In the present study, the necessary and sufficient conditions of equilibrium control for general optimal control problems with time inconsistency are established in sense of open-loop. As an application, the linear quadratic optimal control problems with time inconsistency were also explored and an explicit equilibrium control is constructed.
Citation: Wei Ji. Optimal control problems with time inconsistency[J]. Electronic Research Archive, 2023, 31(1): 492-508. doi: 10.3934/era.2023024
In the present study, the necessary and sufficient conditions of equilibrium control for general optimal control problems with time inconsistency are established in sense of open-loop. As an application, the linear quadratic optimal control problems with time inconsistency were also explored and an explicit equilibrium control is constructed.
[1] | R. Bellman, Dynamic Programming, Princeton University Press, New Jersey, 1957. |
[2] | L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, E. F. Mischenko, The Mathematical Theory of Optimal Processes, Wiley-Interscience, New York, 1962. |
[3] | D. Hume, A Treatise of Human Nature, Oxford University Press, New York, 1978. |
[4] | A. Smith, The Theory of Moral Sentiments, Oxford University Press, New York, 1976. |
[5] | V. Pareto, Manuel D$\acute{e}$conomie Politique, Girard and Brieve, Paris, 1909. |
[6] | P. Samuelson, A note on measurement of utility, Rev. Econ. Stud., 4 (1937), 155–161. https://doi.org/10.2307/2967612 doi: 10.2307/2967612 |
[7] | R. H. Strotz, Myopia and inconsistency in dynamic utility maximization, Rev. Econ. Stud., 23 (1955), 165–180. https://doi.org/10.2307/2295722 doi: 10.2307/2295722 |
[8] | H. Thaler, Asymmetric games and the endowment effect, Behav. Brain Sci., 7 (1984), 117. https://doi.org/10.1017/S0140525X00026492 doi: 10.1017/S0140525X00026492 |
[9] | F. Kydland, E. Prescott, Rules rather than discretion: The inconsistency of optimal plans, J. Polit. Econ., 85 (1977), 473–491. https://doi.org/10.1086/260580 doi: 10.1086/260580 |
[10] | D. Kahneman, A. Tversky, Prospect theory: An analysis of decision under risk, Econometrica, 47 (1979), 263–291. https://doi.org/10.2307/1914185 doi: 10.2307/1914185 |
[11] | I. Ekeland, A. Lazrak, Being serious about non-commitment: Subgame perfect equilibrium in continuous time, preprint, arXiv: math/0604264. |
[12] | T. Bj$\ddot{o}$rk, A. Murgoci, A General Theory of Markovian Time Inconsistent Stochastic Control Problems, 2010. Available from: https://ssrn.com/abstract=1694759. |
[13] | T. Bj$\ddot o$rk, M. Khapko, A. Murgoci, On time inconsistent stochastic control in continuous time, Financ. Stoch., 21 (2017), 331–360. https://doi.org/10.1007/s00780-017-0327-5 doi: 10.1007/s00780-017-0327-5 |
[14] | T. Bj$\ddot o$rk, A. Murgoci, A general theory of Markovian time inconsistent stochastic control in discrete time, Financ. Stoch., 18 (2014), 545–592. https://doi.org/10.1007/s00780-014-0234-y doi: 10.1007/s00780-014-0234-y |
[15] | T. Bj$\ddot{o}$rk, M. Khapko, A. Murgoci, Time inconsistent stochastic control in continuous time: Theory and examples, preprint, arXiv: 1612.03650. |
[16] | J. Yong, Linear-quadratic optimal control problems for mean-field stochastic differential equations-time consistent solutions, Trans. Am. Math. Soc., 369 (2017), 5467–5523. https://doi.org/10.1090/tran/6502 doi: 10.1090/tran/6502 |
[17] | J. Yong, Time-inconsistent optimal control problem and the equilibrium HJB equation, Math. Control Relat. Fields, 2 (2012), 271–329. https://doi.org/10.3934/mcrf.2012.2.271 doi: 10.3934/mcrf.2012.2.271 |
[18] | J. Yong, A deterministic linear quadratic time-inconsistent optimal control problem, Math. Control Relat. Fields, 1 (2011), 83–118. https://doi.org/10.3934/mcrf.2011.1.83 doi: 10.3934/mcrf.2011.1.83 |
[19] | J. Yong, Deterministic time-inconsistent optimal control problem-an essentially cooperative approach, Acta Math. Appl. Sin. Engl. Ser., 28 (2012), 1–30. https://doi.org/10.1007/s10255-012-0120-3 doi: 10.1007/s10255-012-0120-3 |
[20] | Y. Hamaguchi, Small-time solvability of a flow of forward-backward stochastic differential equations, Appl. Math. Optim., 84 (2021), 567–588. https://doi.org/10.1007/s00245-020-09654-7 doi: 10.1007/s00245-020-09654-7 |
[21] | G. Zhang, Q. Zhu, Event-triggered optimized control for nonlinear delayed stochastic systems, IEEE Trans. Circuits Syst. I Regul. Pap., 68 (2021), 3808–3821. https://doi.org/10.1007/s00245-020-09654-7 doi: 10.1007/s00245-020-09654-7 |
[22] | Q. Wei, J. Yong, Z. Yu, Time-inconsistent recursive stochastic optimal control problems, SIAM J. Control Optim., 55 (2019), 4156–4201. https://doi.org/10.1137/16M1079415 doi: 10.1137/16M1079415 |
[23] | T. Wang, Z. Jin, J. Wei, Mean-variance portfolio selection under a non-Markovian regime-switching model: Time-consistent solutions, SIAM J. Control Optim., 57 (2019), 3240–3271. https://doi.org/10.1137/18M1186423 doi: 10.1137/18M1186423 |
[24] | F. Dou, Q. Lv, Time-inconsistent linear quadratic optimal control problems for stochastic evolution equations, SIAM J. Control Optim., 58 (2020), 485–509. https://doi.org/10.1137/19M1250339 doi: 10.1137/19M1250339 |
[25] | Y. Hu, H. Jin, X. Y. Zhou, Time inconsistent stochastic linear quadratic control, SIAM J. Control Optim., 50 (2012), 1548–1572. https://doi.org/10.1137/110853960 doi: 10.1137/110853960 |
[26] | Y. Hu, H. Jin, X. Y. Zhou, Time-inconsistent stochastic linear-quadratic control: characterization and uniqueness of equilibrium, SIAM J. Control Optim., 55 (2017), 1261–1279. https://doi.org/10.1137/15M1019040 doi: 10.1137/15M1019040 |
[27] | I. Alia, Open-loop equilibriums for a general class of time-inconsistent stochastic optimal control problems, Math. Control Relat. Fields, 11 (2021), 1–44. https://doi.org/10.3934/mcrf.2021053 doi: 10.3934/mcrf.2021053 |
[28] | I. Alia, Time-inconsistent stochastic optimal control problems: A backward stochastic partial differential equations approach, Math. Control Relat. Fields, 10 (2020), 785–826. https://doi.org/10.3934/mcrf.2020020 doi: 10.3934/mcrf.2020020 |
[29] | I. Alia, A non-exponential discounting time-inconsistent stochastic optimal control problem for jump-diffusion, Math. Control Relat. Fields, 9 (2019), 541–570. https://doi.org/10.3934/mcrf.2019025 doi: 10.3934/mcrf.2019025 |
[30] | H. Cai, D. Chen, Y. Peng, W. Wei, On the time-inconsistent deterministic linear-quadratic control, SIAM J. Control Optim., 60 (2022), 968–991. https://doi.org/10.1137/21M1419611 doi: 10.1137/21M1419611 |
[31] | X. He, L. Jiang, On the equilibrium strategies for time-inconsistent problem in continuous time, SIAM J. Control Optim., 59 (2019), 3860–3886. https://doi.org/10.1137/20M1382106 doi: 10.1137/20M1382106 |