In this paper, we study space-time decay rates of a nonconservative compressible two-phase flow model with common pressure in the whole space $ \mathbb{R}^{3} $. Based on previous temporal decay results, we establish the space-time decay rate of the strong solution. The main analytical techniques involve delicate weighted energy estimates and interpolation.
Citation: Linyan Fan, Yinghui Zhang. Space-time decay rates of a nonconservative compressible two-phase flow model with common pressure[J]. Electronic Research Archive, 2025, 33(2): 667-696. doi: 10.3934/era.2025031
In this paper, we study space-time decay rates of a nonconservative compressible two-phase flow model with common pressure in the whole space $ \mathbb{R}^{3} $. Based on previous temporal decay results, we establish the space-time decay rate of the strong solution. The main analytical techniques involve delicate weighted energy estimates and interpolation.
[1] | J. Bear, Dynamics of Fluids in Porous Media, Environmental Scienc Series, Elsevier, New York, 1972 (reprinted with corrections, New York, Dover, 1988). |
[2] | C. E. Brennen, Fundamentals of Multiphase Flow, Cambridge University Press, New York, 2005. https://doi.org/10.1017/CBO9780511807169 |
[3] | K. R. Rajagopal, L. Tao, Mechanics of mixtures, in Series on Advances in Mathematics for Applied Sciences, World Scientific, 1995. https://doi.org/10.1142/2197 |
[4] |
S. Evje, T. Fl$\mathring{a}$tten, Hybrid flux-splitting schemes for a common two-fluid model, J. Comput. Phys., 192 (2003), 175–210. https://doi.org/10.1016/j.jcp.2003.07.001 doi: 10.1016/j.jcp.2003.07.001
![]() |
[5] |
S. Evje, T. Fl$\mathring{a}$tten, Weakly implicit numerical schemes for a two-fluid model, SIAM J. Sci. Comput., 26 (2005), 1449–1484. https://doi.org/10.1137/030600631 doi: 10.1137/030600631
![]() |
[6] |
D. Bresch, B. Desjardins, J. M. Ghidaglia, E. Grenier, Global weak solutions to a generic two-fluid model, Arch. Rational Mech. Anal., 196 (2010), 599–6293. https://doi.org/10.1007/s00205-009-0261-6 doi: 10.1007/s00205-009-0261-6
![]() |
[7] |
D. Bresch, X. D. Huang, J. Li, Global weak solutions to one-dimensional non-conservative viscous compressible two-phase system, Commun. Math. Phys., 309 (2012), 737–755. https://doi.org/10.1007/s00220-011-1379-6 doi: 10.1007/s00220-011-1379-6
![]() |
[8] |
H. B. Cui, W. J. Wang, L. Yao, C. J. Zhu, Decay rates of a nonconservative compressible generic two-fluid model, SIAM J. Math. Anal., 48 (2016), 470–512. https://doi.org/10.1137/15M1037792 doi: 10.1137/15M1037792
![]() |
[9] |
Y. Li, H. Q. Wang, G. C. Wu, Y. H. Zhang, Global existence and decay rates for a generic compressible two-fluid model, J. Math. Fluid Mech., 25 (2023), 77. https://doi.org/10.1007/s00021-023-00822-7 doi: 10.1007/s00021-023-00822-7
![]() |
[10] |
G. C. Wu, L. Yao, Y. H. Zhang, Global well-posedness and large time behavior of classical solutions to a generic compressible two-fluid model, Math. Ann., 389 (2024), 3379–3415. https://doi.org/10.1007/s00208-023-02732-5 doi: 10.1007/s00208-023-02732-5
![]() |
[11] |
S. Evje, W. J. Wang, H. Y. Wen, Global well-posedness and decay rates of strong solutions to a non-conservative compressible two-fluid model, Arch. Ration. Mech. Anal., 221 (2016), 2352–2386. https://doi.org/10.1007/s00205-016-0984-0 doi: 10.1007/s00205-016-0984-0
![]() |
[12] |
H. Q. Wang, J. Wang, G. C. Wu, Y. H. Zhang, Optimal decay rates of a nonconservative compressible two-phase fluid model, ZAMM Z. Angew. Math. Mech., 103 (2023), 36. https://doi.org/10.1002/zamm.202100359 doi: 10.1002/zamm.202100359
![]() |
[13] | G. C. Wu, L. Yao, Y. H. Zhang, On instability of a generic compressible two-fluid model in $\mathbb{R}^3$, Nonlinearity, 36 (2023), 4740–4757. https://doi.org/.1088/1361-6544/ace818 |
[14] |
G. C. Wu, L. Yao, Y. H. Zhang, Stability and instability of a generic non-conservative compressible two-fluid model in $\mathbb{R}^3$, Phys. D, 467 (2024), 134249. https://doi.org/10.1016/j.physd.2024.134249 doi: 10.1016/j.physd.2024.134249
![]() |
[15] |
S. Takahashi, A weighted equation approach to decay rates estimates for the Navier-Stokes equations, Nonlinear Anal., 37 (1999), 751–789. https://doi.org/10.1016/S0362-546X(98)00070-4 doi: 10.1016/S0362-546X(98)00070-4
![]() |
[16] |
I. Kukavica, Space-time decay for solutions of the Navier-Stokes equations, Indiana Univ. Math. J., 50 (2001), 205–222. https://doi.org/10.1512/iumj.2001.50.2084 doi: 10.1512/iumj.2001.50.2084
![]() |
[17] |
I. Kukavica, On the weighted decay for solutions of the Navier-Stokes system, Nonlinear Anal., 70 (2009), 2466–2470. https://doi.org/10.1016/j.na.2008.03.031 doi: 10.1016/j.na.2008.03.031
![]() |
[18] |
I. Kukavica, J. J. Torres, Weighted bounds for the velocity and the vorticity for the Navier-Stokes equations, Nonlinearity, 19 (2006), 293–303. https://doi.org/10.1088/0951-7715/19/2/003 doi: 10.1088/0951-7715/19/2/003
![]() |
[19] |
I. Kukavica, J. J. Torres, Weighted $L^p$ decay for solutions of the Navier-Stokes equations, Comm. Partial Differ. Equations, 32 (2007), 819–831. https://doi.org/10.1080/03605300600781659 doi: 10.1080/03605300600781659
![]() |
[20] |
N. Ju, Existence and uniqueness of the solution to the dissipative 2D Quasi-Geostrophic equations in the Sobolev space, Commun. Math. Phys., 251 (2004), 365–376. https://doi.org/10.1007/s00220-004-1062-2 doi: 10.1007/s00220-004-1062-2
![]() |
[21] |
S. K. Weng, Space-time decay estimates for the incompressible viscous resistive MHD and Hall-MHD equations, J. Funct. Anal., 70 (2016) 2168–187. https://doi.org/10.1016/j.jfa.2016.01.021 doi: 10.1016/j.jfa.2016.01.021
![]() |
[22] | L. C. Evans, Partial Differential Equations, 2nd edition, Marcel Dekker, 2010. https://www.ams.org/journals/notices/201004/rtx100400501p.pdf |
[23] |
S. Evje, T. Fl$\mathring{a}$tten, On the wave structure of two-phase flow models, SIAM J. Appl. Math., 67 (2006), 487–511. https://doi.org/10.1137/050633482 doi: 10.1137/050633482
![]() |
[24] | H. A. Friis, S. Evje, T. Fl$\mathring{a}$tten, A numerical study of characteristic slow-transient behavior of a compressible 2D gas-liquid two-fluid model, Adv. Appl. Math. Mech., 1 (2009), 166–200. https://doc.global-sci.org/uploads/Issue/AAMM/v1n2 |
[25] |
H. Y. Wen, L. Yao, C. J. Zhu, A blow-up criterion of strong solution to a 3D viscous liquid-gas two-phase flow model with vacuum, J. Math. Pures Appl., 97 (2012), 204–229. https://doi.org/10.1016/j.matpur.2011.09.005 doi: 10.1016/j.matpur.2011.09.005
![]() |
[26] | M. Ishii, Thermo-Fluid Dynamic Theory of Two-Phase Flow, Eyrolles, Paris, 1975. https://doi.org/10.1007/978-1-4419-7985-8 |
[27] |
S. Kawashima, Y. Shibata, J. Xu, The $L^p$ energy methods and decay for the compressible Navier-Stokes equations with capillarity, J. Math. Pures Appl., 154 (2021), 146–184. https://doi.org/10.1016/j.matpur.2021.08.009 doi: 10.1016/j.matpur.2021.08.009
![]() |
[28] |
C. Kenig, G. Ponce, G. L. Vega, Well-posedness of the initial value problem for the Korteweg-de Vries equation, J. Am. Math. Soc., 4 (1991), 323–347. https://doi.org/10.1090/S0894-0347-1991-1086966-0 doi: 10.1090/S0894-0347-1991-1086966-0
![]() |
[29] |
T. Kobayashi, Some estimates of solutions for the equations of motion of compressible viscous fluid in an exterior domain in $ \mathbb{R}^3$, J. Differ. Equations, 184 (2002), 587–619. https://doi.org/10.1006/jdeq.2002.4158 doi: 10.1006/jdeq.2002.4158
![]() |
[30] |
T. Kobayashi, Y. Shibata, Decay estimates of solutions for the equations of motion of compressible viscous and heat-conductive gases in an exterior domain in $\mathbb R^3$, Commun. Math. Phys., 200 (1999), 621–659. https://doi.org/10.1007/s002200050543 doi: 10.1007/s002200050543
![]() |
[31] |
A. Matsumura, T. Nishida, The initial value problem for the equations of motion of compressible viscous and heat conductive fluids, Proc. Japan Acad. Ser. A, 55 (1979), 337–342. https://doi.org/10.3792/pjaa.55.337 doi: 10.3792/pjaa.55.337
![]() |
[32] |
A. Matsumura, T. Nishida, The initial value problem for the equations of motion of viscous and heat-conductive gases, J. Math. Kyoto Univ., 20 (1980), 67–104. https://doi.org/10.1215/kjm/1250522322 doi: 10.1215/kjm/1250522322
![]() |
[33] |
L. Nirenberg, On elliptic partial differential equations, Ann. Scuola Norm. Sup. Pisa, 13 (1959), 115–162. https://doi.org/10.1007/978-3-642-10926-3_1 doi: 10.1007/978-3-642-10926-3_1
![]() |
[34] | A. Prosperetti, G. Tryggvason, Computational Methods for Multiphase Flow, Cambridge University Press, 2007. https://doi.org/10.1017/CBO9780511607486 |