In this paper, we study discrete elliptic Dirichlet problems. Applying a variational technique together with Morse theory, we establish several results on the existence and multiplicity of nontrivial solutions. Finally, two examples and numerical simulations are provided to illustrate our theoretical results.
Citation: Yuhua Long, Huan Zhang. Existence and multiplicity of nontrivial solutions to discrete elliptic Dirichlet problems[J]. Electronic Research Archive, 2022, 30(7): 2681-2699. doi: 10.3934/era.2022137
In this paper, we study discrete elliptic Dirichlet problems. Applying a variational technique together with Morse theory, we establish several results on the existence and multiplicity of nontrivial solutions. Finally, two examples and numerical simulations are provided to illustrate our theoretical results.
[1] | J. S. Yu, J. Li, Discrete-time models for interactive wild and sterile mosquitoes with general time steps, Math. Biosci., 346 (2022), 108797. https://doi.org/10.1016/j.mbs.2022.108797 doi: 10.1016/j.mbs.2022.108797 |
[2] | Y. H. Long, L. Wang, Global dynamics of a delayed two-patch discrete SIR disease model, Commun. Nonlinear Sci. Numer. Simul., 83 (2020), 105117. https://doi.org/10.1016/j.cnsns.2019.105117 doi: 10.1016/j.cnsns.2019.105117 |
[3] | Y. H. Long, Existence of multiple and sign-changing solutions for a second-order nonlinear functional difference equation with periodic coefficients, J. Differ. Equation Appl., 26 (2020), 966–986. https://doi.org/10.1080/10236198.2020.1804557 doi: 10.1080/10236198.2020.1804557 |
[4] | Y. H. Long, Existence of two homoclinic solutions for a nonperiodic difference equation with a perturbation, AIMS Math., 6 (2021), 4786–4802. https://doi.org/10.3934/math.2021281 doi: 10.3934/math.2021281 |
[5] | Y. H. Long, J. L. Chen, Existence of multiple solutions to second-order discrete Neumann boundary value problems, Appl. Math. Lett., 83 (2018), 7–14. https://doi.org/10.1016/j.aml.2018.03.006 doi: 10.1016/j.aml.2018.03.006 |
[6] | J. S. Yu, Z. M. Guo, X. F. Zou, Periodic solutions of second order self-adjoint difference equations, J. Lond. Math. Soc., 71 (2005), 146–160. https://doi.org/10.1112/S0024610704005939 doi: 10.1112/S0024610704005939 |
[7] | Y. H. Long, S. H. Wang, J. L. Chen, Multiple solutions of fourth-order difference equations with different boundary conditions, Bound. Value Probl., 2019 (2019), 152. https://doi.org/10.1186/s13661-019-1265-2 doi: 10.1186/s13661-019-1265-2 |
[8] | Y. H. Long, S. H. Wang, Multiple solutions for nonlinear functional difference equations by the invariant sets of descending flow, J. Differ. Equation Appl., 25 (2019), 1768–1789. https://doi.org/10.1080/10236198.2019.1694014 doi: 10.1080/10236198.2019.1694014 |
[9] | Y. H. Long, Q. Q. Zhang, Sign-changing solutions of a discrete fourth-order Lidstone problem with three parameters, J. Appl. Anal. Comput., 2022. |
[10] | S. Heidarkhani, F. Gharehgazlouei, M. Imbesi, Existence and multiplicity of homoclinic solutions for a difference equation, Electron. J. Differ. Equations, 115 (2020), 1–12. https://www.webofscience.com/wos/alldb/full-record/WOS:000591718300001 |
[11] | F. Gharehgazlouei, S. Heidarkhani, New existence criterion of infinitely many solutions for partial discrete Dirichlet problems, Tbilisi Math. J., 13 (2020), 43–51. http://dx.doi.org/10.32513/tbilisi/1601344897 doi: 10.32513/tbilisi/1601344897 |
[12] | M. Bohner, G. Caristi, S. Heidarkhani, S. Moradi, Existence of at least one homoclinic solution for a nonlinear second-order difference equation, Int. J. Nonlinear Sci. Numer. Simul., 20 (2019), 433–439. https://doi.org/10.1515/ijnsns-2018-0223 doi: 10.1515/ijnsns-2018-0223 |
[13] | S. Heidarkhani, G. A. Afrouzi, S. Moradi, An existence result for discrete anisotropic equations, Taiwanese J. Math., 22 (2018), 725–739. http://dx.doi.org/10.11650/tjm/170801 doi: 10.11650/tjm/170801 |
[14] | S. Heidarkhani, G. A. Afrouzi, S. Moradi, G. Caristi, Existence of multiple solutions for a perturbed discrete anisotropic equation, J. Differ. Equation Appl., 23 (2017), 1491–1507. https://doi.org/10.1080/10236198.2017.1337108 doi: 10.1080/10236198.2017.1337108 |
[15] | S. Heidarkhani, M. Imbesi, Multiple solutions for partial discrete Dirichlet problems depending on a real parameter, J. Differ. Equation Appl., 21 (2015), 96–110. https://doi.org/10.1080/10236198.2014.988619 doi: 10.1080/10236198.2014.988619 |
[16] | Z. Zhou, J. X. Ling, Infinitely many positive solutions for a discrete two point nonlinear boundary value problem with $\phi_{c}$-Laplacian, Appl. Math. Lett., 91 (2019), 28–34. https://doi.org/10.1016/j.aml.2018.11.016 doi: 10.1016/j.aml.2018.11.016 |
[17] | Y. H. Long, X. Q. Deng, Existence and multiplicity solutions for discrete Kirchhoff type problems, Appl. Math. Lett., 126 (2022), 107817. https://doi.org/10.1016/j.aml.2021.107817 doi: 10.1016/j.aml.2021.107817 |
[18] | Y. H. Long, Multiple results on nontrivial solutions of discrete Kirchhoff type problems, J. Appl. Math. Comput., 2022. https://doi.org/10.1007/s12190-022-01731-0. |
[19] | Y. H. Long, Nontrivial solutions of discrete Kirchhoff type problems via Morse theory, Adv. Nonlinear Anal., 11 (2022), 1352–1364. |
[20] | Y. H. Long, H. Zhang, Three nontrivial solutions for second-order partial difference equation via Morse theory, J. Funct. Spaces, 2022. https://doi.org/10.1155/2022/1564961 |
[21] | S. J. Du, Z. Zhou, On the existence of multiple solutions for a partial discrete Dirichlet boundary value problem with mean curvature operator, Adv. Nonlinear Anal., 11 (2022), 198–211. https://doi.org/10.1515/anona-2020-0195 doi: 10.1515/anona-2020-0195 |
[22] | S. H. Wang, Z. Zhou, Three solutions for a partial discrete Dirichlet boundary value problem with p-Laplacian, Bound. Value Probl., 2021 (2021), 39. https://doi.org/10.1186/s13661-021-01514-9 doi: 10.1186/s13661-021-01514-9 |
[23] | S. S. Cheng, Partial difference equations, Taylor Francis, 2003. https://doi.org/10.1201/9780367801052 |
[24] | H. S. Tang, W. Luo, X. Li, M. J. Ma, Nontrivial solutions of discrete elliptic boundary value problems, Comput. Math. Appl., 55 (2008), 1854–1860. https://doi.org/10.1016/j.camwa.2007.08.030 doi: 10.1016/j.camwa.2007.08.030 |
[25] | G. Zhang, Existence of nontrivial solutions for discrete elliptic boundary value problems, Numer. Methods Partial Differ. Equations, 22 (2006), 1479–1488. https://doi.org/10.1002/num.20164 doi: 10.1002/num.20164 |
[26] | J. B. Su, L. G. Zhao, An elliptic resonance problem with multiple solutions, J. Math. Anal. Appl., 319 (2006), 604–616. https://doi.org/10.1016/j.jmaa.2005.10.059 doi: 10.1016/j.jmaa.2005.10.059 |
[27] | Q. Wang, W. J. Liu, M. Wang, Nontrivial periodic solutions for second-order differential delay equations, J. Appl. Math. Comput., 7 (2017), 931–941. http://dx.doi.org/10.11948/2017058 doi: 10.11948/2017058 |
[28] | K. C. Chang, Infinite dimensional Morse theory and multiple solutions problem, Birkhäuser Boston, Boston, 1993. http://dx.doi.org/10.1007/978-1-4612-0385-8 |
[29] | K. C. Chang, Solutions of asymptotically linear operator via Morse theory, Comm. Pure Appl. Math., 34 (1981), 693–712. https://doi.org/10.1002/cpa.3160340503 doi: 10.1002/cpa.3160340503 |
[30] | Y. H. Long, H. P. Shi, X. Q. Peng, Nontrivial periodic solutions to delay difference equations via Morse theory, Open Math., 16 (2018), 885–896. https://doi.org/10.1515/math-2018-0077 doi: 10.1515/math-2018-0077 |
[31] | M. Imbesi, G. M. Bisci, Discrete elliptic Dirichlet problems and nonlinear algebraic systems, Mediterr. J. Math., 13 (2016), 263–278. http://dx.doi.org/10.1007/s00009-014-0490-2 doi: 10.1007/s00009-014-0490-2 |
[32] | P. Bartolo, V. Benci, D. Fortunato, Abstract critical point theorems and applications to nonlinear problems with strong resonance at infinity, Nonlinear Anal., 7 (1983), 981–1012. https://doi.org/10.1016/0362-546X(83)90115-3 doi: 10.1016/0362-546X(83)90115-3 |
[33] | J. Mawhin, M. Willem, Critical point theory and Hamiltonian systems, Springer-Verlag, Berlin, 1989. http://dx.doi.org/10.1007/978-1-4757-2061-7 |
[34] | Z. P. Liang, J. B. Su, Multiple solutions for semilinear elliptic boundary value problems with double resonance, J. Math. Anal. Appl., 354 (2009), 147–158. https://doi.org/10.1016/j.jmaa.2008.12.053 doi: 10.1016/j.jmaa.2008.12.053 |
[35] | J. B. Su, Multiplicity results for asymptotically linear elliptic problems at resonance, J. Math. Anal. Appl., 278 (2003), 397–408. https://doi.org/10.1016/S0022-247X(02)00707-2. doi: 10.1016/S0022-247X(02)00707-2 |