer C, Cremer T, Fukuda M, et al. (1980) Detection of laser--UV microirradiation-induced DNA photolesions by immunofluorescent staining. Hum Genet 54: 107-110. doi: 10.1007/BF00279058 |
[10] | Lukas C, Falck J, Bartkova J, et al. (2003) Distinct spatiotemporal dynamics of mammalian checkpoint regulators induced by DNA damage. Nat Cell Biol 5: 255-260. doi: 10.1038/ncb945 |
[11] | Lukas C, Melander F, Stucki M, et al. (2004) Mdc1 couples DNA double-strand break recognition by Nbs1 with its H2AX-dependent chromatin retention. EMBO J 23: 2674-2683. doi: 10.1038/sj.emboj.7600269 |
[12] | Rogakou EP, Boon C, Redon C, et al. (1999) Megabase chromatin domains involved in DNA double-strand breaks in vivo. J Cell Biol 146: 905-916. doi: 10.1083/jcb.146.5.905 |
[13] | Tashiro S, Walter J, Shinohara A, et al. (2000) Rad51 accumulation at sites of DNA damage and in postreplicative chromatin. J Cell Biol 150: 283-291. doi: 10.1083/jcb.150.2.283 |
[14] | Kong X, Mohanty SK, Stephens J, et al. (2009) Comparative analysis of different laser systems to study cellular responses to DNA damage in mammalian cells. Nucleic Acids Res 37: e68. doi: 10.1093/nar/gkp221 |
[15] | Dinant C, de Jager M, Essers J, et al. (2007) Activation of multiple DNA repair pathways by sub-nuclear damage induction methods. J Cell Sci 120: 2731-2740. doi: 10.1242/jcs.004523 |
[16] | Lan L, Nakajima S, Oohata Y, et al. (2004) In situ analysis of repair processes for oxidative DNA damage in mammalian cells. Proc Natl Acad Sci U S A 101: 13738-13743. doi: 10.1073/pnas.0406048101 |
[17] | Mortusewicz O, Leonhardt H (2007) XRCC1 and PCNA are loading platforms with distinct kinetic properties and different capacities to respond to multiple DNA lesions. BMC molecular biology 8: 81. doi: 10.1186/1471-2199-8-81 |
[18] | Mortusewicz O, Rothbauer U, Cardoso MC, et al. (2006) Differential recruitment of DNA Ligase I and III to DNA repair sites. Nucleic Acids Res 34: 3523-3532. doi: 10.1093/nar/gkl492 |
[19] | Mortusewicz O, Schermelleh L, Walter J, et al. (2005) Recruitment of DNA methyltransferase I to DNA repair sites. Proc Natl Acad Sci U S A 102: 8905-8909. doi: 10.1073/pnas.0501034102 |
[20] | Campalans A, Kortulewski T, Amouroux R, et al. (2013) Distinct spatiotemporal patterns and PARP dependence of XRCC1 recruitment to single-strand break and base excision repair. Nucleic Acids Res 41: 3115-3129. doi: 10.1093/nar/gkt025 |
[21] | Menoni H, Hoeijmakers JH, Vermeulen W (2012) Nucleotide excision repair-initiating proteins bind to oxidative DNA lesions in vivo. J Cell Biol 199: 1037-1046. doi: 10.1083/jcb.201205149 |
[22] | Reynolds P, Botchway SW, Parker AW, et al. (2013) Spatiotemporal dynamics of DNA repair proteins following laser microbeam induced DNA damage - when is a DSB not a DSB? Mutat Res 756: 14-20. doi: 10.1016/j.mrgentox.2013.05.006 |
[23] | Trautlein D, Deibler M, Leitenstorfer A, et al. (2010) Specific local induction of DNA strand breaks by infrared multi-photon absorption. Nucleic Acids Res 38: e14. doi: 10.1093/nar/gkp932 |
[24] | Fischer JM, Popp O, Gebhard D, et al. (2014) Poly(ADP-ribose)-mediated interplay of XPA and PARP1 leads to reciprocal regulation of protein function. FEBS J 281: 3625-3641. doi: 10.1111/febs.12885 |
[25] | Reynolds P, Anderson JA, Harper JV, et al. (2012) The dynamics of Ku70/80 and DNA-PKcs at DSBs induced by ionizing radiation is dependent on the complexity of damage. Nucleic Acids Res 40: 10821-10831. doi: 10.1093/nar/gks879 |
[26] | Ferrando-May E, Tomas M, Blumhardt P, et al. (2013) Highlighting the DNA damage response with ultrashort laser pulses in the near infrared and kinetic modeling. Front Genet 4: 135. |
[27] | Mohanty SK, Rapp A, Monajembashi S, et al. (2002) Comet assay measurements of DNA damage in cells by laser microbeams and trapping beams with wavelengths spanning a range of 308 nm to 1064 nm. Radiat Res 157: 378-385. |
[28] | Kim JS, Heale JT, Zeng W, et al. (2007) In situ analysis of DNA damage response and repair using laser microirradiation. Methods Cell Biol 82: 377-407. doi: 10.1016/S0091-679X(06)82013-3 |
[29] | Landry JJ, Pyl PT, Rausch T, et al. (2013) The genomic and transcriptomic landscape of a HeLa cell line. G3 (Bethesda) 3: 1213-1224. doi: 10.1534/g3.113.005777 |
[30] | Trucco C, Oliver FJ, de Murcia G, et al. (1998) DNA repair defect in poly(ADP-ribose) polymerase-deficient cell lines. Nucleic Acids Res 26: 2644-2649. doi: 10.1093/nar/26.11.2644 |
[31] | Oshima RG, Pellett OL, Robb JA, et al. (1977) Transformation of human cystinotic fibroblasts by SV40: characteristics of transformed cells with limited and unlimited growth potential. J Cell Physiol 93: 129-136. doi: 10.1002/jcp.1040930116 |
[32] | Chagin VO, Casas-Delucchi CS, Reinhart M, et al. (2016) 4D Visualization of replication foci in mammalian cells corresponding to individual replicons. Nat Commun 7: 11231. doi: 10.1038/ncomms11231 |
[33] | Casas-Delucchi CS, Becker A, Bolius JJ, et al. (2012) Targeted manipulation of heterochromatin rescues MeCP2 Rett mutants and re-establishes higher order chromatin organization. Nucleic Acids Res 40: e176. doi: 10.1093/nar/gks784 |
[34] | Mortusewicz O, Fouquerel E, Ame JC, et al. (2011) PARG is recruited to DNA damage sites through poly(ADP-ribose)- and PCNA-dependent mechanisms. Nucleic Acids Res 39: 5045-5056. doi: 10.1093/nar/gkr099 |
[35] | Sporbert A, Domaing P, Leonhardt H, et al. (2005) PCNA acts as a stationary loading platform for transiently interacting Okazaki fragment maturation proteins. Nucleic Acids Res 33: 3521-3528. doi: 10.1093/nar/gki665 |
[36] | Rodgers W, Jordan SJ, Capra JD (2002) Transient association of Ku with nuclear substrates characterized using fluorescence photobleaching. J Immunol 168: 2348-2355. doi: 10.4049/jimmunol.168.5.2348 |
[37] | Bergink S, Toussaint W, Luijsterburg MS, et al. (2012) Recognition of DNA damage by XPC coincides with disruption of the XPC-RAD23 complex. J Cell Biol 196: 681-688. doi: 10.1083/jcb.201107050 |
[38] | Hoogstraten D, Bergink S, Ng JM, et al. (2008) Versatile DNA damage detection by the global genome nucleotide excision repair protein XPC. J Cell Sci 121: 2850-2859. doi: 10.1242/jcs.031708 |
[39] | Pohler JR, Otterlei M, Warbrick E (2005) An in vivo analysis of the localisation and interactions of human p66 DNA polymerase delta subunit. BMC molecular biology 6: 17. doi: 10.1186/1471-2199-6-17 |
[40] | Grigaravicius P, Greulich KO, Monajembashi S (2009) Laser microbeams and optical tweezers in ageing research. ChemPhysChem 10: 79-85. doi: 10.1002/cphc.200800725 |
[41] | Henricksen LA, Umbricht CB, Wold MS (1994) Recombinant replication protein A: expression, complex formation, and functional characterization. J Biol Chem 269: 11121-11132. |
[42] | Tang JB, Goellner EM, Wang XH, et al. (2010) Bioenergetic metabolites regulate base excision repair-dependent cell death in response to DNA damage. Mol Cancer Res 8: 67-79. doi: 10.1158/1541-7786.MCR-09-0411 |
[43] | Sakaue-Sawano A, Kurokawa H, Morimura T, et al. (2008) Visualizing spatiotemporal dynamics of multicellular cell-cycle progression. Cell 132: 487-498. doi: 10.1016/j.cell.2007.12.033 |
[44] | Lan L, Nakajima S, Komatsu K, et al. (2005) Accumulation of Werner protein at DNA double-strand breaks in human cells. J Cell Sci 118: 4153-4162. doi: 10.1242/jcs.02544 |
[45] | Splinter J, Jakob B, Lang M, et al. (2010) Biological dose estimation of UVA laser microirradiation utilizing charged particle-induced protein foci. Mutagenesis 25: 289-297. doi: 10.1093/mutage/geq005 |
[46] | Solarczyk KJ, Zarebski M, Dobrucki JW (2012) Inducing local DNA damage by visible light to study chromatin repair. DNA Repair 11: 996-1002. doi: 10.1016/j.dnarep.2012.09.008 |
[47] | Sutherland JC, Griffin KP (1981) Absorption spectrum of DNA for wavelengths greater than 300 nm. Radiat Res 86: 399-409. doi: 10.2307/3575456 |
[48] | Greinert R, Volkmer B, Henning S, et al. (2012) UVA-induced DNA double-strand breaks result from the repair of clustered oxidative DNA damages. Nucleic Acids Res 40: 10263-10273. doi: 10.1093/nar/gks824 |
[49] | Kielbassa C, Roza L, Epe B (1997) Wavelength dependence of oxidative DNA damage induced by UV and visible light. Carcinogenesis 18: 811-816. doi: 10.1093/carcin/18.4.811 |
[50] | Pflaum M, Boiteux S, Epe B (1994) Visible light generates oxidative DNA base modifications in high excess of strand breaks in mammalian cells. Carcinogenesis 15: 297-300. doi: 10.1093/carcin/15.2.297 |
[51] | Povirk LF, Wubter W, Kohnlein W, et al. (1977) DNA double-strand breaks and alkali-labile bonds produced by bleomycin. Nucleic Acids Res 4: 3573-3580. doi: 10.1093/nar/4.10.3573 |
[52] | Raderschall E, Bazarov A, Cao J, et al. (2002) Formation of higher-order nuclear Rad51 structures is functionally linked to p21 expression and protection from DNA damage-induced apoptosis. J Cell Sci 115: 153-164. |
[53] | Rapp A, Greulich KO (2004) After double-strand break induction by UV-A, homologous recombination and nonhomologous end joining cooperate at the same DSB if both systems are available. J Cell Sci 117: 4935-4945. doi: 10.1242/jcs.01355 |
[54] | Trujillo KM, Yuan SS, Lee EY, et al. (1998) Nuclease activities in a complex of human recombination and DNA repair factors Rad50, Mre11, and p95. J Biol Chem 273: 21447-21450. doi: 10.1074/jbc.273.34.21447 |
[55] | Fernandez-Capetillo O, Celeste A, Nussenzweig A (2003) Focusing on foci: H2AX and the recruitment of DNA-damage response factors. Cell Cycle 2: 426-427. |
[56] | Cadet J, Mouret S, Ravanat JL, et al. (2012) Photoinduced damage to cellular DNA: direct and photosensitized reactions. Photochem Photobiol 88: 1048-1065. doi: 10.1111/j.1751-1097.2012.01200.x |
[57] | Sugasawa K, Okamoto T, Shimizu Y, et al. (2001) A multistep damage recognition mechanism for global genomic nucleotide excision repair. Genes Dev 15: 507-521. doi: 10.1101/gad.866301 |
[58] | Caldecott KW (2003) XRCC1 and DNA strand break repair. DNA Repair 2: 955-969. doi: 10.1016/S1568-7864(03)00118-6 |
[59] | Reynolds P, Cooper S, Lomax M, et al. (2015) Disruption of PARP1 function inhibits base excision repair of a sub-set of DNA lesions. Nucleic Acids Res 43: 4028-4038. doi: 10.1093/nar/gkv250 |
[60] | Strom CE, Johansson F, Uhlen M, et al. (2011) Poly (ADP-ribose) polymerase (PARP) is not involved in base excision repair but PARP inhibition traps a single-strand intermediate. Nucleic Acids Res 39: 3166-3175. doi: 10.1093/nar/gkq1241 |
[61] | Caldecott KW (2008) Single-strand break repair and genetic disease. Nat Rev Genet 9: 619-631. |
[62] | Caldecott KW (2014) DNA single-strand break repair. Exp Cell Res 329: 2-8. doi: 10.1016/j.yexcr.2014.08.027 |
[63] | Prasad R, Shock DD, Beard WA, et al. (2010) Substrate channeling in mammalian base excision repair pathways: passing the baton. J Biol Chem 285: 40479-40488. doi: 10.1074/jbc.M110.155267 |
[64] | Underhill C, Toulmonde M, Bonnefoi H (2011) A review of PARP inhibitors: from bench to bedside. Ann Oncol 22: 268-279. doi: 10.1093/annonc/mdq322 |
[65] | Kleppa L, Mari PO, Larsen E, et al. (2012) Kinetics of endogenous mouse FEN1 in base excision repair. Nucleic Acids Res 40: 9044-9059. doi: 10.1093/nar/gks673 |
[66] | Liu L, Gerson SL (2004) Therapeutic impact of methoxyamine: blocking repair of abasic sites in the base excision repair pathway. Curr Opin Investig Drugs 5: 623-627. |
[67] | Vidal AE, Boiteux S, Hickson ID, et al. (2001) XRCC1 coordinates the initial and late stages of DNA abasic site repair through protein-protein interactions. EMBO J 20: 6530-6539. doi: 10.1093/emboj/20.22.6530 |