For a projective variety $ X $ in $ {\mathbb{P}}^{m} $ of dimension $ n $, an additive action on $ X $ is an effective action of $ {\mathbb{G}}_{a}^{n} $ on $ {\mathbb{P}}^{m} $ such that $ X $ is $ {\mathbb{G}}_{a}^{n} $-invariant and the induced action on $ X $ has an open orbit. Arzhantsev and Popovskiy have classified additive actions on hyperquadrics of corank 0 or 1. In this paper, we give the classification of additive actions on hyperquadrics of corank 2 whose singularities are not fixed by the $ {\mathbb{G}}_{a}^{n} $-action.
Citation: Yingqi Liu. Additive actions on hyperquadrics of corank two[J]. Electronic Research Archive, 2022, 30(1): 1-34. doi: 10.3934/era.2022001
For a projective variety $ X $ in $ {\mathbb{P}}^{m} $ of dimension $ n $, an additive action on $ X $ is an effective action of $ {\mathbb{G}}_{a}^{n} $ on $ {\mathbb{P}}^{m} $ such that $ X $ is $ {\mathbb{G}}_{a}^{n} $-invariant and the induced action on $ X $ has an open orbit. Arzhantsev and Popovskiy have classified additive actions on hyperquadrics of corank 0 or 1. In this paper, we give the classification of additive actions on hyperquadrics of corank 2 whose singularities are not fixed by the $ {\mathbb{G}}_{a}^{n} $-action.
[1] | B. Hassett, Y. Tschinkel, Geometry of equivariant compactifications of {${\textbf{G}}_a^n$}, Int. Math. Res. Not., 22 (1999), 1211–1230. https://doi.org/10.1155/S1073792899000665 doi: 10.1155/S1073792899000665 |
[2] | I. Arzhantsev, A. Popovskiy, Additive actions on projective hypersurfaces, in Automorphisms in birational and affine geometry (eds. J. McKernan, C. Ciliberto, M. Zaidenberg, I. Cheltsov), Springer Proceedings in Mathematics and Statistics, (2014), 17–33. https: //doi.org/10.1007/978-3-319-05681-4_2 |
[3] | I. Arzhantsev, E. V. Sharoyko, Hassett-{T}schinkel correspondence: modality and projective hypersurfaces, J. Algebra, 348 (2011), 217–232. https://doi.org/10.1016/j.jalgebra.2011.09.026 doi: 10.1016/j.jalgebra.2011.09.026 |
[4] | S. Friedland, Simultaneous similarity of matrices, Adv. Math., 50 (1983), 189–265. https://doi.org/10.1016/0001-8708(83)90044-0 doi: 10.1016/0001-8708(83)90044-0 |
[5] | F. R. Gantmacher, The theory of matrices. Vol. 1, Translated from the Russian by K. A. Hirsch, Reprint of the 1959 translation, AMS Chelsea Publishing, Providence, RI, 1998. |
[6] | E. V. Sharoyko, The Hassett-Tschinkel correspondence and automorphisms of a quadric, Mat. Sb., 200 (2009), 145–160. https://doi.org/10.1070/SM2009v200n11ABEH004056 doi: 10.1070/SM2009v200n11ABEH004056 |