
Electronic  
Research Archive

http://www.aimspress.com/journal/era

ERA, 30(1): 1–34.
DOI: 10.3934/era.2022001
Received: 24 March 2021
Revised: 30 September 2021
Accepted: 12 October 2021
Published: 08 December 2021

Research article

Additive actions on hyperquadrics of corank two

Yingqi Liu*

Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190,
China

* Correspondence: Email: liuyingqi20@mails.ucas.ac.cn.

Abstract: For a projective variety X in Pm of dimension n, an additive action on X is an effective action
of Gn

a on Pm such that X is Gn
a-invariant and the induced action on X has an open orbit. Arzhantsev and

Popovskiy have classified additive actions on hyperquadrics of corank 0 or 1. In this paper, we give
the classification of additive actions on hyperquadrics of corank 2 whose singularities are not fixed by
the Gn

a-action.
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1. Introduction

1.1. Main results

Throughout the paper, we work over an algebraically closed field K of characteristic zero. Let
Ga = (K,+) be the additive group of the field and Gn

a = Ga ×Ga × ...×Ga(n times) be the vector group.
In this article we study additive actions on projective varieties defined as follows.

Definition 1.1. Let X be a closed subvariety of dimension n in Pm. An additive action on X is an
effective algebraic group action Gn

a × P
m → Pm such that X is Gn

a-invariant and the induced action
Gn

a×X → X has an open orbit O. Two additive actions on X are said to be equivalent if one is obtained
from another via an automorphism of Pm preserving X.

In the following we represent an additive action on X by a pair (Gn
a, X) or a triple (Gn

a, X,L), where L
is the underlying projective space. We define X\O to be the boundary of the action and define l(Gn

a, X)
to be the maximal dimension of orbits in the boundary. For a group action of G on a set S , we define
the set of fixed points under the action to be Fix(S ) = {x ∈ S | g · x = x, for any g ∈ G}. We say a subset
in the projective space is non-degenerate if it is not contained in any hyperplane.
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Recall that a Gn
a-action on Pm is induced by a linear representation of Gn

a, namely write Pm = PV for
an (m + 1)-dimensional vector space V , then the action is given by:

Gn
a × PV 7→ PV

(g, [v]) 7→ [ρ(g)(v)]

where ρ : Gn
a 7→ GL(V) is a rational representation of the vector group Gn

a. In [1] Hassett and Tschinkel
showed that if the action is faithful and has a non-degenerate orbit O in Pm, then the vector space V can
be realized as a finite dimensional local algebra. They identified additive actions on projective spaces
with certain finite dimensional local algebras. The simplest additive action on a projective space is the
one with fixed boundary, it is unique and can be given explicitly as follows.

Gm
a × P

m 7→Pm

(g1, ..., gm) × [x0 : x1 : ... : xm] 7→[x0 : x1 + g1x0 : ... : xm + gmx0]

In [2] Arzhantsev and Popovskiy identified additive actions on hypersurfaces in Pn+1 with invariant
d-linear symmetric forms on (n + 2)-dimensional local algebras. As an application they obtained clas-
sifications of additive actions on hyperquadrics of corank 0 and 1, where the corank of a hyperquadric
Q is the corank of the quadratic form defining Q. Given an additive action on a hyperquadric Q, if
corank(Q) = 0 (i.e., Q is smooth), then the action is unique up to equivalences (also cf. [6]) and
l(Gn

a,Q) = 1. If corank(Q) = 1, then the action is determined by a symmetric matrix up to an orthogo-
nal transformation, adding a scalar matrix and a scalar multiplication (cf. [2, Proof of Proposition 7]),
namely for two symmetric matrices Λ and Λ′, they determine the same action if and only if there exist
a nonzero a ∈ K, h ∈ K and an orthogonal matrix A (i.e., A⊺A = I) such that Λ′ = A⊺(aΛ + hI)A. In
this case, the action has fixed singular locus and l(Gn

a,Q) = 2.
In this paper, we study additive actions on hyperquadrics of corank 2. In this case the action is

determined by two symmetric bilinear forms on a certain finite dimesnional local algebra. The singular
locus, which is a projective line, is either fixed by the action or is the union of a orbit and a fixed point.

When the singular locus is fixed by the Gn
a-action, it is a natural generalization of the case when

corank(Q) = 1. In this case, using a similar method as in [2, Proposition 7] one can see that the
action is determined by a pair of symmetric matrices up to a simultaneous orthogonal similarity and
an affine transformation of pais of matrices, namely for two pairs of symmetric matrices (Λ1,Λ2) and
(Λ′1,Λ

′
2), they determine the same action if and only if there exist a11, a12, a21, a22, h1, h2 ∈ K with

a11a22 − a12a21 , 0 and an orthogonal matrix A such that:

Λ′1 = A⊺(a11Λ1 + a12Λ2 + h1I)A
Λ′2 = A⊺(a21Λ1 + a22Λ2 + h2I)A

Remark 1.2. For K = C, the problem of classifying pairs of matrices under simultaneous similarity is
solved explicitly by Friedland [4]. As an application, for almost all pairs of symmetric matrices (A, B),
the characteristic polynomial |λI − (A + xB)| determines a finite number of similtaneous orthogonal
similarities classes.

In this paper we focus on the case when the action has unfixed singularities, our main observation is
that under the identification, one of the bilinear forms vanishes on a certain hyperplane of the maximal

Electronic Research Archive Volume 30, Issue 1, 1–34.



3

ideal. As a result, the action can be recovered from two kinds of simpler actions which has been
classified before. One is an action on a projective space with fixed boundary, the other one is an action
on a hyperquadric of corank r ⩾ 2, which can be simply recovered from an action on a hyperquadric
of corank one as follows.

Definition 1.3. Let Q be a hyperquadric of corank one in P = PV with an additive action induced by
ρ : Gn

a 7→ GL(V). Choose an element α in the open orbit O. For any r ⩾ 1, viewing P as a subspace
of P′ = Pn+r of codimension r and write the coordinate of P and P′ to be [v] = [x0, x1 : ... : xn] and
[v, z] = [v : z1 : ... : zr] respectively, where α = [1 : 0 : ... : 0]. Let L = {v = 0} ⊆ P′ and Q̃ be the
projective cone over Q with vertex being L. Then we extend the action on Q to Q̃ as follows.

Write Gn+r
a = Gn

a × G
r
a = {(g, h) : g ∈ Gn

a, h ∈ G
r
a} , then the action (Gn+r

a , Q̃) is defined to be:

Gn+r
a × Q̃ 7→Q̃

(g, h) × [v : z] 7→[ρ(g)(v) : z + x0 · h]

If we extend the action using another element α′ ∈ O, then the induced action on Q̃ is equivalent to the
previous action through an linear isomorphism ϕ of P′ such that ϕ(P) = P, ϕ(α) = α′ and ϕ|L = idL.
Hence the definition of the extended action on Q̃ is unique up to equivalences. We call the extended
action is simply recovered from the given action (Gn

a,Q).

Remark 1.4. Geometrically the action on Q̃ is extended by the action on Q through an action on a
projective space with fixed boundary. Note that Q̃ is contained in the linear span < Lα,D >, where Lα
is the cone over L with the vertex being α , D is the boundary Q\O. Hence the action of Gn+r

a = Gn
a×G

r
a

on Q̃ is determined by its action on Lα and D, which is rather simple: the action of Gn
a on Lα and the

action of Gr
a on D are both trival while the action of Gr

a on Lα is an additive action on the projective
space with fixed boundary.

Now to recover a given action by a simpler action, we introduce an operation for any given additive
action on a hyperquadric with unfixed singularities or an action on a projective space with unfixed
boundary. We start with the following definition.

Definition 1.5. Let X in Pm be a hyperquadric or a projective space with an additive action, O being
the open orbit.

K(X) =

S ing(X) if X is a hyperquadric

X\O if X is a projective space

Theorem 1.6. For an additive action on X in Pm, where X is either a hyperquadric or a projective
space with open orbit O such that K(X) ⊈ Fix(X). Choose x0 ∈ O. Let G(1) = ∩x∈K(X)Gx and let L(1) be
the linear span of G(1) · x0, then:
(i) L(1) ⊊ Pm.
(ii) L(1) is G(1)-invariant and the action of G(1) on L(1) induces an additive action on Q(1) = G(1) · x0 ⊆

L(1) with the open orbit O(1) = G(1) · x0, where Q(1) is either a non-degenerate hyperquadric or the
whole projective space L(1).

We furtherly define when such an operation is effective for our classification.

Definition 1.7. Let Q be a hyperquadric with an additive action such that S ing(X) ⊈ Fix(X), we say
the operation obtained in Theorem 1.6: (Gn

a,Q,P
n+1) 7→ (G(1),Q(1),L(1)) is effective if K(Q) ⫋ K(Q(1)).
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Starting from a given additive action on the hyperquadric Q with unfixed singularities, the operation
defined in Theorem 1.6 and the effective condition in Definition 1.7 give a procedure of reducing the
present action to a lower dimensional one, which has to terminate as the dimension of the underlying
projective space decreases strictly by Theorem 1.6 (i). The procedure ends in three different ways,
which we call Type A, Type B and Type C. We use the following flow chart to represent the procedure.

G(0) = Gn
a,Q

(0) = Q

K(Q(k)) ⊆ Fix(Q(k)) output (A, k)

K(Q(k)) ⊆ K(Q(k+1)) output (B, k + 1)

K(Q(k)) = K(Q(k+1)) output (C, k + 1)k = k + 1

k = 0
yes

no
no

yes
yesno

where for each k, if K(Q(k)) ⊈ Fix(Q(k)), let (G(k),Q(k)) 7→ (G(k+1),Q(k+1)) be the operation obtained in
Theorem 1.6.

We use (x, t,G(t),Q(t)) to represent the final output of the flow chart, where (x, t) is the output of the
flow chart and (G(t),Q(t)) is the corresponding action.

In the case of corank two, the following theorem shows that the flow chart conversely gives the
explicit process of recovering and together with l(Gn

a,Q) the final output determines the action up to
equivalences.

Theorem 1.8. Let Q be an hyperquadric of corank two with an additive action, assume the action has
unfixed singularities and dim(Q) ⩾ 5, let (x, t,G(t),Q(t)) be the final output of the flow chart above.
Then:

(i) (G(t),Q(t)) is either an action on a projective space with fixed boundary or an action on a hyper-
quadric given in Definition 1.3.

(ii) l(Gn
a, X) ⩽ 3 and codim(Q(k+1),Q(k)) = 1, for any k ⩽ t − 1.

(iii) if (Gn
a, Q̃) is another additive action on the hyperquadric of corank two Q̃ with unfixed sin-

gularities and dim(Q̃) ⩾ 5, let (x′, t′, G̃(t′), Q̃(t′)) be the final output of the flow chart, then (Gn
a,Q) is

equivalent to (Gn
a, Q̃) if and only if l(Gn

a,Q) = l(Gn
a,Q

′), x = x′, t = t′ and (G(t),Q(t)) is equivalent to
(G̃(t′), Q̃(t′)).

Combining Remark 1.4 with classification of actions on hyperquadrics of corank one, we can de-
termine the output action (G(t),Q(t)) explicitly. Then by Theorem 1.8, we can give classification of
additive actions on hyperquadrics of corank two with unfixed singularities in terms of the final output
of the flow chart.

Theorem 1.9. Let Q be a hyperquadric of corank two, then additive action on Q with unfixed singu-
larities has equivalence type as follows:
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(a) dim(Q) ⩾ 5. Let the final output in the flow chart be (x, t,G(t),Q(t)) then we separate it into 8
different types with respect to the value of x, t and whether Q(t) is a projective space or a hyperquadric:

(a.1) Type x0: if x ∈ {B,C} and t = 1.
(a.2) Type x1: if x ∈ {A, B,C}, t ⩾ 2 when x ∈ {B,C} and Q(t) is a projective space.
(a.3) Type x2: if x ∈ {A, B,C}, t ⩾ 2 when x ∈ {B,C} and Q(t) is a hyperquadric.
(b) dim(Q) ⩽ 4: there are 14 different types.

Remark 1.10. Explicit classification result of each type will be given in Proposition 4.3,4.5,4.7 and
Section 4.2 in terms of the algebraic structure of finite dimensional local algebras.

The simplest types are Type B0 and Type C0, i.e., Type x0 for x ∈ {B,C}. They can be directly
recovered from an additive action on a hyperquadric of corank one. Here we describe actions of Type
B0 as an example.

Example 1.11. Let Q be a hyperquadric of corank two in Pn+1 = PV with an additive action, assume
dim(Q) ⩾ 5 and S ing(Q) ⊈ Fix(Q), consider (G(1),Q(1),L(1)) obtained in Theorem 1.6. If it is of Type
B0 then:

(i) Q(1) is a hyperquadric of corank one in L(1).
(ii) choose any α in the open orbit O and any α′ ∈ S ing(Q)\Fix(Q) there exist suitable coordinate

{x0, x1, x2, ..., xn−1, y0, y1} of Pn+1 w.r.t the basis of V, α0, α1, .., αn−1, β0, β1, such that α = [β1], α′ = [α1],
L(1) = {x1 = 0}, Q(1) = L(1) ∩ Q and

Q = {x2
2 + ... + x2

n−1 + y0 · y1 = 0}.

Moreover for V ′ = ⟨α0, α2, .., αn−1, β0, β1⟩ such that L(1) = PV ′, let the action (G(1),Q(1)) be given by:

G(1) × L(1) 7→ L(1)

(a, [v′]) 7→ [ρ(a)(v′)]

where ρ : G(1) → GL(V ′) is a rational representation of G(1) .
Then there is a decomposition of Gn

a = G(1) ⊕ Ga such that if we write
a = (a0, a2, .., an−1) ∈ G(1), s ∈ Ga, v = (x0, x1, .., xn−1, y0, y1) ∈ V and v′ = (x0, 0, .., xn−1, y0, y1) ∈ V ′

then the action (Gn
a,Q) is given by:

Gn
a × P

n+1 7→Pn+1

((a, s) × [v]) 7→[v′′]

where v′′ = ρ(a)(v′) + ( s2y1
2 + sx1) · α0 + (sy1 + x1) · α1.

1.2. Notation and conventions

Throughout the article, in a given finite dimensional local algebra R, we use α · β to represent
multiplication between two elements in R, where α can also be taken as a scalar in K. Furthermore we
define the following:

(a) if α ∈ R, V ⊆ R, then α · V � {α · β : β ∈ V}
(b) if V,V ′ ⊆ R, then V · V ′ � {

∑n
i=1 αi · α

′
i : n ∈ N, αi ∈ V, α′i ∈ V ′}.
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1.3. Outline of the classification

Given an additive action on a hyperquadric Q in Pn+1, there is an (n + 2)-dimensional local algebra
R with a hyperplane W of the maximal ideal m and a bilinear form F on R such that

Pn+1 = P(R),Q = P({r ∈ R : F(r, r) = 0}),

and if we choose a basis of W, w1, ...,wn, then the action is given by (up to equivalences):

Gn
a × R 7→R

((a1, a2, ..., an), r) 7→ r · exp(a1w1 + ... + anwn).

Hence to classify additive actions is equivalent to classify algebraic structures of the triple (R,W, F).
Note that S ing(Q) = P(Ker(F)), furthermore we show that Ker(F) ⊆ W and if we choose a basis of
Ker(F), µ1, .., µl, and choose any b0 ∈ m

2\W then we can represent the multiplications of elements in
m as follows:

a · a′ = F(a, a′)b0 + V1(a, a′)µ1 + V2(a, a′)µ2 + ... + Vl(a, a′)µl, (1.1)

for any a, a′ ∈ m, where {Vi : 1 ⩽ i ⩽ l} is a set of symmetric bilinear forms on R. When the corank
equals one we have l = 1 and µ1 ·m = 0, also one can choose b0 s.t. b0 ·m = 0. Hence if we extend µ1 to
a basis of W namely µ1, e1, .., en−1, s.t. F(ei, e j) = δi, j then the multiplication inm depends on the matrix
Λ = (V1(ei, e j)). Also note that an orthogonal tranformation of the basis ei’s with respect to F leads
to an orthogonal transformation of the matrix Λ, hence the classification of the action of corank one is
reduced to normalize a symmetric bilinear forms under orthogonal transforamtions (cf. [2, Proposition
7] and [5, Chapter XI, §3]).

When the corank equals two, we can still choose b0 s.t. b0 · m = 0. We note that in this case the
condition S ing(Q) ⊈ Fix(Q) enables us to use the idea of the case of corank one.

Firstly we show that S ing(Q) ⊈ Fix(Q) is equivalent to Ker(F) · W , 0. And if Ker(F) · W , 0,
then we can furtherly define a hyperplane V (1) in W:

V (1) = {α ∈ W : α · Ker(F) = 0}
V(1) = Ker(F|V(1) )

By using the correspondence between additive actions and finite dimensional local algebras we show
that if V(1) = V (1) then the action (G(1),Q(1),L(1)) obtained in Theorem 1.6 is an action on a projective
space and it corresponds to (R(1),V (1)), where R(1) = V (1) ⊕ ⟨1R⟩. If V (1) , V(1) we show that the action
(G(1),Q(1),L(1)) corresponds to the triple (R(1),V (1), F(1)) where R(1) = V (1) ⊕ ⟨b0, 1R⟩, F(1) = F|V(1) and
Q(1) is a hyperquadric.

Then our first key step is to show that after choosing suitable µ1 ∈ Ker(F), we have

V (1) ·W ⊆ ⟨µ1, b0⟩,

which shows that the bilinear form V2 defined in (1.1) vanishes on V (1). For the obtained subspaces
V(1) ⊆ V (1) ⊆ W, our second key step is that if Ker(F) ⊈ V (1) (resp. V(1) = Ker(F)), which geometri-
cally means K(Q) ⊈ K(Q(1)) (resp. K(Q) = K(Q(1))), then we can directly normalize the multiplications
in m. As a result, we recover action (Gn

a,Q) from the action (G(1),Q(1)), which is an action given in
Definition 1.3. This corresponds to an output of Type B0 or C0 in the flow chart.
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Otherwise we show that codim(Ker(F),V(1)) = 1 and we furtherly consider the new action
(G(1),Q(1), L(1)), for which we separate into two more subcases.

(1) If V(1) · V (1) = 0 then we are in a situation similar to the case of corank one: V2 = ... = Vl = 0,
V(1) · V (1) = 0, b0 · V (1) = 0. Hence we can normalize the multiplications in m(1) = V (1) ⊕ ⟨b0⟩. As a
result, we recover action (Gn

a,Q) from the action (G(1),Q(1)), which is an action given in Definition 1.3.
This corresponds to an output (A, 1) in the flow chart.

(2) If V(1) · V (1) , 0 then we are in a situation similar to Ker(F) ·W , 0, except that in this case the
action is on a hyperquadric of corank three. On the other hand, we have Ker(F) · V (1) = b0 · V (1) = 0
and V2 = V3 = 0, hence the uncertainity of multiplications in m(1) is still one dimensional. For this
reason we furtherly define

V (2) = {α ∈ V (1) : α · V(1) = 0}
V(2) = Ker(F|V(1) )

This corresponds to a new action (G(2),Q(2), L(2)) in the flow chart, with L(2) ⫋ L(1). Similarly we show
that if V(1) ⊈ V(2) or V(1) = V(2) or V(1) ⊊ V(2) with V(2) · V (2) = 0 , then we can already normalize the
multiplications inm(1). Otherwise we find V(2)·V (2) , 0 then as before we can furtherly define (V (3),V(3))
with V (3) ⫋ V (2), and check whether it satisfies the conditions to be normalized. The discussion will
be continued as above until we find that the present action satisfies the condition to be normalized i.e.,
to obtain an output in the flow chart, the procedure has to terminate as the dimension of V (i) decreases
strictly. As a result we show that the output action is either an action on a projective space with
fixed boundary or an action given in Definition 1.3. Moreover we obtain a chain of subspaces in W
corresponding to the flow chart:

Ker(F) ⊆ V(1) ⊆ ...V(s) ⊆ V (s) ⊆ ... ⊆ V (1) ⊆ W,

where s = t if x = A, s = t − 1 if x = B or x = C.
Then it remains to normalize the multiplications between elements outside V (s). This is completed

through more technical operations shown in Lemmas 4.2, 4.4 and 4.6. After the normalization of the
structure of R, we show the uniqueness of the normalized structure up to equivalences, which proves
Theorem 1.8 (iii). And the normalized structure of (R,W, F) gives the explicit result of our classification
of actions when dim(Q) ⩾ 5. Finally when dim(Q) ⩽ 4 we give the classification case by case.

The article is organized as follows: in Section 2, we recall the correspondence between additive
actions and finite dimensional local algebras; in Section 3 we first prove Theorem 1.6 to obtain the
action (G(1),Q(1)). Then we show that the existence of unfixed singularities will lead to V (1) · W ⊆

⟨µ1, b0⟩ and we normalize the algebraic structure of (R,W, F) when the type is B0 or C0; in Section 4, we
first normalize the structure of R, then we show the uniqueness of the normalized structure, which gives
proof of Theorem 1.8 and also gives explicit result of our classification result shown in Theorem 1.9.

2. Additive actions and finite dimensional local algebras

As mentioned before an additive action (Gn
a, X,P

m) is induced by a faithful rational linear representa-
tion ρ : Gn

a → GLm+1(K). Furtherly if X is non-degenerate in Pm then ρ becomes a cyclic representation
i.e., ⟨ρ(g) ·v : g ∈ Gn

a⟩ = K
m+1 for some nonzero v ∈ Km+1. Hassett and Tschinkel in [1] gave a complete

characterization of such representations.
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Theorem 2.1 ( [1],Theorem 2.14). There is 1-1 correspondence between the following two classes:
(1) equivalence classes of faithful rational cyclic representation ρ : Gn

a 7→ GLm+1(K); (2) isomorphism
classes of (R,W), where R is a local (m+1)-dimensional algebra with maximal ideal m and W is an
n-dimensional subspace of m that generates R as an alegbra with unit.

Remark 2.2. Under this correspondence a representation of Gn
a on Km+1 can always be viewed as an

action on a local algebra R � Km+1. Moreover if we choose a K-basis of W: W = ⟨w1, ...,wn⟩ then we
can write down the action explicitly:

Gn
a × R 7→R

(g1, g2, ..., gn) × r 7→ r · exp(g1w1 + ... + gnwn).

And the induced action of the Lie algebra g(Gn
a) = Gn

a on R is:

g × R 7→R

(g1, g2, ..., gn) × r 7→ r · (g1w1 + ... + gnwn),

we identify g � W as vector spaces.

Moreover Hassett and Tschinkel proved in [1] and later Arzhantsev and Popovskiy proved in [2]
the following 1-1 correspondences.

Theorem 2.3 ( [1], Proposition 2.15). There’s a bijection between the following two classes:
(1) equivalence classes of additive actions on Pn;
(2) equivalence classes of (n+1)-dimensional local commutative algebras.

Under the correspondence the action is given as in Remark 2.2, where the subspace W is the maxi-
mal ideal of the local algebra.

Theorem 2.4 ( [2], Proposition 3). There’s a bijection between the following two classes:
(1) equivalence classes of additive actions on hypersurfaces H in Pn+1 of degree at least two;
(2) equivalence classes of (R,W), where R is a local (n+2)-dimensional algebra with maximal ideal m
and W is a hyperplane of m that generates the algebra R with unit.

Then in [2] they furtherly introduced the notion of invariant multilinear f orm for a pair (R,W).

Definition 2.5 ( [2], Definition 3). Let R be a local algebra with maximal idealm. An invariant d-linear
form on R is a d-linear symmetric map

F : R × R × ... × R 7→ K

such that F(1, 1, ..., 1) = 0, the restriction of F to m × ... × m is nonzero, and there exist a hyperplane
W in m which generates the algebra R and such that:

F(ab1, b2, ..., bd) + F(b1, ab2, ..., bd) + ... + F(b1, b2, ..., abd) = 0 ∀a ∈ W, b1, ..., bd ∈ R.

We say F is irreducible if it can not be represented as product of two lower dimensional forms.
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Now given an additive action on a hypersurface H = { f (x0, .., xn+1) = 0} ⊆ Pn+1, then under the
correspondence in Theorem 2.4 the polarization F of f is an invariant multilinear form on (R,W),
which induces the following more explicit correspondence.

Theorem 2.6 ( [2], Theorem 2). There is a bijection between the following two classes:
(1) equivalence classes of additive actions on hypersurface H ⊆ Pn+1 of degree at least two;
(2) equivalence classes of (R,F), where R is a local algebra of dimension n + 2 and F is an irreducible
invariant d-linear form on R up to a scalar.

Under the correspondence Pn+1 = P(R), H = P({r ∈ R : F(r, r, ..., r) = 0}), and the action on Pn+1

corresponds to the action on R as shown in Remark 2.2, with the open orbit O = P(Gn
a · 1R). Moreover

F is determined by (R,W) as follows.

Lemma 2.7 ( [2], Lemma 1). Fix a K-linear automorphism m/W � K with the projection π : m →
m/W � K then the corresponding invariant linear form is (up to a scalar):

FW(b1, ..., bd) = (−1)kk!(d − k − 1)!π(b1...bd),

where k is the number of units among b1, ..., bd and for k = d let FW(1, 1, ..., 1) = 0.

In the following we focus on additive actions on hyperquadrics, i.e., d = 2 and we use a triple
(R,W, F) to represent an additive action on a hyperquadric Q where F is the bilinear form given in
Theorem 2.6. By Lemma 2.7 we have the following.

Lemma 2.8. Fix b0 ∈ m\W and the projection y0 : R → K s.t. y0(1R) = y0(W) = 0 and y0(b0) = 1.
Then for a, a′ ∈ m and for r ∈ W we have:

F(a, a′) = y0(aa′).
F(1, 1) = F(1, r) = 0, F(1, b0) = −1.

As F is the polarization of the homogenous polynomial defining Q we have S ing(Q) = P(Ker(F)).
Moreover we have the following.

Lemma 2.9. Ker(F) ⊆ W and Ker(F|W) = Ker(F).

Proof. By [3, Theorem 5.1], the degree of the hypersurface is the maximal exponent d such that md ⊈

W, for d = 2 we have m2 ⊈ W and m3 ⊆ W. Hence we can take a b0 ∈ m
2\W and the projection y0

defined in Lemma 2.8.
For any l ∈ Ker(F), write l = a + tb0 + lW for some a, t ∈ K and lW ∈ W, then t = −F(1, l) = 0 by

Lemma 2.8. And
0 = F(b0, l) = −a + F(b0, lW) = −a + y0(b0lW) = −a

as b0lW ∈ m
3 ⊆ W, concluding that l = lW ∈ W.

For any l ∈ Ker(F|W), then F(1, l) = 0 as l ∈ W and F(l, b0) = y0(lb0) = 0 as b0l ∈ m3 ⊆ W and
y0(W) = 0, concluding that l ∈ Ker(F). □

Lemma 2.10. For any b0 ∈ m
2\W, m2 ⊆ Ker(F) ⊕ ⟨b0⟩.
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Proof. Firstly choose a b0 ∈ m
2\W. Given any a, a′ ∈ m we have

aa′ = y0(aa′) · b0 + (aa′)W ,

where y0 is the projection defined in Lemma 2.8. Now for any r ∈ m then

r · (aa′)W = r · (aa′ − y0(aa′) · b0) ∈ m3 ⊆ W,

as b0 ∈ m
2. Hence by Lemma 2.8

F((aa′)W , r) = y0((aa′)W · r) = 0,

as r · (aa′)W ∈ W. Note that F(1, (aa′)W) = 0 since F(1,W) = 0. It follows that (aa′)W ∈ Ker(F),
concluding the proof.

