Research article

Additive actions on hyperquadrics of corank two

  • Received: 24 March 2021 Revised: 30 September 2021 Accepted: 12 October 2021 Published: 08 December 2021
  • For a projective variety $ X $ in $ {\mathbb{P}}^{m} $ of dimension $ n $, an additive action on $ X $ is an effective action of $ {\mathbb{G}}_{a}^{n} $ on $ {\mathbb{P}}^{m} $ such that $ X $ is $ {\mathbb{G}}_{a}^{n} $-invariant and the induced action on $ X $ has an open orbit. Arzhantsev and Popovskiy have classified additive actions on hyperquadrics of corank 0 or 1. In this paper, we give the classification of additive actions on hyperquadrics of corank 2 whose singularities are not fixed by the $ {\mathbb{G}}_{a}^{n} $-action.

    Citation: Yingqi Liu. Additive actions on hyperquadrics of corank two[J]. Electronic Research Archive, 2022, 30(1): 1-34. doi: 10.3934/era.2022001

    Related Papers:

  • For a projective variety $ X $ in $ {\mathbb{P}}^{m} $ of dimension $ n $, an additive action on $ X $ is an effective action of $ {\mathbb{G}}_{a}^{n} $ on $ {\mathbb{P}}^{m} $ such that $ X $ is $ {\mathbb{G}}_{a}^{n} $-invariant and the induced action on $ X $ has an open orbit. Arzhantsev and Popovskiy have classified additive actions on hyperquadrics of corank 0 or 1. In this paper, we give the classification of additive actions on hyperquadrics of corank 2 whose singularities are not fixed by the $ {\mathbb{G}}_{a}^{n} $-action.



    加载中


    [1] B. Hassett, Y. Tschinkel, Geometry of equivariant compactifications of {${\textbf{G}}_a^n$}, Int. Math. Res. Not., 22 (1999), 1211–1230. https://doi.org/10.1155/S1073792899000665 doi: 10.1155/S1073792899000665
    [2] I. Arzhantsev, A. Popovskiy, Additive actions on projective hypersurfaces, in Automorphisms in birational and affine geometry (eds. J. McKernan, C. Ciliberto, M. Zaidenberg, I. Cheltsov), Springer Proceedings in Mathematics and Statistics, (2014), 17–33. https: //doi.org/10.1007/978-3-319-05681-4_2
    [3] I. Arzhantsev, E. V. Sharoyko, Hassett-{T}schinkel correspondence: modality and projective hypersurfaces, J. Algebra, 348 (2011), 217–232. https://doi.org/10.1016/j.jalgebra.2011.09.026 doi: 10.1016/j.jalgebra.2011.09.026
    [4] S. Friedland, Simultaneous similarity of matrices, Adv. Math., 50 (1983), 189–265. https://doi.org/10.1016/0001-8708(83)90044-0 doi: 10.1016/0001-8708(83)90044-0
    [5] F. R. Gantmacher, The theory of matrices. Vol. 1, Translated from the Russian by K. A. Hirsch, Reprint of the 1959 translation, AMS Chelsea Publishing, Providence, RI, 1998.
    [6] E. V. Sharoyko, The Hassett-Tschinkel correspondence and automorphisms of a quadric, Mat. Sb., 200 (2009), 145–160. https://doi.org/10.1070/SM2009v200n11ABEH004056 doi: 10.1070/SM2009v200n11ABEH004056
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1839) PDF downloads(184) Cited by(4)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog