Research article Special Issues

Complex q-rung orthopair fuzzy competition graphs and their applications


  • Received: 31 December 2021 Revised: 04 March 2022 Accepted: 09 March 2022 Published: 23 March 2022
  • This manuscript aims to analyze the well-known and massive idea of competition graph (CG) in the presence of a new and dominant technique of complex q-rung orthopair fuzzy (CQROF) setting. The mathematical form of the CQROF setting is more flexible and massive consistent for demonstrating the beneficial option from the collection of objectives during the decision-making process. Additionally, the major concept of in-neighbourhood and out-neighbourhood using CQROF diagraph (CQROFDG) are also invented to enhance the quality of the diagnosed approach. The fundamental theory of CQROF k-competition, CQROF p-competition, CQROF neighbourhood and m-step CQROF neighbourhood graphs are also explored. In the availability of the above-described theories, the basic and significant results for the presented work are obtained to show the compatibility and worth of the invented approaches. To show the practicality of the developed approach, we try to verify the proposed work with the help of various examples. Further, to describe the validity and practicality of the invented work, we diagnosed an application using presented approaches based on the CQROF setting is to enhance the major weakness of the existing approaches. Finally, in the availability of the invented ideas, we discussed the sensitivity analysis of the described approaches.

    Citation: Kifayat Ullah, Abrar Hussain, Tahir Mahmood, Zeeshan Ali, Amerah Alabrah, Sk. Md. Mizanur Rahman. Complex q-rung orthopair fuzzy competition graphs and their applications[J]. Electronic Research Archive, 2022, 30(4): 1558-1605. doi: 10.3934/era.2022080

    Related Papers:

  • This manuscript aims to analyze the well-known and massive idea of competition graph (CG) in the presence of a new and dominant technique of complex q-rung orthopair fuzzy (CQROF) setting. The mathematical form of the CQROF setting is more flexible and massive consistent for demonstrating the beneficial option from the collection of objectives during the decision-making process. Additionally, the major concept of in-neighbourhood and out-neighbourhood using CQROF diagraph (CQROFDG) are also invented to enhance the quality of the diagnosed approach. The fundamental theory of CQROF k-competition, CQROF p-competition, CQROF neighbourhood and m-step CQROF neighbourhood graphs are also explored. In the availability of the above-described theories, the basic and significant results for the presented work are obtained to show the compatibility and worth of the invented approaches. To show the practicality of the developed approach, we try to verify the proposed work with the help of various examples. Further, to describe the validity and practicality of the invented work, we diagnosed an application using presented approaches based on the CQROF setting is to enhance the major weakness of the existing approaches. Finally, in the availability of the invented ideas, we discussed the sensitivity analysis of the described approaches.



    加载中


    [1] L. A. Zadeh, Fuzzy sets, Inf. Control, 8 (1965), 338-353. https://doi.org/10.1016/S0019-9958(65)90241-X doi: 10.1016/S0019-9958(65)90241-X
    [2] K. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets Syst., 20 (1986), 87-96.
    [3] R. R. Yager, Pythagorean fuzzy subsets, in IFSA World Congress and NAFIPS Annual Meeting (IFSA/NAFIPS), 2013, 57-61. https://doi.org/10.1109/IFSA-NAFIPS.2013.6608375
    [4] R. R. Yager, Generalized orthopair fuzzy sets, IEEE Trans. Fuzzy Syst., 25 (2016), 1222-1230. https://doi.org/10.1109/TFUZZ.2016.2604005 doi: 10.1109/TFUZZ.2016.2604005
    [5] M. I. Ali, Another view on q-rung orthopair fuzzy sets, Int. J. Intell. Syst., 33 (2018), 2139-2153. https://doi.org/10.1002/int.22007 doi: 10.1002/int.22007
    [6] P. Liu, P. Wang, Some q-rung orthopair fuzzy aggregation operators and their applications to multiple-attribute decision making, Int. J. Intell. Syst., 33 (2018), 259-280. https://doi.org/10.1002/int.21927 doi: 10.1002/int.21927
    [7] P. Wang, J. Wang, G. Wei, C. Wei, Similarity measures of q-rung orthopair fuzzy sets based on cosine function and their applications, Mathematics, 7 (2019), https://doi.org/10.3390/math7040340 doi: 10.3390/math7040340
    [8] G. Wei, H. Gao, Y. Wei, Some q-rung orthopair fuzzy Heronian mean operators in multiple attribute decision making, Int. J. Intell. Syst., 33 (2018), 1426-1458, https://doi.org/10.1002/int.21985 doi: 10.1002/int.21985
    [9] M. Riaz, M. R. Hashmi, Linear Diophantine fuzzy set and its applications towards multi-attribute decision-making problems, J. Intell. Fuzzy Syst., 37 (2019), 5417-5439. https://doi.org/10.3233/JIFS-190550 doi: 10.3233/JIFS-190550
    [10] M. Riaz, N. Çağman, I. Zareef, M. Aslam, N-soft topology and its applications to multi-criteria group decision making, J. Intell. Fuzzy Syst., 36 (2019), 6521-6536. https://doi.org/10.3233/JIFS-182919 doi: 10.3233/JIFS-182919
    [11] M. Akram, A. Luqman, J. C. R. Alcantud, Risk evaluation in failure modes and effects analysis: hybrid TOPSIS and ELECTRE I solutions with Pythagorean fuzzy information, Neural Comput. Appl., 33 (2021), 5675-5703. https://doi.org/10.1007/s00521-020-05350-3 doi: 10.1007/s00521-020-05350-3
    [12] M. J. Khan, J. C. R. Alcantud, P. Kumam, W. Kumam, A. N. Al-Kenani, An axiomatically supported divergence measures for q-rung orthopair fuzzy sets, Int. J. Intell. Syst., 36 (2021), 6133-6155. https://doi.org/10.1002/int.22545 doi: 10.1002/int.22545
    [13] D. Ramot, R. Milo, M. Friedman, A. Kandel, Complex fuzzy sets, IEEE Trans. Fuzzy Syst., 10 (2002), 171-186. https://doi.org/10.1109/91.995119 doi: 10.1109/91.995119
    [14] J. S. Alkouri and A. R. Salleh, Complex intuitionistic fuzzy sets, in AIP conference proceedings, 1482 (2012), 464-470. https://doi.org/10.1063/1.4757515
    [15] K. Ullah, T. Mahmood, Z. Ali, N. Jan, On some distance measures of complex Pythagorean fuzzy sets and their applications in pattern recognition, Complex Intell. Syst., 6 (2020), https://doi.org/10.1007/s40747-019-0103-6 doi: 10.1007/s40747-019-0103-6
    [16] P. Liu, T. Mahmood, Z. Ali, Complex q-rung orthopair fuzzy aggregation operators and their applications in multi-attribute group decision making, Information, 11 (2020). https://doi.org/10.3390/info11010005 doi: 10.3390/info11010005
    [17] P. Liu, Z. Ali, T. Mahmood, A method to multi-attribute group decision-making problem with complex q-rung orthopair linguistic information based on heronian mean operators, Int. J. Comput. Intell. Syst., 12 (2019), 1465-1496, https://doi.org/10.2991/ijcis.d.191030.002 doi: 10.2991/ijcis.d.191030.002
    [18] M. Gulzar, M. H. Mateen, D. Alghazzawi, N. Kausar, A novel applications of complex intuitionistic fuzzy sets in group theory, IEEE Access, 8 (2020), 196075-196085.
    [19] H. Garg, D. Rani, Robust averaging geometric aggregation operators for complex intuitionistic fuzzy sets and their applications to MCDM process, Arabian J. Sci. Eng., 45 (2020), 2017-2033. https://doi.org/10.1007/s13369-019-03925-4 doi: 10.1007/s13369-019-03925-4
    [20] N. Yaqoob, M. Gulistan, S. Kadry, H. A. Wahab, Complex intuitionistic fuzzy graphs with application in cellular network provider companies, Mathematics, 7 (2019), 35-47. https://doi.org/10.3390/math7010035 doi: 10.3390/math7010035
    [21] H. Garg, D. Rani, Complex interval-valued intuitionistic fuzzy sets and their aggregation operators, Fundam. Inf., 164 (2019), 61-101. https://doi.org/10.3233/FI-2019-1755 doi: 10.3233/FI-2019-1755
    [22] X. Ma, M. Akram, K. Zahid, J. C. R. Alcantud, Group decision-making framework using complex Pythagorean fuzzy information, Neural Comput. Appl., 33 (2021) 2085-2105. https://doi.org/10.1007/s00521-020-05100-5 doi: 10.1007/s00521-020-05100-5
    [23] M. Akram, A. Bashir, S. Samanta, Complex Pythagorean fuzzy planar graphs, Int. J. Appl. Comput. Math., 6 (2020), 1-27. https://doi.org/10.1007/s40819-020-00817-2 doi: 10.1007/s40819-020-00817-2
    [24] M. Akram, A. Sattar, Competition graphs under complex Pythagorean fuzzy information, J. Appl. Math. Comput., 63 (2020), 543-583. https://doi.org/10.1007/s12190-020-01329-4 doi: 10.1007/s12190-020-01329-4
    [25] P. Liu, M. Akram, A. Sattar, Extensions of prioritized weighted aggregation operators for decision-making under complex q-rung orthopair fuzzy information, J. Intell. Fuzzy Syst., (2020), 1-25. https://doi.org/10.3233/JIFS-200789 doi: 10.3233/JIFS-200789
    [26] Y. Rong, Y. Liu, Z. Pei, Complex q-rung orthopair fuzzy 2-tuple linguistic Maclaurin symmetric mean operators and its application to emergency program selection, Int. J. Intell. Syst., 35 (2020), 1749-1790. https://doi.org/10.1002/int.22271 doi: 10.1002/int.22271
    [27] Z. Ali, T. Mahmood, Maclaurin symmetric mean operators and their applications in the environment of complex q-rung orthopair fuzzy sets, Comp. Appl. Math., 39 (2020), 161-174, https://doi.org/10.1007/s40314-020-01145-3 doi: 10.1007/s40314-020-01145-3
    [28] A. Rosenfeld, Fuzzy graphs, in Fuzzy sets and their applications to cognitive and decision processes, Elsevier, (1975), 77-95.
    [29] R. Parvathi, M. G. Karunambigai, Intuitionistic fuzzy graphs, in Computational intelligence, theory, and applications, Springer, (2006), 139-150. https://doi.org/10.1007/3-540-34783-6_15
    [30] R. Parvathi, M. G. Karunambigai, K. T. Atanassov, Operations on intuitionistic fuzzy graphs, in IEEE international conference on fuzzy systems, (2009), 1396-1401.
    [31] B. Davvaz, N. Jan, T. Mahmood, K. Ullah, Intuitionistic fuzzy graphs of n-th type with applications, J. Intell. Fuzzy Syst., 36 (2019), 3923-3932. https://doi.org/10.3233/JIFS-181123 doi: 10.3233/JIFS-181123
    [32] M. Akram, A. Habib, F. Ilyas, J. Mohsan Dar, Specific types of Pythagorean fuzzy graphs and application to decision-making, Mathe. Comput. Appl., 23 (2018), 42-54. https://doi.org/10.3390/mca23030042 doi: 10.3390/mca23030042
    [33] A. Habib, M. Akram, A. Farooq, q-Rung orthopair fuzzy competition graphs with application in the soil ecosystem, Mathematics, 7 (2019), 91-98. https://doi.org/10.3390/math7010091 doi: 10.3390/math7010091
    [34] A. Luqman, M. Akram, N. Al-Kenani, q-rung orthopair fuzzy hypergraphs with applications. Mathematics 7 (2019), 260-273. https://doi.org/10.3390/math7030260 doi: 10.3390/math7030260
    [35] P. Thirunavukarasu, R. Suresh, K. K. Viswanathan, Energy of a complex fuzzy graph, Int. J. Math. Sci. Eng. Appl., 10 (2016), 243-248.
    [36] A. Anwar, F. Chaudhry, On Certain Products of Complex Intuitionistic Fuzzy Graphs, J. Funct. Spaces, 2021. https://doi.org/10.1155/2021/6515646 doi: 10.1155/2021/6515646
    [37] M. Akram, S. Naz, A novel decision-making approach under complex Pythagorean fuzzy environment, Math. Comput. Appl., 24 (2019), 73-79. https://doi.org/10.3390/mca24030073 doi: 10.3390/mca24030073
    [38] S. Sahoo, M. Pal, Intuitionistic fuzzy competition graphs, J. Appl. Math. Comput., 52 (2016), 37-57. https://doi.org/10.1007/s12190-015-0928-0 doi: 10.1007/s12190-015-0928-0
    [39] M. Akram, A. Khan, Complex Pythagorean Dombi fuzzy graphs for decision making, Granular Comput., 6 (2021), 645-669. https://doi.org/10.1007/s41066-020-00223-5 doi: 10.1007/s41066-020-00223-5
    [40] M. Akram, G. Shahzadi, Decision-making approach based on Pythagorean Dombi fuzzy soft graphs, Granular Comput., 6 (2021), 671-689. https://doi.org/10.1007/s41066-020-00224-4 doi: 10.1007/s41066-020-00224-4
    [41] S. Samanta, M. Pal, Fuzzy planar graphs, IEEE Trans. Fuzzy Syst., 23 (2015), 1936-1942. https://doi.org/10.1109/TFUZZ.2014.2387875 doi: 10.1109/TFUZZ.2014.2387875
    [42] T. Pramanik, S. Samanta, M. Pal, Interval-valued fuzzy planar graphs, Int. J. Mach. Learn. Cybern., 7 (2016), 653-664. https://doi.org/10.1007/s13042-014-0284-7 doi: 10.1007/s13042-014-0284-7
    [43] S. Samanta, M. Pal, A. Pal, New concepts of fuzzy planar graph, Int. J. Adv. Res. Artif. Intell., 3 (2014), 52-59.
    [44] N. Alshehri, M. Akram, Intuitionistic fuzzy planar graphs, Discrete Dyn. Nat. Soc., 2014. https://doi.org/10.1155/2014/397823 doi: 10.1155/2014/397823
    [45] M. Akram, J. Mohsan Dar, A. Farooq, Planar graphs under Pythagorean fuzzy environment, Mathematics, 6 (2018), 278-293. https://doi.org/10.3390/math6120278 doi: 10.3390/math6120278
    [46] M. Shoaib, Notion of complex pythagorean fuzzy graph with properties and application, J. Multiple-Valued Logic Soft Comput., 34 (2020).
    [47] M. Akram, A. Sattar, Competition graphs under complex Pythagorean fuzzy information, J. Appl. Math. Comput., 63 (2020), 543-583. https://doi.org/10.1007/s12190-020-01329-4 doi: 10.1007/s12190-020-01329-4
    [48] A. Hussain, A. Alsanad, K. Ullah, Z. Ali, M. K. Jamil, M. A. Mosleh, Investigating the short-circuit problem using the planarity index of complex q-rung orthopair fuzzy planar graphs, Complexity, 2021. https://doi.org/10.1155/2021/8295997 doi: 10.1155/2021/8295997
    [49] L. T. Koczy, N. Jan, T. Mahmood, K. Ullah, Analysis of social networks and Wi-Fi networks by using the concept of picture fuzzy graphs, Soft Comput., 24 (2020), 16551-16563, https://doi.org/10.1007/s00500-020-04959-9 doi: 10.1007/s00500-020-04959-9
    [50] N. Jan, Some root level modifications in interval valued fuzzy graphs and their generalizations including neutrosophic graphs, Mathematics, 7 (2019), 72-88.
    [51] R. Krishankumar, Solving green supplier selection problem using q-rung orthopair fuzzy-based decision framework with unknown weight information. Appl. Soft Comput., 94 (2020). https://doi.org/10.1016/j.asoc.2020.106431 doi: 10.1016/j.asoc.2020.106431
    [52] A. Si, S. Das, S. Kar, Picture fuzzy set-based decision-making approach using Dempster-Shafer theory of evidence and grey relation analysis and its application in COVID-19 medicine selection. Soft Comput., (2020), 1-15. https://doi.org/10.1007/s00500-021-05909-9 doi: 10.1007/s00500-021-05909-9
    [53] R. Krishankumar, K. S. Ravichandran, S. Kar, F. Cavallaro, E. K. Zavadskas, A. Mardani., Scientific decision framework for evaluation of renewable energy sources under q-rung orthopair fuzzy set with partially known weight information. Sustainability, 11 (2019). https://doi.org/10.3390/su11154202 doi: 10.3390/su11154202
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2014) PDF downloads(86) Cited by(2)

Article outline

Figures and Tables

Figures(18)  /  Tables(19)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog