Research article Special Issues

General decay for a system of viscoelastic wave equation with past history, distributed delay and Balakrishnan-Taylor damping terms

  • Received: 25 June 2022 Revised: 12 August 2022 Accepted: 22 August 2022 Published: 29 August 2022
  • The subject of this research is a coupled system of nonlinear viscoelastic wave equations with distributed delay components, infinite memory and Balakrishnan-Taylor damping. Assume the kernels $ g_{i} :{\bf R}_{+}\rightarrow {\bf R}_{+} $ holds true the below

    $ g_{i}'(t)\leq-\zeta_{i}(t)G_{i}(g_{i}(t)), \quad \forall t\in {\bf R}_{+}, \quad {\rm{for}} \quad i = 1, 2, $

    in which $ \zeta_{i} $ and $ G_{i} $ are functions. We demonstrate the stability of the system under this highly generic assumptions on the behaviour of $ g_i $ at infinity and by dropping the boundedness assumptions in the historical data.

    Citation: Abdelbaki Choucha, Salah Boulaaras, Djamel Ouchenane, Salem Alkhalaf, Rashid Jan. General decay for a system of viscoelastic wave equation with past history, distributed delay and Balakrishnan-Taylor damping terms[J]. Electronic Research Archive, 2022, 30(10): 3902-3929. doi: 10.3934/era.2022199

    Related Papers:

  • The subject of this research is a coupled system of nonlinear viscoelastic wave equations with distributed delay components, infinite memory and Balakrishnan-Taylor damping. Assume the kernels $ g_{i} :{\bf R}_{+}\rightarrow {\bf R}_{+} $ holds true the below

    $ g_{i}'(t)\leq-\zeta_{i}(t)G_{i}(g_{i}(t)), \quad \forall t\in {\bf R}_{+}, \quad {\rm{for}} \quad i = 1, 2, $

    in which $ \zeta_{i} $ and $ G_{i} $ are functions. We demonstrate the stability of the system under this highly generic assumptions on the behaviour of $ g_i $ at infinity and by dropping the boundedness assumptions in the historical data.



    加载中


    [1] A. M. Al-Mehdi, M. M. Al-Gharabli, S. A. Messaoudi, New general decay result for a system of viscoelastic wave equation with past hystory, Commun. Pure Appl. Anal., 20 (2021), 389–404.
    [2] D. R. Bland, The Theory of Linear Viscoelasticity, Mineola, Courier Dover Publications, 2016.
    [3] S. Boulaaras, A. Choucha, D. Ouchenane, General decay and well-posedness of the Cauchy problem for the Jordan-Moore-Gibson-Thompson equation with memory, Filomat, 35 (2021), 1745–1773. https://doi.org/10.2298/fil2105745b doi: 10.2298/fil2105745b
    [4] S. Boulaaras, A. Choucha, A. Scapellato, General decay of the Moore-Gibson- Thompson equation with viscoelastic memory of type Ⅱ, J. Funct. Spaces, 2022 (2022). https://doi.org/10.1155/2022/9015775 doi: 10.1155/2022/9015775
    [5] A. Choucha, D. Ouchenane, K. Zennir, B. Feng, Global well-posedness and exponential stability results of a class of Bresse-Timoshenko-type systems with distributed delay term, Math. Methods Appl. Sci., 2020 (2020), 1–26. https://doi.org/10.1002/mma.6437 doi: 10.1002/mma.6437
    [6] A. Choucha, S. Boulaaras, D. Ouchenane, S. Beloul, General decay of nonlinear viscoelastic Kirchhoff equation with Balakrishnan-Taylor damping, logarithmic nonlinearity and distributed delay terms, Math. Methods Appl. Sci., 44 (2020), 5436–5457. https://doi.org/10.1002/mma.7121 doi: 10.1002/mma.7121
    [7] A. Choucha, S. M. Boulaaras, D. Ouchenane, B. B. Cherif, M. Abdalla, Exponential stability of swelling porous elastic with a viscoelastic damping and distributed delay term, J. Funct. Spaces, 2021 (2021). https://doi.org/10.1155/2021/5581634 doi: 10.1155/2021/5581634
    [8] B. D. Coleman, W. Noll, Foundations of linear viscoelasticity, Rev. Mod. Phys., 33 (1961). https://doi.org/10.1103/RevModPhys.33.239 doi: 10.1103/RevModPhys.33.239
    [9] N. C. Eddine, M. A. Ragusa, Generalized critical Kirchhoff-type potential systems with Neumann boundary conditions, Appl. Anal., 101 (2022), 3958–3988. https://doi.org/10.1080/00036811.2022.2057305 doi: 10.1080/00036811.2022.2057305
    [10] B. Feng, A. Soufyane, Existence and decay rates for a coupled Balakrishnan-Taylor viscoelastic system with dynamic boundary conditions, Math. Methods Appl. Sci., 43 (2020), 3375–3391. https://doi.org/10.1002/mma.6127 doi: 10.1002/mma.6127
    [11] B. Gheraibia, N. Boumaza, General decay result of solution for viscoelastic wave equation with Balakrishnan-Taylor damping and a delay term, Z. Angew. Math. Phys., 71 (2020). https://doi.org/10.1007/s00033-020-01426-1 doi: 10.1007/s00033-020-01426-1
    [12] A. Guesmia, New general decay rates of solutions for two viscoelastic wave equations with infinite memory, Math. Model. Anal., 25 (2020), 351–373. https://doi.org/10.3846/mma.2020.10458 doi: 10.3846/mma.2020.10458
    [13] A. Guesmia, N. Tatar, Some well-posedness and stability results for abstract hyperbolic equations with infinite memory and distributed time delay, Commun. Pure Appl. Anal., 14 (2015), 457–491. https://doi.org/10.3934/cpaa.2015.14.457 doi: 10.3934/cpaa.2015.14.457
    [14] F. Mesloub, S. Boulaaras, General decay for a viscoelastic problem with not necessarily decreasing kernel, J. Appl. Math. Comput., 58 (2018), 647–665. https://doi.org/10.1007/S12190-017-1161-9 doi: 10.1007/S12190-017-1161-9
    [15] M. I. Mustafa, General decay result for nonlinear viscoelastic equations, J. Math. Anal. Appl., 457 (2018), 134–152. https://doi.org/10.1016/j.jmaa.2017.08.019 doi: 10.1016/j.jmaa.2017.08.019
    [16] D. Ouchenane, S. Boulaaras, F. Mesloub, General decay for a viscoelastic problem with not necessarily decreasing kernel, Appl. Anal., 98 (2018), 1677–1693. https://doi.org/10.1080/00036811.2018.1437421 doi: 10.1080/00036811.2018.1437421
    [17] A. Zaraï, N. Tatar, Global existence and polynomial decay for a problem with Balakrishnan-Taylor damping, Arch. Math., 46 (2010), 157–176. Available from: https://eudml.org/doc/116480.
    [18] A. V. Balakrishnan, L. W. Taylor, Distributed parameter nonlinear damping models for flight structures, in Proceedings "Damping 89", Flight Dynamics Lab and Air Force Wright Aeronautical Labs, Washington, 89 (1989).
    [19] R. W. Bass, D. Zes, Spillover nonlinearity and flexible structures, in Proceedings of the 30th IEEE Conference on Decision and Control, 2 (1991), 1633–1637. https://doi.org/10.1109/CDC.1991.261683
    [20] S. Boulaaras, A. Draifia, K. Zennir, General decay of nonlinear viscoelastic Kirchhoff equation with Balakrishnan-Taylor damping and logarithmic nonlinearity, Math. Methods Appl. Sci., 42 (2019), 4795–4814. https://doi.org/10.1002/mma.5693 doi: 10.1002/mma.5693
    [21] W. Liu, B. Zhu, G. Li, D. Wang, General decay for a viscoelastic Kirchhoof equation with Balakrishnan-Taylor damping, dynamic boundary conditions and a time-varying delay term, Evol. Equations Control Theory, 6 (2017), 239–260. https://doi.org/10.3934/eect.2017013 doi: 10.3934/eect.2017013
    [22] C. Mu, J. Ma, On a system of nonlinear wave equations with Balakrishnan-Taylor damping, Z. Angew. Math. Phys., 65 (2014), 91–113. https://doi.org/10.1007/s00033-013-0324-2 doi: 10.1007/s00033-013-0324-2
    [23] A. Choucha, D. Ouchenane, S. Boulaaras, Blow-up of a nonlinear viscoelastic wave equation with distributed delay combined with strong damping and source terms, J. Nonlinear Funct. Anal., 2020 (2020). https://doi.org/10.23952/jnfa.2020.31 doi: 10.23952/jnfa.2020.31
    [24] S. Boulaaras, A. Choucha, D. Ouchenane, B. Cherif, Blow up of solutions of two singular nonlinear viscoelastic equations with general source and localized frictional damping terms, Adv. Differ. Equations, 2020 (2020). https://doi.org/10.1186/s13662-020-02772-0 doi: 10.1186/s13662-020-02772-0
    [25] A. Choucha, D. Ouchenane, S. Boulaaras, Well posedness and stability result for a thermoelastic laminated Timoshenko beam with distributed delay term, Math. Methods Appl. Sci., 43 (2020), 9983–10004. https://doi.org/10.1002/mma.6673 doi: 10.1002/mma.6673
    [26] S. Nicaise, C. Pignotti, Stabilization of the wave equation with boundary or internal distributed delay, Differ. Integr. Equations, 21 (2008), 935–958. Available from: https://projecteuclid.org/journals/differential-and-integral-equations/volume-21/issue-9-10/.
    [27] R. Adams, J. Fourier, Sobolev Space, Academic Press, New York, 2003. https://doi.org/10.3934/cpaa.2020273
    [28] C. M. Dafermos, Asymptotic stability in viscoelasticity, Arch. Ration. Mech. Anal., 37 (1970), 297–308. https://doi.org/10.1007/BF00251609 doi: 10.1007/BF00251609
    [29] V. I. Arnold, Mathematical Methods of Classical Mechanics, Springer-Verlag, New York, NY, USA, 1989.
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1162) PDF downloads(104) Cited by(0)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog