Research article

On forbidden subgraphs of main supergraphs of groups

  • Received: 17 April 2024 Revised: 18 July 2024 Accepted: 22 July 2024 Published: 12 August 2024
  • In this study, we explore the main supergraph $ \mathcal{S}(G) $ of a finite group $ G $, defined as an undirected, simple graph with a vertex set $ G $ in which two distinct vertices, $ a $ and $ b $, are adjacent in $ \mathcal{S}(G) $ if the order of one is a divisor of the order of the other. This is denoted as either $ o(a)\mid o(b) $ or $ o(b)\mid o(a) $, where $ o(\cdot) $ is the order of an element. We classify finite groups for which the main supergraph is either a split graph or a threshold graph. Additionally, we characterize finite groups whose main supergraph is a cograph. Our classification extends to finite groups $ G $ with $ \mathcal{S}(G) $, a cograph that includes when $ G $ is a direct product of two non-trivial groups, as well as when $ G $ is either a dihedral group, a generalized quaternion group, a symmetric group, an alternating group, or a sporadic simple group.

    Citation: Xiaoyan Xu, Xiaohua Xu, Jin Chen, Shixun Lin. On forbidden subgraphs of main supergraphs of groups[J]. Electronic Research Archive, 2024, 32(8): 4845-4857. doi: 10.3934/era.2024222

    Related Papers:

  • In this study, we explore the main supergraph $ \mathcal{S}(G) $ of a finite group $ G $, defined as an undirected, simple graph with a vertex set $ G $ in which two distinct vertices, $ a $ and $ b $, are adjacent in $ \mathcal{S}(G) $ if the order of one is a divisor of the order of the other. This is denoted as either $ o(a)\mid o(b) $ or $ o(b)\mid o(a) $, where $ o(\cdot) $ is the order of an element. We classify finite groups for which the main supergraph is either a split graph or a threshold graph. Additionally, we characterize finite groups whose main supergraph is a cograph. Our classification extends to finite groups $ G $ with $ \mathcal{S}(G) $, a cograph that includes when $ G $ is a direct product of two non-trivial groups, as well as when $ G $ is either a dihedral group, a generalized quaternion group, a symmetric group, an alternating group, or a sporadic simple group.



    加载中


    [1] A. Kelarev, Ring Constructions and Applications, World Scientific Publishing, Singapore, 2002. https://doi.org/10.1142/4807
    [2] A. Kelarev, J. Ryan, J. Yearwood, Cayley graphs as classifiers for data mining: The influence of asymmetries, Discrete Math., 309 (2009), 5360–5369. https://doi.org/10.1016/j.disc.2008.11.030 doi: 10.1016/j.disc.2008.11.030
    [3] A. Kelarev, S. Quinn, A combinatorial property and power graphs of groups, Contrib. Gen. Algebra, 12 (2000), 229–235.
    [4] I. Chakrabarty, S. Ghosh, M. Sen, Undirected power graphs of semigroups, Semigroup Forum, 78 (2009), 410–426. https://doi.org/10.1007/s00233-008-9132-y doi: 10.1007/s00233-008-9132-y
    [5] G. Pourgholi, H. Yousefi-Azari, A. Ashrafi, The undirected power graph of a finite group, Bull. Malays. Math. Sci. Soc., 38 (2015), 1517–1525. https://doi.org/10.1007/s40840-015-0114-4 doi: 10.1007/s40840-015-0114-4
    [6] J. Abawajy, A. Kelarev, M. Chowdhury, Power graphs: A survey, Electron. J. Graph Theory Appl., 1 (2013), 125–147. http://doi.org/10.5614/ejgta.2013.1.2.6
    [7] A. Kumar, L. Selvaganesh, P. Cameron, T. Chelvam, Recent developments on the power graph of finite groups - a survey, AKCE Int. J. Graphs Comb., 18 (2021), 65–94. https://doi.org/10.1080/09728600.2021.1953359 doi: 10.1080/09728600.2021.1953359
    [8] G. Cutolo, On a construction by Giudici and Parker on commuting graphs of groups, J. Comb. Theory Ser. A, 192 (2022), 105666. https://doi.org/10.1016/j.jcta.2022.105666 doi: 10.1016/j.jcta.2022.105666
    [9] A. Abdollahi, S. Akbari, H. Maimani, Non-commuting graph of a group, J. Algebra, 298 (2006), 468–492. https://doi.org/10.1016/j.jalgebra.2006.02.015 doi: 10.1016/j.jalgebra.2006.02.015
    [10] J. Dutta, R. Nath, Spectrum of commuting graphs of some classes of finite groups, Matematika, 33 (2017), 87–95. https://doi.org/10.11113/matematika.v33.n1.812 doi: 10.11113/matematika.v33.n1.812
    [11] P. Dutta, J. Dutta, R. Nath, On Laplacian spectrum of non-commuting graphs of finite groups, Indian J. Pure Appl. Math., 49 (2018), 205–216. https://doi.org/10.1007/s13226-018-0263-x doi: 10.1007/s13226-018-0263-x
    [12] A. Hamzeh, A. Ashrafi, Automorphism groups of supergraphs of the power graph of a finite group, Eur. J. Comb., 60 (2017), 82–88. https://doi.org/10.1016/j.ejc.2016.09.005 doi: 10.1016/j.ejc.2016.09.005
    [13] A. Hamzeh, A. Ashrafi, The order supergraph of the power graph of a finite group, Turk. J. Math., 42 (2018), 1978–1989. https://doi.org/10.3906/mat-1711-78 doi: 10.3906/mat-1711-78
    [14] X. Ma, H. Su, On the order supergraph of the power graph of a finite group, Ric. Mat., 71 (2022), 381–390. https://doi.org/10.1007/s11587-020-00520-w doi: 10.1007/s11587-020-00520-w
    [15] A. Hamzeh, A. Ashrafi, Some remarks on the order supergraph of the power graph of a finite group, Int. Electron. J. Algebra, 26 (2019), 1–12. https://doi.org/10.24330/ieja.586838 doi: 10.24330/ieja.586838
    [16] A. Hamzeh, A. Ashrafi, Spectrum and $L$-spectrum of the power graph and its main supergraph for certain finite groups, Filomat, 31 (2017), 5323–5334. https://doi.org/10.2298/FIL1716323H doi: 10.2298/FIL1716323H
    [17] A. Asboei, S. Salehi, Some results on the main supergraph of finite groups, Algebra Discrete Math., 30 (2020), 172–178. http://doi.org/10.12958/adm584 doi: 10.12958/adm584
    [18] A. Asboei, S. Salehi, The main supergraph of finite groups, N. Y. J. Math., 28 (2022), 1057–1063. Available from: https://nyjm.albany.edu/j/2022/28-43.html.
    [19] S. Foldes, P. Hammer, Split graphs having Dilworth number two, Canad. J. Math., 29 (1977), 666–672. https://doi.org/10.4153/CJM-1977-069-1 doi: 10.4153/CJM-1977-069-1
    [20] P. Henderson, Y. Zalcstein, A graph-theoretic characterization of the PVchunk class of synchronizing primitives, SIAM J. Comput., 6 (1977), 88–108. https://doi.org/10.1137/0206008 doi: 10.1137/0206008
    [21] P. Cameron, Graphs defined on groups, Int. J. Group Theory, 11 (2022), 53–107. https://doi.org/10.22108/IJGT.2021.127679.1681 doi: 10.22108/IJGT.2021.127679.1681
    [22] G. Arunkumar, P. Cameron, R. Nath, L. Selvaganesh, Super graphs on groups, Ⅰ, Graphs Comb., 38 (2022), 100. https://doi.org/10.1007/s00373-022-02496-w doi: 10.1007/s00373-022-02496-w
    [23] P. Manna, P. Cameron, R. Mehatari, Forbidden subgraphs of power graphs, Electron. J. Comb., 28 (2021), P3.4. https://doi.org/10.37236/9961 doi: 10.37236/9961
    [24] A. Delgado, Y. Wu, On locally finite groups in which every element has prime power order, Illinois J. Math., 46 (2002), 885–891. https://doi.org/10.1215/ijm/1258130990 doi: 10.1215/ijm/1258130990
    [25] D. Johnson, Topics in the Theory of Group Presentations, Cambridge University Press, Cambridge, 1980. https://doi.org/10.1017/CBO9780511629303
    [26] P. Cameron, P. Manna, R. Mehatari, On finite groups whose power graph is a cograph, J. Algebra, 591 (2022), 59–74. https://doi.org/10.1016/j.jalgebra.2021.09.034 doi: 10.1016/j.jalgebra.2021.09.034
    [27] J. Conway, R. Curtis, S. Norton, R. Parker, R. Wilson, $\mathbb{ATLAS}$ of Finite Groups, Oxford University Press, Oxford, 1985.
    [28] H. Besche, B. Eick, E. O'Brien, A millennium project: Constructing small groups, Int. J. Algebra Comput., 12 (2002), 623–644. https://doi.org/10.1142/S0218196702001115 doi: 10.1142/S0218196702001115
    [29] GAP, GAP - Groups, Algorithms, Programming - a System for Computational Discrete Algebra, 2024. Available from: http://gap-system.org.
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(551) PDF downloads(35) Cited by(0)

Article outline

Figures and Tables

Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog