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Abstract: The subject of this research is a coupled system of nonlinear viscoelastic wave equations
with distributed delay components, infinite memory and Balakrishnan-Taylor damping. Assume the
kernels g; : R, — R, holds true the below

g(H) < ~L(OG (1)), Ve R, for i=1,2,

in which ¢; and G; are functions. We demonstrate the stability of the system under this highly generic
assumptions on the behaviour of g; at infinity and by dropping the boundedness assumptions in the
historical data.
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1. Introduction

In this research, we mainly focused on wave equation to study and examine the coupled system. In
this system, we assumed a bounded domain Q € RY where 0 indicates sufficiently smooth boundary

of Q € R" and take the positive constants &y, &1, 0, 81,83 where m > 1 for N = 1,2, and 1 <m < %—3
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for N > 3. The coupled system with these terms is given by

wt—(&y+§MVvﬁ-+6ahaanAQJAva>+\f"a<nAva—-nds

T 0

+ﬁWﬁW”MO+j‘WﬁWMU—MW%ﬁ—ﬂW+ﬁWMO=O

Wn—&b+5MVM@+5GWGVWMHQ>MW0+L[ a5 AWt — $)ds
0

. (1.1)
+B3lw (D" 2wi(t) + f Balwe(t = PI"*wi(t = r)dr + (v, w) = 0.
vz, —1) = vo(2), vi(z, 0)1: v1(2), w(z, =1) = wo(2), wi(z,0) =wi(2), in Q

vz, =1) = jo(z, 1), wilz,—1) = 00(z,1), in Qx(0,77)
v(z, 1) = w(z, 1) =0, in dQ x (0, c0)

in which G = Q X (11, 7;) X (0, 00) and 7| < 7, are taken to be non-negative constants in a manner that
B2, B : [11,72] — R indicates distributive time delay while g;, i = 1,2 are positive.

The viscoelastic damping term, whose kernel is the function g, is a physical term used to describe the
link between the strain and stress histories in a beam that was inspired by the Boltzmann theory. There
are several publications that discuss this subject and produce a lot of fresh and original findings [1-5],
particularly the hypotheses regarding the initial condition [6—12] and the kernel. See [13-17]. As
it concerns to the plate equation and the span problem, Balakrishnan and Taylor introduced a novel
damping model in [18] that they dubbed the Balakrishnan-Taylor damping. Here are a few studies that
specifically addressed the research of this dampening for further information [18-23].

Several applications and real-world issues are frequently affected by the delay, which transforms
numerous systems into interesting research topics. Numerous writers have recently studied the stability
of the evolution systems with time delays, particularly the effect of distributed delay. See [24-26].

In [1], the authors presented the stability result of the system over a considerably broader class of
kernels in the absence of delay and Balakrishnan-Taylor damping &y = 1, =0 =8, =0,i=1,...,4.

Based on everything said above, one specific problem may be solved by combining these damping
terms (distributed delay terms, Balakrishnan-Taylor damping and infinite memory), especially when
the past history and the distributed delay

T2
[ B - o= i=2.4
1
are added. We shall attempt to throw light on it since we think it represents a fresh topic that merits
investigation and analysis in contrast to the ones mentioned before. Our study is structured into multiple
sections: in the second section, we establish the assumptions, notions, and lemmas we require; in the
final section, we substantiate our major finding.

2. Fundamental knowledge

In this section of the paper, we will introduce some basic results related to the theory for the
analysis of our problem. Let us take the below:
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(G1) h; : R, — R, are a non-increasing C' functions fulfills the following

2(0) >0, , & - f hi(s)yds = ;> 0, i=1,2, @1
0

go=f hi(s)ds, §0=f g(s)ds,
0 0

(G2) One can find a function C' functions G; : R, — R, holds true G;(0) = Gi(0) = 0.
The functions G,(¢) are strictly increasing and convex of class C2(R,) on (0, ], r < g;(0) or linear
in a manner that

and

gi(t) < =4i(HG(gi(1)), V1 =2 0, for i=1,2, (2.2)
in which ;(¢) are a C' functions fulfilling the below
46> 0, L) <0, V> 0. (2.3)

(G3) 5, B4 : [11, 2] — R are a bounded function fulfilling the below

T

1B2(nldr < B,
T1
f 1Ba(ldr < ;. (2.4)
T1
(G4) f; : R* = R are C! functions with £;(0,0) = 0, and one can find a function F in a way that

fi(c,e) = cj{—f(c, e), flc,e)= C;—i(c, e),

F >0, afi(c,e)+efs(c,e)=F(c,e) >0, (2.5
and J
j(c, e) + @(c, e) <d(l +cP '+ ePh). Y(c,e) € R (2.6)
dc de
Take the below .
(g0 d)1) := fg fo WPIG(t) — ¢t — PPdrdz,
and
M) = (fo + &IV + 5(V(e), Vvt(t))Lz(Q))’
M) = (fo + EIVWI + 6(Vw(e), sz(t))wg))-

Lemma 2.1. (Sobolev-Poincare inequality [27]). Assume that2 < g < oo forn=1,2and?2 < g < %
forn > 3. Then, one can find c. = c(£, q) > 0 in a manner that

IVlly < eIV, Vv € Go(QY).

Electronic Research Archive Volume 30, Issue 10, 3902-3929.



3905

Moreover, choose the below as in [26]:

with

X(Z,p, I, t) = V[(Z, - rp)’
Yz, p, 1 1) = wi(z,t = 1p)

rx(z, p, 1, 1) + x,(z, p, 1, 1) = 0, sy,(z,p,1,1) +y,(z,p,1,1) =0
.X(Z, 07 ra t) = vt(Z’ t)9 y(Z9 07 ra t) = WZ(Z9 t)

Take the auxiliary variable (see [28])

Then

n(zs)=vz)-v(zt—s),s >0,
Y (z,8) =w(z,H) —w(z,t—1s),s > 0.

7 (z,8) + 11, (z,8) = v, (2, 1),
#(z,8) + 9, (z,8) = wi (2,0).

Rewrite the problem (1.1) as follows

where

with

Vi — (11 + &IV + (v, sz)Lz(g))AV(t) + f g1($)An'(s)ds
T2 O
+B1 V(DI v, (1) + f Ba($)l1x(z, 1, 7, D" *x(z, 1, 7, )dr + fi(v,w) = 0,

Wi — (lz +&ENIVWI + 6(Tw, VWZ)LZ(Q))AW(l) + f §2()A'(5)ds
T2 0

+Bslwi (O 2wilt) + Ba(Mly(z, 1, D" 2y(z, 1,7, 1)dr + fo(v, w) = 0,

1

rx(z,p,1,t) + x,(2, p, 1, 1) = 0,
r)’z(Z’P, r’ t) + )’p(Z,P, }", t) = Oa
(2, 8) + 1 (2, 8) = v (z,0)

07 (z,8) + 9 (2, 8) = w, (2, 1),

(z,p,1, 1) € QX (0,1) X (11, 72) X (0, 00).

v(z, 1) = vo(2), vi(z,0) = vi(2), w(z, —t) = wo(2), wi(2,0) = wi(2), in Q
x(z,p,1,0) = jo(z, pr), y(z,p,1,0) = 0o(z,pr), in Qx(0,1)x(0,72)
vz, t) =n'(z,5) =0, z€ 0Q, t,s€(0,),

7(z,00=0,Vt>0, 1°(,5)=n0(s) =0, ¥s >0,

w(z,H) =9 (z,5) =0, z€ 0Q, t,s5¢€(0,),

F(z,0)=0, Ve >0, 9(z,5) =9 (s) =0, Vs > 0.

In the upcoming Lemma, the energy functional will be introduced.

Electronic Research Archive Volume 30, Issue 10
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Lemma 2.2. Let the energy functional is symbolized by E, then it is given by

1
E@) = §(||vt||§+||wt||§)+%(||Vv(r)||§+||VW<r>||;‘)+ fg F(v, w)dz
1 1
+§(ll||Vv<t>||§ n lz||Vw<r>||§) + 5810 TV + (820 VW)©)

+

-1 1
= f f s{B2lxCz, . 101, + B, .7 DI e,
m 0 T]
2.11)

The above fulfills the below

1
E@) < —yo(nv,(t)nz+||w,<t>||:z)+§(<gaon>(t>+<g;oVw><t))

(i) + (Liwwis)) ) <o. (2.12)

in which yo = min{By — [ |Bx(r)ldr, B — [ Ba(r)ldr).

Proof. To prove the result, we take the inner product of (2.9) with v,, w, and after that integrating over
Q, the following is obtained

VD), vi(®) 12 — (M3(DAV(D), vi(1))120)
+(f hi($)A' ($)ds, vi(D) 12 + Br(vil" v, V)12
0

+ f |B2(S)|(|.X(Z, 19 T, t)lm_zx(z’ 1’ r, t)9 vt(t))Lz(Q)dr
+(Wu(D), wi(D)12) — (M4(DAW(T), wi(1)) 120

+( f ha()AD (), Wiz + Bo(wl™ s w2
0

+ |,B4(S)|(|)’(Z, 19 r, t)|m_2y(z’ 1, r, t)’ Wt(t))Lz(Q)dr
+(f1(v, W), vi() 2 ) + (20, W), wi(D) 12y = 0. (2.13)
in which

M;(1)

(11 + EIVVIE + 8(Vv(), Vvt(t))Lz(Q))a

My(1)

(lz + &IV + 6(Vw(n), sz(t))u(g))-

Using mathematical skills, the following is obtained

1d
VD)) = id—t(uv,(z)n%), (2.14)

Electronic Research Archive Volume 30, Issue 10, 3902-3929.
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further simplification leads us to the following

—(M3(0)AV(D), vi(1))120)
- —((11 +EIVVIE + 8T (1), Vw(r))y(g))Av(r), (O

= (11 + &1IVVI5 + 6(Vn(), Vv,(t))Lz(Q)) j; Vv(2).Vv,(t)dz

d
= (ll + é:] ”VV”% + (S(VV(Z'), VV[(I))LZ(Q) — f |VV(t)|2dZ}

- dt{_( éi||Vv||2)||vV(t)||2}+——{lle(t)llz}-

The following is obtained after calculation

( fo 1()A (5)ds, vi(D)r2q)

f v, f o)V (s)dsdz

Q 0

f gl(S)va,Vn’(s)dzds

0 Q

f gl(S)f(Vﬂi+V77§)V17’(s)dzds
0 Q

f gl(S)anWnt(s)dzds

0 Q

+ f f 21(s)Vn' Vi (V)dVdz
Q JO

1d 1
= (8o Vv)(1) - E(g’l o Vv)(®).

In the same way, we have

d
WD WD)y = ——(||wt<r)||§),
—(MyOMO WD)z = dt{z(zﬁflnwnz)nw(r)nz}
o
+Zd_{”vw(’)”2} ,

® 1d 1
( fo §2()AY (5)d's, wi(1) 20 57820 VWD) - E(glz o Vw)(®).

(2.15)

(2.16)

(2.17)

Now, multiplying the equation (2.9) by —x|B,(r)|, —y|B4(r)|, and integrating over QX (0, 1) X (71, 72)

and utilizing (2.7), the below is obtained

Electronic Research Archive Volume 30, Issue 10, 3902-3929.
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d m-1 b
E Tff f rIﬁZ(r)l-lx(Z’p’rat)lmdrdpdz
Q JO T]
1 T)
= =0 [ [ [t drdpd:
QJO0 T
m—1 L rm d
- [ mo g ordrdpd:
QJo Jr P
m—1 i
= — f f Iﬁz(r)l(lx(z,O,r,t)I"’—IX(z,l,r,t)l’")drdz
m QJn
1 i
—f |,32(i’)|dr flvt(t)lmdz

f [ mone o ra:
1
= U [ o
m T1

m-—1
—— f Bl 2, 1, 7, 1) 2
m -

Similarly, we have

dm-1
7 z ff f rB4(n)l.Iy(z, p, r, )" drdpdz
r m

m

Here, we utilize the inequalities of Young as

f B LDt L0, v0) s

T L2(Q)

1

1 T2
< —( f wz(r)|dr)||v,<t>||z+
m\ J,,
and

f B LD G Dm0 dr

T 12©)

1 ”
< ([ ataron +
m\ J,,

Finally, we have

d
(1w, w), viD))2) + (2(v, W), wi(D)12(0) = ar fg F(v,w)dz.

1
e |ﬁ4<r)|dr)||w,<t)||::—— f Ba(Pllly . 1, 7. D) [
m o m Jg

r, 0 |l,dr,

Lo |dr.

(2.18)

(2.19)

(2.20)

2.21)

(2.22)

Thus, after replacement of (2.14)—(2.22) into (2.13), we determined (2.11) and (2.12). As a result,

we obtained that E is a non-increasing function by (2.2)—(2.5), which is required.

Electronic Research Archive Volume 30, Issue 10, 3902-3929.
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Theorem 2.3. Take the function U = (v,v,,w,w;, x,y,1',9)" and assume that (2.1)—(2.5) holds true.
Then, for any U, € ‘H, then one can find a unique solution U of problems (2.9) and (2.10) in a manner
that

U e CR,,G).
If Uy € Gy, then U fulfills the following
UeC'R,,G)NCR,,G),
in which
(G(Q) X LX(Q))* X (L*(R, (0, 1), (11, 72)))* X (Lg, X Lg,).
&/eghnverﬂGawﬂweGMQLm%&WWEL%QAQILﬁbQD,

@
I

G

(', 9") € Ly, X Lg,,1'(2,0) = ¥'(z,0) = 0, x(z,0, 1, 1) = vy,
y(Z’ 09 r’ t) = W[}-

3. Analysis of stability

Here, the stability of the systems (2.9) and (2.10) will be established and investigated. For which
the following lemma is needed

Lemma 3.1. Let us suppose that (2.1) and (2.2) fulfills.

00 2
f(f gi(s)(v(t) — v(t — s))ds) dz < Cyi(hiov)(t), i=1,2. (3.1
a'\Jo
where
> gi(s)
C. = ——d
’ fo kgi(s) — g
hi() = kgi(t) - gi(t), i=1,2.
Proof.

00 2
( fo SO0 — vt = 5)ds) dz

,

¢ 2
f (f gi(t — )(w(t) — v(t — s))ds) dz
0
L

8t~ 5) PN
L =g V989

() — v(s))ds) dz

(3.2)

which is obtained through Young’s inequality (Eq 3.1).

Electronic Research Archive Volume 30, Issue 10, 3902-3929.
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Lemma 3.2. (Jensens inequality). Let f : Q — [c,e] and h : Q — R are integrable functions in a

manner that for any z € Q, h(z) > 0 and | h(z)dz = k > 0. Furthermore, assume a convex function G

Q
such that G : [c,e] = R. Then

6(; fg FhE) < ¢ fg G(f(h(D)dz.

(3.3)

Lemma 3.3. It is mentioned in [12] that one can find a positive constant 3, B in a manner that

Lo = f f (VO Pdsdz < Pu(d)
QJt

L) = f f 22(8)IV (8)dsdz < Ba(1),
Q Jt

in which

u) = f gl(t+s)(1+va(z)(z,s)dz)ds,
0 Q

) = f gz(t+s)(1 + f Vwea(z, s)dz)ds.
0 Q

Proof. As the function E() is decreasing and utilizing (2.11), we have the following

f Vi (s)Pdz
Q

f (V(z, 1) — v(z, t — 5)dz
Q

IA

2 f VWi (z, H)dz + 2 f Vv3(z, t — s)dz
Q Q

IA

2 sup f VA (z, $)dz + 2 f VVi(z,t — x)dz
Q

s>0 Q

4E(0
< ( )+2 f Vv (z, t — $)dz,
L Q
for any ¢, s > 0. Further, we have
4E(0 . 0
ILi(t) < l( ) gl(s)ds+2f gl(s)fVVZ(Z,t—s)dzds
1 t t Q
4F 0 0
© g1t + 8)ds +2 f g1t + ) f Vv3(z, s)dzds
ll 0 0 Q
< Bu),

in which 8 = max{*£®, 2} and u(t) = [~ g1t + )1 + [, Vu(z, $)dz)ds.

In the same way, we can deduce that

4EW0) [
L Jo

BH(D),
in which 8 = max{*£®, 2} and 7(t) = [[7 ga(t + s)(1 + [, Vwi(z, s)dz)ds.

L@ < & (t+ s)ds + 2f g (t+ ) f Vw(z)(z, s)dzds
0 Q

IA

Electronic Research Archive Volume 30, Issue 10,
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In the upcoming part, we set the following
g 4 4
W) o= f (v + wiom0)dz + Z (191 + 19wolE)
Q
and
@) = - f v,f g1(s)(v(t) = v(t — 5))dsdz
o Jo
- f W f $a()Ow(t) = wit — s))dsdz,

Q 0

and

1 T)
o) = fo f re-f”(vsz<r>|.||x(z,p,r,r>||7,:+|/34<r)|.||y<z,p,r,r)uz)drdp.

Lemma 3.4. In (3.8), the functional Y(¢) fulfills the following
VO < Il + il - 0= e+ ) = a(ITVIB + 19w
~61 (I + 19w + (Il + Dol
+e(@)(Cea g1 © VO + Coallhz 0 Tw)0)) - fQ F(v, wdz

rc(e) [ (B0 Ll + B L0 o

for any g,01 > 0 with | = min{/,, l,}.

Proof. To prove the result, differentiate (3.8) first and then apply (2.9), we have the following

¥ (1) Ivill3 + f vuvdz + 6||VV|I3 f Vv, Vvdz
Q Q

il + f wawdz + 6|Vl f Vin Vovd
Q Q

= Wills + Iwdlz = &UIVVIE + VW) = E VY + IVw)

— B f V" vivdz - Bs f w2 wiwdz
Q Q
I 112

+ f V() f ) g1($)Vu(t — s)dsdz
Q 0

143

+ f Vw(r) f ) 22()Vw(t — s)dsdz
Q 0

J4%)

(3.8)

(3.9)

(3.10)

(3.11)

Electronic Research Archive Volume 30, Issue 10, 3902-3929.



3912

T2
- f f Ba(llx(z, 1,7, )" 2x(z, 1, 1, t)vdrdz
QJr
I3

T2
- f f By 1,7, 0" ¥z, 1, 7, )wdrdz
QJr1

I
- f(vfl v,w)+wfh(v,w))dz.
Q

Iy

(3.12)

We estimate the last 6 terms of the RHS of (3.12). The following is obtained by applying Young’s,

Sobolev-Poincare and Holder’s inequalities on (2.1) and (2.11), we have

I

IA

BT VI, + c@lvily,
gpy VI + c(@lvilliy
E(0)\(-272
8 mcm( )
ﬂl p ll
2
< ecllVvllz + c@)lvilly,.

IA

IA

2
IVVI; + c(@lvilly,

In addition to this, for any oy > 0, by Lemma 3.1, we have the below

121

IA

(f gl(S)dS)IIVVH%—fVV(l)f g1(H(Vu(t) = Vu(t — 5))dsdz
0 Q 0

c
< (&=L + o)V + O__Ck,l(hl o Vw)(@).
1

A

Taking same steps to /;,, the below is obtained

T2
I < 8021IIVVII§+C(8)f Ba(N)llIx(z, 1, r, Dlldr.
1

Same steps for 1,1, I>; and I53;, we have

112

IA

2
ecpplVwll; + c@lwily,

¢
(o — L +a)|Vw; + O_—CK,z(hz o Vw)(1),
1

IA

122

IA

T2
I3 genlIVwll; + C(S)f Ba(Mlly(z, L, 1, Dldr.
71

Combining (3.13)—(3.21), (3.12) and (2.5), the required (3.11) is obtained.

Lemma 3.5. For any o, 05,03 > 0, the functional O(t) introduced in (3.9) holds true

() < —(lo—ag)(||v,||§+||wt||§)+aa(||w||;*+||Vw||§)

+0'(§0 LIo + ANVVIE + a(go Ny clz)anng

(3.13)

(3.14)

(3.15)

(3.16)

Electronic Research Archive Volume 30, Issue 10, 3902-3929.
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rr:200) 1 (5 519B) + (5 5172 )

+e(0, o2, (73)( 1(h1 0 Vo)1) + Coalhy Vw)(r))
+c<a>(||vt||z+ f wz(r>||x<z,1,r,t)||zdr)
+c<a>(||wt||z+ f V34<r)||y<z,1,r,r>||z;dr). (3.17)

where 1 = max{l;, l,}, ly = min{go, o} and ly = max{go, 3o}-

Proof. To prove the result, simplification of (3.9) and (2.9) through mathematical skills leads us to the
following

(1) - f Vit f g1($)(W(1) = v(r = 5))dsdz
Q 0

R
f e ( f gl(s)(v(t)—v(t—s))ds)dz
f f 2(8)w(t) — it — 5))dsdz

fg W, at( fo 22(8)0w(t) — W(t—S))dS)dz

= (& +&IVP f 2! f g1(S)(Vv(t) — Vv(t — s))dsdz
Q 0
Jn

Vw f‘” 22(8)(Vw(t) — Vw(t — s))dsdz
0

+ (6o + §1IIVWII§)f

Q

Ji2
+6vaVv,dz.vaf g1(8)(Vv(t) — Vv(t — 5))dsdz
Q Q 0
J21

+6fVWVW,dZ.fVW foo 22(8)(Vw(t) — Vw(t — s))dsdz
Q Q 0

Jn

_ f ( f gl(s)Vv(t—s)ds).( f gl(s)(Vv(t)—Vv(t—s))ds)dz
Q 0 0

J31

— f ( foo 22(5)Vw(t — s)ds).( foo 22()(Vw(t) — Vw(t — s))a’s)dz
a‘\Jo 0

J3

B, f |vt|'"‘2v,( f gl(sxw(t)—Vv(r—s))ds)dz
Q 0

J4

Electronic Research Archive Volume 30, Issue 10, 3902-3929.
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B f a2 f Q) (Tl0) — Tt — s))ds
Q 0

Jap

- f Ba(M)llx(z, 1, 7, D" 2x(z, 1,7, 1)
Q

1

x f " () (VV(e) — Vot - s))ds)dsdz
0

Js1

T2
- f Ba(Dlly(z, 1, r, D" y(z, 1, r, 1)
QJn

X f ) 22()(Vw(t) — Vw(t — s))ds)dsdz
0

Js1

a 00
- fQ Vfa_t( j; g(s)(v(t)—v(t—s))ds)dz

Jo1
50 (e
_ fg W’a_r( fo gg(s)(w(t)—w(t—s))ds)dz
Je2
- f fivw f SO0 = v(t = 9)ds |z
Q 0
Jn
_ f fz(v,w).( f g2(s)(w(t)—w(t—s))ds)dz. (3.18)
Q 0
J72

Here, we will find our the approximation of the terms of the RHS of (3.18). Using the well-known
Young’s, Sobolev-Poincare and Holder’s inequalities on (2.1), (2.11) and Lemma 3.1, we proceed as
follows

1
IVl < o+ §1IIVVI|§)(0'IIVVII§ + ECK’I(M ° VV)(t))

E
< Gl + vl + (5 + S )i 0 Vo),
(3.19)
and
? 5
Ju < 025(vaVv,dz) IVVI3 + ——Ci.1(hy 0 VV)(1)
Q 40'2
26E(0)(1 d 2)2 5
< oy (2 d;”VVHZ + 4G2CK,1(hlovv)(t), (3.20)
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|J31]

IA

f ( f gl(s)Vv(t)ds)( f gl(s)(Vv(t—s)—Vv(t))ds)dz
Q 0 0
0o 2
- f ( f gl(s)(Vv(t)—Vv(t—s))ds) dz
Q 0

1
SV + (1 N E)CK,I(hI o V)(0),

IA

|41

IA

(DNl + aﬁTf

Q

490E(0
< @)Vl + a(ﬁTc;’[g(’T()]“"‘D)ck,l(hl o VV)(1)

c(ONIVvl, + oc3Cy 1 (hy o V(D).

( f £SO~ - $)ds) de
0

A

IA

In the same, we obtained the following
Js1 < c(o)lx(z, 1,1, Dl + 0csCr 1 (hy o Vv)(1),

and to find the approximation of Js;, we have

6 !
-l f g1(t = 00~ v(s)ds )

Y e
= fo QOO0 — vt - s)ds) = = -

ot
- f g1t = s)((t) — v(s))ds

(o)

+( I; gi(t— s)ds)v,(t)

j(; 1)) = v(t = $))ds + govi(0),

the (2.2) implies that
c
Jot < —(go—a3)lvil; + O_—CK,1(h1 o Vv)(2).
3

In the same steps, the estimation of J;, i = 1, .., 6 are obtained and

Jo caly V|3 + c(@)Cy1(hy o VV)(t)
Jn < coblVwl3 + c(o)Cea(hy o VV)(0).

IA

Here, put (3.19)—(3.25) into (3.18), the required result is obtained.
Lemma 3.6. The functional ©O(t) introduced in (3.10) fulfills the below

Electronic Research Archive Volume 30, Issue 10,

(3.21)

(3.22)

(3.23)

(3.24)
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1 1)
O'(n < —%fof r(l,Bz(r)I.IIX(z,p,r,t)IIZ+|,34(r)|.||y(z,p,r,t)IIﬁ)drdp

_— f (wz(sn.ux(z, Ll + By @ L., t>||$)dr

71

+B5(In Ol + IO

in which Bs = max{f, 53}.

Proof. To prove the result, using ©(¢), and (2.9), we obtained the following

1 )
@) = -m f f f ePBa()IX" %, (2, p, 1, 1) drdpdsz
QJO T

1 T)
—m f f f e "By y, (2. p, 1, 1) drdpdz
Q JO T

1 1)
_f f f re”"’|Ba(r)|.1x(z, p, r, OI"drdpdz
Q JO T

- f f 2|ﬁz(”)|[€_r|x(z,1,r,t)|m—|X(Z,0,r,t)|m]drdz
QJ1

1 T)
- f f f re P B (P a1, D" drdpds
QJO T

- f f |ﬁ4(i’)|[€_r|y z 1,n|"=1y(0,r1) Im]dm’z
Q J1

(3.26)

Utilizing x(z, 0, r,t) = v/(z,1),y(z,0,r,1) = w,(z,1), and e™" < e < 1, for any 0 < p < 1, moreover,

select y; = e7™, we have

1 19)
oM < -n f f f r(I,Bz(r)I-IZ(Z,p,r,t)I'"+|,34(r)|-|y(z,p,r,t)lm)drdpdz
QJO T

n [ [ (B0 0P ¢ B Lo ard:
Q Jr

+ f 1B2(r)ldr f vl" (t)dz + f Ba(r)ldr f Iw,["()dz,
T] Q T] Q

applying (2.4), the required proof is obtained.

In the next step, we below functional are introduced

ffgol(t—s)Vv(s)zdsdz,
aJo

A1) = f f 0o (t — 5)Vw(s)*dsdz,
Q JO

A1)

in which ¢1(1) = [ g1(s)ds, 2(t) = [ ga(s)ds.

(3.27)
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Lemma 3.7. Let us suppose that (2.1) and (2.2) satisfied. Then, the functional F1 = A, + A, and
fulfills the following

1
Fi() < —5(<g1 o VV)(1) + (g2 0 vmm)

+3g0va dz+3§owa dz

f f 21()(VV(®) — Vv(t — 5))*dsdz
) f f £2()(Yw(t) — Vw(t — 5))*dsdz. (3.28)
Q Jt

Proof. We can easily prove this lemma with the help of Lemma 3.7 in [13] and Lemma 3.4 in [15].
Now, we have sufficient mathematical tools to prove the below mentioned Theorem.

Theorem 3.8. Take (2.1)—(2.5), then one can find positive constants §;,i = 1,2, 3 and positive function
¢4(t) in a way that the energy functional mentioned in (2.11) fulfills

$2 + 63 J, LODa(sa(V)o(v))dv
E() <607 (= 2 h EDs o ) (3.29)
I fomdv
in which _
Dy(t) = tD' (o), D3(t) = tD'"'(t), Dy(t) = D5(2), (3.30)
and _
po = max{u, u}, ¢ =max{{i,h, o = min{dy, £l
which are increasing and convex in (0, o].
Proof. For the proof, we define the below functional
G = NE@)+ NP + N,D(r) + N;0(1), (3.31)

we determined the positive constants N, N;,i = 1,2,3. Simplifying (3.36) and utilizing 2.12, the
Lemmas 3.4-3.6, we have

G @) = NE' @)+ NY @)+ N,D (1) + N:O'(¥)
—{Nz(lo — o) - Nl}(uv,u% N ||wt||§)

IA

Nséy = Nagicr IV + 19w

N\l = £(c1 + ¢2) = 01) = Ny (€0 + I +cl>}(||Vv||2+||Vw||2)

3
1
{5 - G ) + (5w
{

H{Nic(o) + Noc(o, o, m)}(ck,l(hl o V(1) + Cralhy o Vw)(r))
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+%]((g’] o Vv)(1) + (g5 o VW)(I))
=[50 = Nicte) = Nac(e) ~ NIl + Il

—(71N3 ~Nie(e) - Nzc(O')) f Ba(P)lx(z, 1, 7, r)nzds)
1 Ty

Ny f f HBo(P)L\x(z, p. 1, DI drdp

(%Nz—Nlc(s) Nzc(O') f Ba(Plly(z. 1, rt)||'"dr)

_N371ff B4 Iy(z. p, 7, t)llmdrdp—leF(v,W)dz- (3.32)
Q

We select the various constants at this point such that the values included in parenthesis are positive
in this stage. Here, putting

lo I I IN v = oy
O3 =—, E=—— 01 =—, O) = —————, = —N,.
D) dei+c) T4 TP A16EO)N, T 4T

Thus, we arrive at

, I I
H @) < —ZONz(nw,n%+||wt||§)—§1Nz(Z°—6)(||VW||3+||Vu||;‘)
1y

N = 8+ o+ D) )(I9w3 + 19
(35w ) + (L) ]
V260 01,2, 73){ Caa iy © V0)(0) + Crallh 0 V(1)
+g((g§ o Vv)(f) + (g5 o Vv)(t)) - N f Fv,w)dz

Q
(o = Nac(@ ) = Ny (Il + w1

—(leg ~ Nac(o, s)) f Ba(P)lx(z, 1, 7, t)mds)
1 19)

—N3’}’1 f f r|ﬂ2(’”)|-||x(z,P, 7, t)”ﬁdrdp
0 T

s - Noctc ) f By, 1. i)

1 )
- f f Bz . 1, DI drdp. (3.33)
0 T

In the upcoming, we select o in a manner that

. (b Iy
0'<m1n{—, — A}.
4 8¢ +g0 +cl)
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After that, we take N, in a way that

I L, -
Mg - oo+ & +cb) > 4,

and take N large enough in a way that
v1N3 — Nyc(o, ) > 0.
As a result, for positive constants d;,i = 1,2, 3,4, 5, (3.33) can be written as

H (@) < —di(IVli3 + wilB) = da(IVVIE + IVl — 4(IVVIE + (IVw]2)
NoT/1 d 2 1d 2
-l + )]
8 [(2dt” viz) + {5 g IVl
N

_(5 - d3CK)((hl o Vv)(t) + (hy o VW)(t))

N
+7K(<g1 o VV)(1) + (g2 0 Vw)(r)) (3.34)

—(yoN - c>(||v,||::; N ||w,||z) —ds f F(v, wydz

Q

1 o
—d, f(; f s(|,32(r)|.||X(Z,P, r Ol + Bs(M.ly(z, p, 1, t)llﬁ)drdp,

in which C, = max{C, , C,>}.

2 A .
We know that Kgi'((f)"_(;[_(_v) < gi(s), then from from Lebesgue Dominated Convergence, we have the
below
. (7 kg(s) .
lim «C,; = lim —ds=0, i=1,2 (3.35)
k—0* k=0 Jo  kgi(s) — gi(s)

which leads to
lir(r)l+ xC, = 0.

As a result of this, one can find 0 < xy < 1 in a manner that if k < kg, then

1
kCy < & (3.36)

From (3.8)—(3.10) through mathematical skills, we have the following
N
|H(1) - NEQ@)| < Tl(llvt(t)lli + w13 + e IVw@I; + CpllVW(t)H%)
N N
#0519Vl + 19wl + 2 (1ol + Iw01R)

N
+72c,,(ck,1<g1 o V)(1) + Cra(gs © Vw)(r)) (3.37)

N f f re (B IxCe, . DI+ By, ., N e,
0 7|
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By the fact ™" < 1 and (2.2), we have the below

|H({) — NE(t)] < C(Ny,N,, N3)E(t) = CE(¢).

that is
(N-CHDEOSH@BH<IN+C)E().
Here, set k = 5 and take N large enough in a manner that
N-C >0 N >0, 1N ! > 0, ! <
P T N T T TN S
we find

1
H (1) <~k E(0) + 7 ((81 0 VV)(O) + (82 0 VW)(1)

for some k, > 0, and
csE(@) < H @) <cgE(),Yt =0

for some cs, cg > 0, we have

H(r) ~ E(1).
After that, the below cases are considered:

Case 3.9. G,,i = 1,2 are linear. Multiplying (3.40) by {y(t) = min{{,(?), {(t)}, we find

1
SOOH (@) < —kalo(ME®) + 7500810 VW)(@) + (82 © VW)(1)

IA

1 1
~kalo(NE() + 781181 0 VW)(D) + 75(0)(82 © VW)(1).

The last two terms in (3.42), we have

o = L0 f f 01OV ()Pdsdz
= m) f f ¢1()|V (s)Pdsdz

+élT(t) f f gl(S)IVn’(S)Izdsdz
QJt

I

To estimate 1, using (2.11),

1 t
I < foQ(S)gl(S)IV?f(S)Izdst

— f f 21|V (s)*dsdz

< -LEg
< o (®,
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and by (3.4), we get

L < 'g{l(t),u(t)- (3.45)
In the same way, we obtained
90) 1, B,
T(g2 oVw)(#) < —2—125 (1) + Z(z(t),u(t). (3.46)
As a result of this, we get
1
SoOH' (1) < —kalo(HE(t) - ?E'(t) + 2Bow(2), (3.47)

where 3y = max{g, g} and w(t) = Z(t),uo(t).
Applying /(1) < 0, we get

Hi (1) < —kalo(DE() + 2Bow (D), (3.48)
with |
H(1) = H(OH (1) + ?E(t) ~ E(1),
we have
kyE(t) < H (1) < ksE(2), (3.49)
then, the following is obtained from (3.48)
T T
sz(T)fO do(ndt < szo So(DE(ndt
T
< H(0)-H(T)+ Zﬁof w(t)dt
0
T
< ) +260 [ Topo.
0

Further analysis implies that

ET) < l(g 10) + 2680 f()Tat)ﬂo(t)dt)
i I & ’

From the linearity of D, the linearity of the functions D,, D), and D, can easily be determined. This
implies that

1 o (17
O 1 2 [ (et ) (3.50)

E(T) < AIDJ( [y
o 0

— Hi© — 2B

which gives (3.29) with ¢y = A1, ¢ = ==, 63 = 1

is completed.

and ¢4(t) = 1d(t) = t. Hence, the required proof
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Case 3.10. Let H;,i = 1,2 are nonlinear. Then, with the help of (3.28) and (3.40). Assume the positive

functional

Ho(t) = H@®) + Fi(1)

then for all t > 0 and for some k3 > 0, the following holds true
1 00
H (1) < —kE@) + > ff 21(8)(Vv(t) — Vu(t — 5))dsdz
aJi

+% f f ) 22()(Vw(t) — Vw(t — 5))’dsdsz,
QJt

with the help of (3.4), we have

k3 f E(x)dx
0

IA

H,(0) — H (1) + Bo f Ho(s)ds
0

IA

H:(0) + Bo fo Ho($)ds.

Therefore

fE(x)dx < ke (1),
0

where kg = max{%(o) ﬁo} and () = 1+ fo o(s)ds.

k3

Corollary 3.11. The following is obtained from (2.11) and (3.53):

f t f IV(t) — V(t — s)I*dzds
f f IVw(t) — Vw(t — s)|*dzds
f f VvA(t) — VAt — s)dzds

+2 f f Vw(t) — Yw(t — s)dzds

0 Ja

fE(t) E(t— s)ds

IA

IA

lo
8 8ks

< f E(x)dx < —241,(0).
Iy lo

Now, we define ¢;(t),i = 1,2 by

¢1() B(1) f f IVu(t) — Vw(t — s)I*dzds,
0 Q

61 = B) f f Va(t) — V(i — 5)Pdeds
0 Q
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where B(t) = % and 0 < By < min{l, é}.
Then, by (3.53), we have

¢i(t) <1, Vt>0, i=1,2 (3.56)

Further, we suppose that ¢;(t) > 0, Yt > 0, i = 1,2. In addition to this, we define another
functional T', T, by

L'y (2) - f g1 (s) f V(1) = Vv(t — s)PPdzds,
0 Q

I (¢) - f 25(s) f IVw(t) — Vw(t — s)[*dzds (3.57)
0 Q

Here, obviously T'y(t) < —cE'(¢t), i =1,2. As G;(0) =0, i= 1,2 and G,(t) are convex strictly on (0,
ol, then
Gi(12) £ AGi(2), 0<a<1,z€(0,p], i=1,2. (3.58)

Applying (2.3) and (3.56), we get

I = m fo (&) fQ BOIWE) - Vol = s)dzds
> B(t)ibl(t) fo (D66 (81(5) fQ BOIVY) - Vv(t — ) dzds
> g 0’G1(¢1(t)g1(s)) | 1m0 - vt~ oitdzas
> 2—861 (;m fo 1 (01(5) fg BOIVV(E) - Vv(t - 9)Pdzds)
_ %Gl(ﬂ(t) fo () fg IVv(t)—Vv(t—s)lzdzds)
- él—EgG_l(B(z) fo 01(5) fg IVv(t)—Vv(t—s)Izdzds). (3.59)
) > 482—80_2(80) fo () fg IVw(0) = V(e — )Pdzds), (3.60)

Taking the same steps, G;,i = 1,2 are C2-extension of G; that are convex strictly and increasing
strictly on R.. From (3.59), we have the following

’ I yBOr
[)gl(S)fg;le(t)—Vv(t—s)|2dzds < B(;)Gl 1( () 1(1))

£1(0)
’ ) | — 1 B0
fo 2(5) fg V(D) = Vwts = s)Pdzds < oG ( a0 ) 3.61)

Putting (3.61) and (3.4) into (3.40), we have

Electronic Research Archive Volume 30, Issue 10, 3902-3929.
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’ ¢ ——1(BOI' (1)
H W) < B0+ 50 ( o )
c —1{BL ()
B0 ( e )+k6,uo(t) (3.62)
Here, introduce K,(t) for €y < r by
_ . BOE®)
Ki(t) =D (60W) H(t) + E(1), (3.63)

in which D’ = min{G, G,} and is equivalent to E(t). Because of this E'(t) < 0, 51‘/ > 0, and 51'" >
0,i =1,2. Also applying (3.62), we obtained that

E0B1) EOB 0\, (. E®OB®@)

(L0850  EOB Q) (| EO50
E(0) E(0) E(0)

. E@B@)

D 4
+ (80 E(O)

K@) =

)?{(t)

)7{'(1‘) + E'(1)

BHE

g)(o)(t)) + k1o (0D (80
¢ —1(BOIOY) ., (.. BOEQ

550 g0 )” " F0)
c —1 (B0 (0) [ BOE®)

NG ( &) ))D (80 E(0)

According to [29], we introduce the conjugate function of G; by a*, which fulfills

AB<G, (A)+G;(B), i=1,2 (3.65)

IA

_EMND’ (go BOE (’))

E(0)

) + E'(t) (3.64)

For A = D' (eo(E()B(1))/(E(0)))) and B; = a_l((B(t)Fi(t))/ (@), i = 1,2 and applying (3.64),
we have
E()B(1)
E(0)

K (1)

IA

—EMND (go E (’)B(I))

) + kepto(1)D’ (80 E0)

c —(., E®)B(@) c BHOI()
B! (D (‘90 E(0) ))+B<t> (1)

C — (D, (8 E(t)B(t)))+ c BOTL)
" E©0) B L0

A E@B() | E®B®)

(80W)+k6ﬂ0(t)D (8OW)

¢ 1 EOBO\— [ { EOB0®
n B(I)D(é‘o 50 )(Gl) [D (SO—E(O) )] (3.66)

c . EOBO\ = [ (. EOB)
+B(t)D(8° E0) )(GZ) [D (‘90 E0) )]
ROaet)
1@ L)

+ E'(1)

IA
|
3
s2!
~~
>
>
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Here, we multiply (3.66) by {y(t) and get

EHB
LOK@W) < koo HEDD (80 (,?(O)(”)+k6§o(z)uo<t)z>' (80
2e6) EWB(O) (8 E()B()
B(r) T E©0) " E(0)
EHB
< —kloEDD’ (80 (;)(O)“)) + kelo(Dpo(DD (80
2e6) BB (80E<r>8<r)

B1) T E©0) E(0)

E(®)B(1) )
E(0)

) + () + 2 (2)

E(OB(1) )
E(0)

) —cE'(1) (3.67)

where we utilized the following y(B(t)E(t)/E(0)) < r, D' = min{G,G,} and I'; < —cE’(1),i = 1,2,
and define the functional ¥,(t) as

K1) = HoOK: (1) + cE(1) (3.68)

Effortlessly, one can prove that () ~ E(t), i.e., one can find two positive constants m; and m; in
a manner that

m Ko (t) < E(t) < my¥Ka (1), (3.69)

then, we have

%0 E(1) ( OE(t)B(t)

—ﬁﬁfo(l)% 30

o ) (E(r)B(r)
80\ "E©)

EHB
) + keo(Dpo(DD’ (80 (E”(O)(”)

E(NB(1) )
E©0) )’

= —fs

) + kelo(Dpo(HD’ (80 (3.70)
where B¢ = (kyE(0) — 2cgy) and D, (t) = tD’ (got).

Choosing & so small such that B¢ > 0, since D;(t) = D’ (got) + £9tD" (g91). As D(t), D>(t) > 0 on
(0, 1] and G; on (0, o] are strictly increasing. Applying Young’s inequality (3.65) on the last term in
(3.70)
with A = D’( EoB (t)) and B = —,u(t) we find

E(0)
( EOBOH) o [ E®B®)
kefto(HD (80 o) ) - B(t)( B(l‘)ﬂo(f))(D( o) ))

o E0B(1)
< B0 3(aB (On o(t))+%1)3(1)(0 E0) ))
< %D4(—B(T)ﬂo(l))

o (80 E()B(1) ) D (80 E(0)B(1) )

B(t) E(0) E(0)

T E0B(1)
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Here, choose o small enough in a manner that B¢ — o0y > 0 and combining (3.70) and (3.71), we
have

K < _ﬁ7§0(f) 2(E(t)B(t)) L T6®

B(1) E(0) B(1) ( 5 B(l)/lo(t)) (3.72)

where B7 = Bs — gy > 0, Ds(t) = tD'™ (1) and Dy(r) = D (1),
In light of fact E' < 0 and B’ < 0, then Dz(%f)m) is decreasing. As a consequences of this, for
0<t<T, wehave

E(T)B(T) E(®)B(1)
In the next step, combine (3.72) with (3.73) and multiply by B(t), the following is obtained
E(TB(T k
BUYKID) + Bro()Ds (%0)()) < oD Bloyoto)) (3.74)
Since B’ < 0, then forany 0 <t < T
E(TB(T k
(BIGY (1) + Brlo()D (%) (DD 2 BlOwo 1))
— k
< LD 2800 (3.75)
Simplify (3.75) over [0, T] and apply B(0) = 1, the following is obtained
E(T)B(T K
D, (M) f Lodt < 20 | f {()Dy B(t)uo(t)) 1. (3.76)
E(0) B
Consequently, we have
DDy (% B(t)o(t))dt
D, (E(T)B(T)) 3 KO 4 2 [TL0DsBOpo(®) -
E© Izt
As a results of this, we obtain
KO £)Da(% B(t)po(t))dt
(E(T)B(T)) <D ( 20 4 2 [TT Dy BOu(1) ) a78)
E© 1 G
As a result of this, we get
O 4 o (THND, (e Bu(t)dt
by < EO 1 = vef JODABya0) ) 570
B(T) fo Lo(ndt
where, we have (3.29) with ¢| = g(((;)), $ = 7(2(0), ¢z =<, and ¢4(t) = ks 2B(1).

Hence, the required result is obtained 3. 8
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4. Conclusions

The purpose of this work was to study when the coupled system of nonlinear viscoelastic wave
equations with distributed delay components, infinite memory and Balakrishnan-Taylor damping.
Assume the kernels g; : R, — R, holds true the below

gi(1) < =Li(HGi(gi(1), VteR,, for i=1,2,

in which ¢; and G; are functions. We prove the stability of the system under this highly generic
assumptions on the behaviour of g; at infinity and by dropping the boundedness assumptions in the
historical data. This type of problem is frequently found in some mathematical models in applied
sciences. Especially in the theory of viscoelasticity. What interests us in this current work is the
combination of these terms of damping, which dictates the emergence of these terms in the problem.
In the next work, we will try to using the same method with same problem. But in added of other
dampings.
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