Liner companies have responded to escalating trade conflicts and the impact of the COVID-19 pandemic by forming alliances and implementing streamlined approaches to manage empty containers, which has strengthened the resilience of their supply chains. Meanwhile, shippers have grown more sensitive during these turbulent times. Motivated by the market situation, we investigate a liner alliance shipping network design problem considering the choice inertia of shippers and empty container relocation. To address this problem, we propose a bilevel programming model. The upper model aims to maximize the alliance's profit by optimizing the alliance's shipping network and fleet design scheme. The lower model focuses on optimizing the slot allocation scheme and the empty container relocation scheme. To ensure the sustainable operation of the alliance, we develop an inverse optimization model to allocate profits among alliance members. Furthermore, we design a differential evolution metaheuristic algorithm to solve the model. To validate the effectiveness of the proposed model and algorithm, numerical experiments are conducted using actual shipping data from the Asia-Western Europe shipping route. The results confirm the validity of the proposed model and algorithm, which can serve as a crucial decision-making reference for the daily operations of a liner shipping alliance.
Citation: Xu Xin, Xiaoli Wang, Tao Zhang, Haichao Chen, Qian Guo, Shaorui Zhou. Liner alliance shipping network design model with shippers' choice inertia and empty container relocation[J]. Electronic Research Archive, 2023, 31(9): 5509-5540. doi: 10.3934/era.2023280
Liner companies have responded to escalating trade conflicts and the impact of the COVID-19 pandemic by forming alliances and implementing streamlined approaches to manage empty containers, which has strengthened the resilience of their supply chains. Meanwhile, shippers have grown more sensitive during these turbulent times. Motivated by the market situation, we investigate a liner alliance shipping network design problem considering the choice inertia of shippers and empty container relocation. To address this problem, we propose a bilevel programming model. The upper model aims to maximize the alliance's profit by optimizing the alliance's shipping network and fleet design scheme. The lower model focuses on optimizing the slot allocation scheme and the empty container relocation scheme. To ensure the sustainable operation of the alliance, we develop an inverse optimization model to allocate profits among alliance members. Furthermore, we design a differential evolution metaheuristic algorithm to solve the model. To validate the effectiveness of the proposed model and algorithm, numerical experiments are conducted using actual shipping data from the Asia-Western Europe shipping route. The results confirm the validity of the proposed model and algorithm, which can serve as a crucial decision-making reference for the daily operations of a liner shipping alliance.
[1] | J. Zheng, X. Hou, J. Qi, L. Yang, Liner ship scheduling with time-dependent port charges, Marit. Policy Manage., 49 (2022), 18–38. https://doi.org/10.1080/03088839.2020.1849840 doi: 10.1080/03088839.2020.1849840 |
[2] | D. Li, X. Xin, S. Zhou, Integrated governance of the Yangtze River Delta port cluster using niche theory: A case study of Shanghai Port and Ningbo-Zhoushan Port, Ocean Coastal Manage., 234 (2023), 106474. https://doi.org/10.1016/j.ocecoaman.2022.106474 doi: 10.1016/j.ocecoaman.2022.106474 |
[3] | C. Wan, X. Yan, D. Zhang, Z. Qu, Z. Yang, An advanced fuzzy Bayesian-based FMEA approach for assessing maritime supply chain risks, Transp. Res. Part E Logist. Transp. Rev., 125 (2019), 222–240. https://doi.org/10.1016/j.tre.2019.03.011 doi: 10.1016/j.tre.2019.03.011 |
[4] | M. Christiansen, E. Hellsten, D. Pisinger, D. Sacramento, C. Vilhelmsen, Liner shipping network design, Eur. J. Oper. Res., 286 (2020), 1–20. https://doi.org/10.1016/j.ejor.2019.09.057 doi: 10.1016/j.ejor.2019.09.057 |
[5] | M. A. Dulebenets, Multi-objective collaborative agreements amongst shipping lines and marine terminal operators for sustainable and environmental-friendly ship schedule design, J. Cleaner Prod., 342 (2022), 130897. https://doi.org/10.1016/j.jclepro.2022.130897 doi: 10.1016/j.jclepro.2022.130897 |
[6] | Y. Liu, X. Xin, Z. Yang, K. Chen, C. Li, Liner shipping network-transaction mechanism joint design model considering carbon tax and liner alliance, Ocean Coastal Manage., 212 (2021), 105817. https://doi.org/10.1016/j.ocecoaman.2021.105817 doi: 10.1016/j.ocecoaman.2021.105817 |
[7] | S. Wang, Q. Meng, Container liner fleet deployment: a systematic overview, Transp. Res. Part C Emerging Technol., 77 (2017), 389–404. https://doi.org/10.1016/j.trc.2017.02.010 doi: 10.1016/j.trc.2017.02.010 |
[8] | J. Shi, Y. Jiao, J. Chen, S. Zhou, Construction of resilience mechanisms in response to container shipping market volatility during the pandemic period: From the perspective of market supervision, Ocean Coastal Manage., 240 (2023), 106642. https://doi.org/10.1016/j.ocecoaman.2023.106642 doi: 10.1016/j.ocecoaman.2023.106642 |
[9] | Q. Chen, Y. E. Ge, Y. Y. Lau, M. A. Dulebenets, X. Sun, T. Kawasaki, et al., Effects of COVID-19 on passenger shipping activities and emissions: empirical analysis of passenger ships in Danish waters, Marit. Policy Manage., 50 (2023), 776–796. https://doi.org/10.1080/03088839.2021.2021595 doi: 10.1080/03088839.2021.2021595 |
[10] | K. Yi, Y. Li, J. Chen, M. Yu, X. Li, Appeal of word of mouth: Influences of public opinions and sentiment on ports in corporate choice of import and export trade in the post-COVID-19 era, Ocean Coastal Manage., 225 (2022), 106239. https://doi.org/10.1016/j.ocecoaman.2022.106239 doi: 10.1016/j.ocecoaman.2022.106239 |
[11] | Z. Elmi, P. Singh, V. K. Meriga, K. Goniewicz, M. Borowska-Stefańska, S. Wiśniewski, et al., Uncertainties in liner shipping and ship schedule recovery: A state-of-the-art review, J. Mar. Sci. Eng., 10 (2022), 563. https://doi.org/10.3390/jmse10050563 doi: 10.3390/jmse10050563 |
[12] | J. Chen, C. Zhuang, C. Yang, Z. Wan, X. Zeng, J. Yao, Fleet co-deployment for liner shipping alliance: Vessel pool operation with uncertain demand, Ocean Coastal Manage., 214 (2021), 105923. https://doi.org/10.1016/j.ocecoaman.2021.105923 doi: 10.1016/j.ocecoaman.2021.105923 |
[13] | L. Xu, S. Yang, J. Chen, J. Shi, The effect of COVID-19 pandemic on port performance: Evidence from China, Ocean Coastal Manage., 209 (2021), 105660. https://doi.org/10.1016/j.ocecoaman.2021.105660 doi: 10.1016/j.ocecoaman.2021.105660 |
[14] | J. Chen, C. Zhuang, H. Xu, L. Xu, S. Ye, N. Rangel-Buitrago, Collaborative management evaluation of container shipping alliance in maritime logistics industry: CKYHE case analysis, Ocean Coastal Manage., 225 (2022), 106176. https://doi.org/10.1016/j.ocecoaman.2022.106176 doi: 10.1016/j.ocecoaman.2022.106176 |
[15] | R. Agarwal, Ö. Ergun, Network design and allocation mechanisms for carrier alliances in liner shipping, Oper. Res., 58 (2010), 1726–1742. https://doi.org/10.1287/opre.1100.0848 doi: 10.1287/opre.1100.0848 |
[16] | X. Xin, M. Liu, X. Wang, H. Chen, K. Chen, Investment strategy for blockchain technology in a shipping supply chain, Ocean Coastal Manage., 226 (2022), 106263. https://doi.org/10.1016/j.ocecoaman.2022.106263 doi: 10.1016/j.ocecoaman.2022.106263 |
[17] | T. Yi, W. Meiping, Z. Shaorui, Pricing and contract preference in maritime supply chains with downstream competition impact of risk-aversion and contract unobservability, Ocean Coastal Manage., 242 (2023), 106691. https://doi.org/10.1016/j.ocecoaman.2023.106691 doi: 10.1016/j.ocecoaman.2023.106691 |
[18] | W. Huang, J. Hu, S. Zhou, Demand prediction and sharing strategy in resilient maritime transportation: Considering price and quality competition, Ocean Coastal Manage., 242 (2023), 106676. https://doi.org/10.1016/j.ocecoaman.2023.106676 doi: 10.1016/j.ocecoaman.2023.106676 |
[19] | J. Chen, J. Ye, C. Zhuang, Q. Qin, Y. Shu, Liner shipping alliance management: Overview and future research directions, Ocean Coastal Manage., 219 (2022), 106039. https://doi.org/10.1016/j.ocecoaman.2022.106039 doi: 10.1016/j.ocecoaman.2022.106039 |
[20] | J. Chen, J. Xu, S. Zhou, A. Liu, Slot co-chartering and capacity deployment optimization of liner alliances in containerized maritime logistics industry, Adv. Eng. Inf., 56 (2023), 101986. https://doi.org/10.1016/j.aei.2023.101986 doi: 10.1016/j.aei.2023.101986 |
[21] | X. Xin, X. Wang, L. Ma, K. Chen, M. Ye, Shipping network design-infrastructure investment joint optimization model: a case study of West Africa, Marit. Policy Manage., 49 (2022), 620–646. https://doi.org/10.1080/03088839.2021.1930225 doi: 10.1080/03088839.2021.1930225 |
[22] | J. Zhang, H. Yang, Modeling route choice inertia in network equilibrium with heterogeneous prevailing choice sets, Transp. Res. Part C Emerging Technol., 57 (2015), 42–54. https://doi.org/10.1016/j.trc.2015.06.005 doi: 10.1016/j.trc.2015.06.005 |
[23] | J. O. Huff, A. S. Huff, H. Thomas, Strategic renewal and the interaction of cumulative stress and inertia, Strategic Manage. J., 13 (1992), 55–75. https://doi.org/10.1002/smj.4250131006 doi: 10.1002/smj.4250131006 |
[24] | K. Chen, D. Chen, X. Sun, Z. Yang, Container ocean-transportation system design with the factors of demand fluctuation and choice inertia of shippers, Transp. Res. Part E Logist. Transp. Rev., 95 (2016), 267–281. https://doi.org/10.1016/j.tre.2016.09.015 doi: 10.1016/j.tre.2016.09.015 |
[25] | X. Xin, T. Zhang, C. Li, Y. Liu, L. Gao, Y. Du, A battery electric vehicle transportation network design model with bounded rational travelers, J. Adv. Transp., 2023 (2023), 6506169. https://doi.org/10.1155/2023/6506169 doi: 10.1155/2023/6506169 |
[26] | K. Chen, S. Su, Y. Gong, X. Xin, Q. Zeng, Coastal transportation system green policy design model based on shipping network design, Int. J. Logist. Res. Appl., (2021), 1–22. https://doi.org/10.1080/13675567.2021.1940112 doi: 10.1080/13675567.2021.1940112 |
[27] | S. Gao, X. Xin, C. Li, Y. Liu, K. Chen, Container ocean shipping network design considering carbon tax and choice inertia of cargo owners, Ocean Coastal Manage., 216 (2022), 105986. https://doi.org/10.1080/13675567.2021.1940112 doi: 10.1016/j.ocecoaman.2021.105986 |
[28] | K. Cullinane, H. Haralambides, Global trends in maritime and port economics: the COVID-19 pandemic and beyond, Marit. Econ. Logist., 23 (2021), 369–380. https://doi.org/10.1057/s41278-021-00196-5 doi: 10.1057/s41278-021-00196-5 |
[29] | L. Vukić, K. H. Lai, Acute port congestion and emissions exceedances as an impact of COVID-19 outcome: the case of San Pedro Bay ports, J. Ship. Trade, 7 (2022), 1–26. https://doi.org/10.1186/s41072-022-00126-5 doi: 10.1186/s41072-021-00103-4 |
[30] | S. Yang, J. Zhang, S. Zhou, The cost transportation game for collaboration among transportation companies, Ann. Oper. Res., 2023. https://doi.org/10.1007/s10479-023-05466-4 doi: 10.1007/s10479-023-05466-4 |
[31] | M. Christiansen, K. Fagerholt, B. Nygreen, D. Ronen, Ship routing and scheduling in the new millennium, Eur. J. Oper. Res., 228 (2013), 467–483. https://doi.org/10.1016/j.ejor.2012.12.002 doi: 10.1016/j.ejor.2012.12.002 |
[32] | S. C. Cho, A. N. Perakis, An improved formulation for bulk cargo ship scheduling with a single loading port, Marit. Policy Manage., 28 (2001), 339–345. https://doi.org/10.1080/03088830010002755 doi: 10.1080/03088830010002755 |
[33] | H. Bendall, A. Stent, A scheduling model for a high speed containership service: A hub and spoke short-sea application, Int. J. Marit. Econ., 3 (2001), 262–277. https://doi.org/10.1057/palgrave.ijme.9100018 doi: 10.1057/palgrave.ijme.9100018 |
[34] | A. Imai, K. Shintani, S. Papadimitriou, Multi-port vs. Hub-and-Spoke port calls by containerships, Transp. Res. Part E Logist. Transp. Rev., 45 (2009), 740–757. https://doi.org/10.1016/j.tre.2009.01.002 doi: 10.1016/j.tre.2009.01.002 |
[35] | D. Ronen, The effect of oil price on containership speed and fleet size, J. Oper. Res. Soc., 62 (2011), 211–216. https://doi.org/10.1057/jors.2009.169 doi: 10.1057/jors.2009.169 |
[36] | S. Wang, Q. Meng, Sailing speed optimization for container ships in a liner shipping network, Transp. Res. Part E Logist. Transp. Rev., 48 (2012), 701–714. https://doi.org/10.1016/j.tre.2011.12.003 doi: 10.1016/j.tre.2011.12.003 |
[37] | H. A. Lu, C. W. Chu, P. Y. Che, Seasonal slot allocation planning for a container liner shipping service, J. Mar. Sci. Technol., 18 (2010), 10. https://doi.org/10.51400/2709-6998.1868 doi: 10.51400/2709-6998.1868 |
[38] | S. Wang, Q. Meng, Liner shipping network design with deadlines, Comput. Oper. Res., 41 (2014), 140–149. https://doi.org/10.1016/j.cor.2013.08.014 doi: 10.1016/j.cor.2013.08.014 |
[39] | B. D. Brouer, G. Desaulniers, C. V. Karsten, D. Pisinger, A matheuristic for the liner shipping network design problem with transit time restrictions, in Computational Logistics: 6th International Conference, (2015), 195–208. https://doi.org/10.1007/978-3-319-24264-4_14 |
[40] | C. V. Karsten, B. D. Brouer, G. Desaulniers, D. Pisinger, Time constrained liner shipping network design, Transp. Res. Part E Logist. Transp. Rev., 105 (2017), 152–162. https://doi.org/10.1016/j.tre.2016.03.010 doi: 10.1016/j.tre.2016.03.010 |
[41] | J. Pasha, M. A. Dulebenets, A. M. Fathollahi-Fard, G. Tian, Y. Y. Lau, P. Singh, et al., An integrated optimization method for tactical-level planning in liner shipping with heterogeneous ship fleet and environmental considerations, Adv. Eng. Inf., 48 (2021), 101299. https://doi.org/10.1016/j.aei.2021.101299 doi: 10.1016/j.aei.2021.101299 |
[42] | L. Duan, L. A. Tavasszy, J. Rezaei, Freight service network design with heterogeneous preferences for transport time and reliability, Transp. Res. Part E Logist. Transp. Rev., 124 (2019), 1–12. https://doi.org/10.1016/j.tre.2019.02.008 doi: 10.1016/j.tre.2019.02.008 |
[43] | Q. Cheng, C. Wang, Container liner shipping network design with shipper's dual preference, Comput. Oper. Res., 128 (2021), 105187. https://doi.org/10.1016/j.cor.2020.105187 doi: 10.1016/j.cor.2020.105187 |
[44] | M. A. Dulebenets, Minimizing the total liner shipping route service costs via application of an efficient collaborative agreement, IEEE Trans. Intell. Transp. Syst., 20 (2018), 123–136. https://doi.org/10.1109/TITS.2018.2801823 doi: 10.1109/TITS.2018.2801823 |
[45] | Z. Song, W. Tang, R. Zhao, Liner alliances with heterogeneous price level and service competition: Partial vs. full, Omega, 103 (2021), 102414. https://doi.org/10.1016/j.omega.2021.102414 doi: 10.1016/j.omega.2021.102414 |
[46] | P. Cariou, P. Guillotreau, Capacity management by global shipping alliances: findings from a game experiment, Marit. Econ. Logist., 24 (2022), 41–66. https://doi.org/10.1057/s41278-021-00184-9 doi: 10.1057/s41278-021-00184-9 |
[47] | Y. Wang, Q. Meng, P. Jia, Optimal port call adjustment for liner container shipping routes, Transp. Res. Part B Methodol., 128 (2019), 107–128. https://doi.org/10.1016/j.trb.2019.07.015 doi: 10.1016/j.trb.2019.07.015 |
[48] | Y. Wang, Q. Meng, Optimizing freight rate of spot market containers with uncertainties in shipping demand and available ship capacity, Transp. Res. Part B Methodol., 146 (2021), 314–332. https://doi.org/10.1016/j.trb.2021.02.008 doi: 10.1016/j.trb.2021.02.008 |
[49] | S. Han, Y. Jiang, L. Zhao, S. C. Leung, Z. Luo, Weight reduction technology and supply chain network design under carbon emission restriction, Ann. Oper. Res., 290 (2020), 567–590. https://doi.org/10.1007/s10479-017-2696-8 doi: 10.1007/s10479-017-2696-8 |
[50] | A. P. Jeuland, Brand choice inertia as one aspect of the notion of brand loyalty, Manage. Sci., 25 (1979), 671–682. https://doi.org/10.1287/mnsc.25.7.671 doi: 10.1287/mnsc.25.7.671 |
[51] | L. Zhao, P. Tian, X. Li, Dynamic pricing in the presence of consumer inertia, Omega, 40 (2012), 137–148. https://doi.org/10.1016/j.omega.2011.04.004 doi: 10.1016/j.omega.2011.04.004 |
[52] | B. Verplanken, H. Aarts, A. Van Knippenberg, Habit, information acquisition, and the process of making travel mode choices, Eur. J. Social Psychol., 27 (1997), 539–560. https://doi.org/10.1002/(SICI)1099-0992(199709/10)27:5<539::AID-EJSP831>3.0.CO;2-A doi: 10.1002/(SICI)1099-0992(199709/10)27:5<539::AID-EJSP831>3.0.CO;2-A |
[53] | T. Gärling, K. W. Axhausen, Introduction: Habitual travel choice, Transportation, 30 (2003), 1–11. https://doi.org/10.1023/A:1021230223001 doi: 10.1023/A:1021230223001 |
[54] | C. Xie, Z. Liu, On the stochastic network equilibrium with heterogeneous choice inertia, Transp. Res. Part B Methodol., 66 (2014), 90–109. https://doi.org/10.1016/j.trb.2014.01.005 doi: 10.1016/j.trb.2014.01.005 |
[55] | W. Liu, X. Li, F. Zhang, H. Yang, Interactive travel choices and traffic forecast in a doubly dynamical system with user inertia and information provision, Transp. Res. Part C Emerging Technol., 85 (2017), 711–731. https://doi.org/10.1016/j.trc.2017.10.021 doi: 10.1016/j.trc.2017.10.021 |
[56] | N. A. Michail, K. D. Melas, Shipping markets in turmoil: an analysis of the Covid-19 outbreak and its implications, Transp. Res. Interdiscip. Perspect., 7 (2020), 100178. https://doi.org/10.1016/j.trip.2020.100178 doi: 10.1016/j.trip.2020.100178 |
[57] | Z. Wang, M. Yao, C. Meng, C. Claramunt, Risk assessment of the overseas imported COVID-19 of ocean-going ships based on AIS and infection data, ISPRS Int. J. Geo-Inf., 9 (2020), 351. https://doi.org/10.3390/ijgi9060351 doi: 10.3390/ijgi9060351 |
[58] | D. Loske, The impact of COVID-19 on transport volume and freight capacity dynamics: An empirical analysis in German food retail logistics, Transp. Res. Interdiscip. Perspect., 6 (2020), 100165. https://doi.org/10.1016/j.trip.2020.100165 doi: 10.1016/j.trip.2020.100165 |
[59] | J. F. Ding, G. S. Liang, Using fuzzy MCDM to select partners of strategic alliances for liner shipping, Inf. Sci., 173 (2005), 197–225. https://doi.org/10.1016/j.ins.2004.07.013 doi: 10.1016/j.ins.2004.07.013 |
[60] | H. Zhang, L. Lu, X. Wang, Profits comparison between alliance mode and non-alliance mode of empty containers repositioning of liner companies, Syst. Sci. Control Eng., 7 (2019), 125–132. https://doi.org/10.1080/21642583.2019.1585302 doi: 10.1080/21642583.2019.1585302 |
[61] | C. Chen, Q. Zeng, Designing container shipping network under changing demand and freight rates, Transport, 25 (2010), 46–57. https://doi.org/10.3846/transport.2010.07 doi: 10.3846/transport.2010.07 |
[62] | J. Xia, K. X. Li, H. Ma, Z. Xu, Joint planning of fleet deployment, speed optimization, and cargo allocation for liner shipping, Transp. Sci., 49 (2015), 922–938. https://doi.org/10.1287/trsc.2015.0625 doi: 10.1287/trsc.2015.0625 |
[63] | A. Imai, J. T. Zhang, E. Nishimura, S. Papadimitriou, The berth allocation problem with service time and delay time objectives, Marit. Econ. Logist., 9 (2007), 269–290. https://doi.org/10.1057/palgrave.mel.9100186 doi: 10.1057/palgrave.mel.9100186 |
[64] | K. Chen, Z. Yang, T. Notteboom, The design of coastal shipping services subject to carbon emission reduction targets and state subsidy levels, Transp. Res. Part E Logist. Transp. Rev., 61 (2014), 192–211. https://doi.org/10.1016/j.tre.2013.11.004 doi: 10.1016/j.tre.2013.11.004 |
[65] | P. Cariou, A. Cheaitou, R. Larbi, S. Hamdan, Liner shipping network design with emission control areas: A genetic algorithm-based approach, Transp. Res. Part D Transp. Environ., 63 (2018), 604–621. https://doi.org/10.1016/j.trd.2018.06.020 doi: 10.1016/j.trd.2018.06.020 |