□

From above lemmas we can thus choose a b0 ∈ m
2\W such that F(1, b0) = −1 and m2 ⊆ Ker(F) ⊕

⟨b0⟩. Moreover if we fix a basis of Ker(F) = ⟨µ1, ..., µl⟩ then we can represent the multiplications of
elements in m as follows.

aa′ = F(a, a′)b0 + V1(a, a′)µ1 + V2(a, a′)µ2 + ... + Vl(a, a′)µl. (2.1)

3. Unfixed singularities and vanishing of bilinear forms

In this section, we first prove Theorem 1.6. Then we show that in the case of corank two the
existence of unfixed singularities leads to V (1) ·W ⊆ ⟨b0, µ1⟩. Finally we show that if K(Q) ⊈ K(Q(1))
or K(Q) = K(Q(1)) then we can already normalize the algebraic structure of (R,W, F).

3.1. Operation for actions with unfixed singularities

We first give an algebraic characterization of related concepts. Given an additive action on
hyperquadric Q represented by (R,W, F), recall that S ing(Q) = P(Ker(F)), G(1) = ∩x∈K(X)Gx ,
V (1) = {r′ ∈ W | r′ · Ker(F) = 0} and V(1) = Ker(F|V(1) ). We furtherly define S ′ = {r ∈ R | r · W = 0}.
Then we have the following.

Proposition 3.1. (i) Fix(Q) = P(S ′).
(ii) G(1) = exp(g(1)), where g(1) ⊆ g(Gn

a) is a Lie subalgebra and g(1) � V (1) under the identification
g(Gn

a) � W given in Remark 2.2.
(iii) Ker(F) ·m , 0 if and only if V (1) , W if and only if S ing(Q) ⊈ Fix(Q).

Proof. (i) By Remark 2.2, the action of g = g(Gn
a) on R is given by multiplying elements of W to R.

Hence we have:

S ′ = {r ∈ R : r ·W = 0} = {r ∈ R : g · r = 0}

Also by Remark 2.2, the action of Gn
a on Pn+1 is identified with the action on R. Hence we have:

Fix(Q) = P({r ∈ R : g · r = r, ∀g ∈ Gn
a}) = P({r ∈ R : x · r = 0, ∀x ∈ g}) = P(S ′).
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(ii) Similarly for the isotropy group G(1) of S ing(Q) we have:

G(1) = {g ∈ Gn
a : g · x = x, ∀x ∈ S ing(Q)} = {g ∈ Gn

a : g · r = r, ∀r ∈ Ker(F)}
= exp({x ∈ g : x · r = 0, ∀r ∈ Ker(F)}).

Then by Remark 2.2, under the identification of g � W, we have {x ∈ g : x · r = 0, ∀r ∈ Ker(F)} �
{r′ ∈ W : r′ · r = 0, ∀r ∈ Ker(F)} = V (1).

(iii) The first equivalence follows from the definition of V (1) and the fact that m can be generated
by W. For the second equivalence, we have S ing(Q) ⊆ Fix(Q) if and only if Gn

a = G(1) if and only if
g = g(1) if and only if V (1) = W, where the last equivalence follows from (ii).

□

Next we introduce a lemma to describe multiplications between elements in m and elements in
Ker(F).

Lemma 3.2. (i) Ker(F) · m ⊆ Ker(F) and there exist a K-basis of Ker(F), µ1, µ2, ..., µl, such that
µi ·m ⊆ ⟨µ1, ..., µi−1⟩. (ii) V (1) , 0.

Proof. (i) First note that S ing(Q) is Gn
a-stable. Then by Theorem 2.6 and P(Ker(F)) = S ing(Q),

Ker(F) is a Gn
a-invariant subspace, hence by Remark 2.2 and the fact that m is generated by W we

conclude that Ker(F) ·m ⊆ Ker(F)
Now we choose a K-basis of m to be S 0, then for any c ∈ S 0 we can define a linear map induced by

multiplications:

ϕc : Ker(F) 7→ Ker(F)
r 7→ c · r

Note that R is a commutative Artinian local ring, hence {ϕc : c ∈ S 0} is a set of commutative
nilpotent linear maps on Ker(F). Therefore we can choose a basis of Ker(F) = ⟨µ1, ..., µl⟩ s.t.
ϕc(µi) ⊆ ⟨µ1, ..., µi−1⟩, for any c ∈ S 0. As S 0 is a basis of m, (i) is proved.

(ii) If Ker(F) = 0 then V (1) = W , 0 from the definition of V (1). If Ker(F) , 0 then by (i) there
exist a µ1 , 0 s.t. µ1 ·m = 0 and hence µ1 ∈ V (1), concluding that V (1) , 0. □

Now we use the correspondences given in Theorem 2.3 and Theorem 2.4 to obtain the operation
described in Theorem 1.6.

Proof of Theorem 1.6. Firstly note that Q(1) is a non-degenerate variety in L(1), hence it suffices to
prove that there exist a linear space L(1) satisfying Theorem 1.6 (i) and (ii). In the following we assume
dim(V (1)) = m for some m ⩽ n − 1.

(a) If X is a hyperquadric, then we represent the action by (R,W, F) with x0 ∈ O s.t. x0 = [1R] and
define (V (1),V(1)) as in Proposition 3.1. Also by Lemma 3.2 we have 0 , V (1) ⊊ W.
Case 1. V (1) · V (1) ⊆ V (1), then the induced action is an additive action on a projective space. From
Lemma 2.8 we conclude that V (1) = V(1).

In this case R(1) = V (1) ⊕ ⟨1R⟩ is a well-defined subring of R. Furthermore it can be easily seen that
R(1) is a finite dimensionalK-local algebra with maximal idealm(1) = V (1). Then by HT-correspondence
(Theorem 2.3), the pair (R(1),V (1)) gives an additive action of Gm

a on the projective space P(R(1)) with
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open orbit Gm
a · [1R]. On the other hand, by Remark 2.2, the action is given through identifying g(Gm

a )
with V (1), hence from Proposition 3.1.(ii) we conclude that up to equivalences the corresponding action
is exactly induced by the action of G(1) on R(1). Thus the action of G(1) on P(R(1)) is an additive action
on the projective space with open orbit G(1) · [1R], and P(R(1)) ⊊ P(R) as V (1) ⊊ W. Above all we have
found the subspace L(1) = P(R(1)) = Q(1) of Pn+1 satisfying Theorem 1.6 (i) and (ii):

G(1) × P(R(1)) P(R(1)) ⊇ G(1) · [1R]

Gn
a × P

n+1 Pn+1 ⊇ Gn
a · [1R]

Case 2. V (1) ·V (1) ⊈ V (1), then the induced action is an additive action on a hyperquadric. From Lemma
2.8 we conclude that V (1) , V(1).

First we can choose a suitable b0 ∈ m
2\W s.t. V (1) · V (1) ⊆ V (1) ⊕ ⟨b0⟩ and b0 · Ker(F) = 0. In fact,

from V (1) , V(1), there exist a, a′ ∈ V (1) with F(a, a′) = 1. Now we define b0 = a · a′ then b0 ∈ m
2\W

and b0 · Ker(F) = 0 as a ∈ V (1). Moreover for any c, c′ ∈ V (1):

c · c′ = y0(cc′) · b0 + (c · c′)|W ,

hence from c·c′·Ker(F) = b0·Ker(F) = 0 we have (c·c′)|W ∈ V (1), concluding that V (1)·V (1) ⊆ V (1)⊕⟨b0⟩.
Now we set R(1) = V (1) ⊕ ⟨b0⟩ ⊕ ⟨1R⟩, m(1) = V (1) ⊕ ⟨b0⟩. Then

b0 ∈ (m(1))2 ⊈ V (1),

b0 ·m
(1) ⊆ (m(1))3 ⊆ V (1),

as (m(1))3 ⊆ m3 ⊆ W and (m(1))3 · Ker(F) = 0, where m3 ⊆ W follows from [3, Theorem 5.1] and the
fact that (R,W, F) reprensents an action on a hyperquadric.

Now it follows that R(1) is a finite dimensional localK-algebra with maximal idealm(1) = V (1)⊕⟨b0⟩,
V (1) is a hyperplane of m(1) generating the algebra R(1) such that (m(1))2 ⊈ V (1) and (m(1))3 ⊆ V (1).
Hence by Theorem 2.4 and [3, Theorem 5.1], (R(1),m(1),V (1)) corresponds to an additive action of
Gm

a on a hyperquadric Q(1) in P(R(1)) with open orbit Gm
a · [1R]. Then similar to Case 1, by Remark

2.2 and Proposition 3.1.(ii) we conclude that the corresponding action (up to equivalences) is exactly
induced by the action of G(1) on R(1). Thus the action of G(1) on P(R(1)) induces an additive action on a
hyperquadric Q(1) with the open orbit O(1) = G(1) · [1R], and P(R(1)) ⊊ P(R) as V (1) ⊊ W. Moreover in
the more explicit correspondence Theorem 2.6 we can easily see the corresponding bilinear form F(1)

is just F|R(1) .
Now P(R(1)) is already a subspace satisfying Theorem 1.6 (i) and (ii):

G(1) × P(R(1)) P(R(1)) ⊇ Q(1) ⊇ O(1) = G(1) · [1R]

Gn
a × P

n+1 Pn+1 ⊇ Q ⊇ O = Gn
a · [1R]

(b) If X is a projective space, following Theorem 2.3, we represent the action (Gn
a,P

n) by a pair
(R,m), where x0 = [1R]. We first show that K(X) = P(m). In fact, for any [α] in the open orbit we have
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α is invertible by Remark 2.2. Conversely, for any invertible element r ∈ R we have dim(Gn
a · [r]) =

dim(g · r) = dim(m · r) = dim(m) = n, concluding that [r] lies in the open orbit. Now we define
V (1) = {α ∈ m : α · m = 0}, then Fix(X) = P(V (1)). Since K(X) ⊈ Fix(X) by assumption of Theorem
1.6, we have V (1) ⊊ m. Moreover as elements in m are nilpotent, we conclude that V (1) , 0 by a similar
discussion as that in Lemma 3.2.

Now we consider R(1) = V (1) ⊕ ⟨1R⟩ then similar to Case 1 of (a), P(R(1)) is G(1)-stable and the
induced action is an additive action on a projective space with open orbit G(1) · [1R], and P(R(1)) ⊊ P(R)
as V (1) ⊊ m. Thus P(R(1)) is already a subspace satisfying Theorem 1.6 (i) and (ii). □

Combining the above proof with Proposition 3.1, we have the following.

Proposition 3.3. Given an additive action on a hyperquadric Q with unfixed singularities, we represent
the operation obtained in Theorem 1.6 by (R,W, F) 7→ (R(1),V (1), F(1)), then:

(i) Q(1) is a projective space if and only if V (1) · V (1) ⊆ V (1) if and only if V (1) = V(1).
(ii) S ing(Q) ⊈ K(Q(1)) if and only if Ker(F) ⊈ V(1), S ing(Q) = K(Q(1)) if and only if Ker(F) = V(1).
(iii) the operation is effective if and only if Ker(F) ⫋ V(1).

Proof. (i) By part (a) in the proof of Theorem 1.6, it suffices to show V (1) · V (1) ⊆ V (1) if V (1) = V(1). In
this case, for any a, a′ ∈ V (1) we have F(a, a′) = 0, hence aa′ ∈ W by Lemma 2.8 and aa′ · Ker(F) = 0
by the definition of V (1), concluding that V (1) · V (1) ⊆ V (1).

(ii) and (iii). By our definition of effective operation 1.7 and S ing(Q) = P(Ker(F)), it suffices to
show K(Q(1)) = P(V(1)). If Q(1) is a projective space then from part (b) in the proof of Theorem 1.6, for
the action on Q(1) represented by (R(1),m(1)) we have K(Q(1)) = P(m(1)) = P(V (1)) = P(V(1)) since in this
case m(1) = P(V (1)) = V(1) by Case 1 of part (a) in the proof of Theorem 1.6. If Q(1) is a hyperquadric,
then K(Q(1)) = S ing(Q(1)) = P(Ker(F(1))) and Ker(F(1)) = Ker(F(1)

|V (1))) by Lemma 2.9. Finally as
F(1) = F|R(1) , we have Ker(F(1)) = Ker(F|V (1)) = V(1) by the definition of V(1), concluding the proof. □

3.2. Unfixed singularities and vanishing bilinear form

Our main result of this section is the following.

Proposition 3.4. For an additive action on a hyperquadric Q of corank 2 represented by (R,W, F). If
S ing(Q) ⊈ Fix(Q) and dim(Q) ⩾ 5, then for the operation obtained in Theorem 1.6 we have:

(i) codim(Q(1),Q) = codim(V (1),W) = 1.
(ii) there exist b0 ∈ m

2\W with F(1, b0) = 1 and a K-basis of Ker(F), µ1, µ2, such that:

b0 ·m = µ1 ·m = 0
µ2 ·m ⊆ ⟨µ1⟩

V (1) ·m ⊆ ⟨µ1, b0⟩

(iii) if the operation is not effective, i.e., Ker(F) = V(1) or Ker(F) ⊈ V(1), then we can normalize the
algebraic structrue of (R,W, F). (see Lemma 3.6 and Lemma 3.9 for details).

First applying Lemma 3.2 we have the following:

Lemma 3.5. (i) there exist suitable basis of Ker(F), µ1, µ2, s.t. µ1 · m = 0 and µ2 · m ⊆ ⟨µ1⟩. (ii)
codim(V (1),W) = 1.
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Proof. (i) Applying Lemma 3.2 when l = 2.
(ii) For any r ∈ W we have r · µ2 = λr · µ1 for some λr ∈ K, this induces a linear form on W:

Φ : W 7→ K

α 7→ λα

Hence we have V (1) = Ker(Φ) and codim(V (1),W) = 1. □

From now on we always choose a basis of Ker(F) satisying Lemma 3.5.(i).
We prove Proposition 3.4 through a case-by-case argument on analyzing the relation between

Ker(F) and V(1). More precisely, we separate it into the following cases.
1. S ing(Q) ⊆ K(Q(1)), i.e., Ker(F) ⊆ V(1). In this case we have nice inclusions between subspaces:

Ker(F) ⊆ V(1) ⊆ V (1) ⊆ W, for which we furtherly consider two subcases:
(1.a). S ing(Q) = K(Q(1)), i.e., Ker(F) = V(1). In this subcase, we can normalize the algebraic

structure of (R,W, F).
(1.b). The operation on (Gn

a,Q) is effective, i.e., Ker(F) ⊊ V(1). In this subcase, it remains to deter-
mine the multiplication between elements in V(1) and V (1), which leads to our definition of (V (2),V(2))
and further discussions in Section 4.

2. S ing(Q) ⊈ K(Q(1)), i.e, Ker(F) ⊈ V(1). In this case, we can normalize the algebraic structure of
(R,W, F).

3.2.1. Ker(F) = V(1)

Recall V(1) = Ker(F|V (1)) and Ker(F|W) = Ker(F) by Lemma 2.9, hence we can have a decomposi-
tion of W as follows:

W = Ker(F) ⊕ ⟨e1, ..., et⟩ ⊕ ⟨et+1⟩, (3.1)

where t ⩾ 2, ei ∈ V (1) for 1 ⩽ i ⩽ t, et+1 ∈ W\V (1) and F(ei, e j) = δi, j. Then we can furtherly choose a
suitable b0 and ei, et+1 to give a normalization of this case:

Lemma 3.6. If Ker(F) = V(1), then let b0 = e2
1 we have:

(i) b0 ∈ m
2\W and b0 ·W = b0 ·m = 0, V (1) ·m ⊆ ⟨µ1, b0⟩.

(ii) one can choose suitable ei, et+1 such that

et+1 · ei = 0, et+1 · µ2 = µ1, e2
t+1 = b0 + δ · µ2,

where 1 ⩽ i ⩽ t, δ = 1 if dim(m2) = 3 and δ = 0 if dim(m2) = 2.

Proof. (i) As F(e1, e1) = 1 , 0 we have b0 = e2
1 ∈ m

2\W from Lemma 2.8. By formula (2.1) we can
describe the multiplications in m as follows:

aa′ = F(a, a′) · b0 + V1(a, a′) · µ1 + V2(a, a′) · µ2. (3.2)

Note that from e1 ∈ V (1) we have b0 ·Ker(F) = 0, hence to show b0 ·W = b0 ·m = 0 it suffices to check
b0 · ei = 0 for 1 ⩽ i ⩽ t + 1.
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For any 1 ⩽ i ⩽ t, we choose some j , i. Then from ei, e j ∈ V (1) we have:

b0 · ei =(e2
j − V1(e j, e j) · µ1 − V2(e j, e j) · µ2) · ei = e2

j · ei

=e j · (δi, j · b0 + V1(ei, e j) · µ1 + V2(ei, e j) · µ2) = 0.
(3.3)

For et+1 we have :

b0 · et+1 = e2
1 · et+1 = e1 · (δ1,t+1 · b0 + V1(e1, et+1) · µ1 + V2(e1, et+1) · µ2) = 0.

Now for any a ∈ V (1) and any a′ ∈ W, by multiplying et+1 to both sides of equation (3.2) we have:

LHS =et+1 · a · a′ = a · (F(et+1, a′) · b0 + V1(et+1, a′) · µ1 + V2(et+1, a′) · µ2) = 0.
RHS =et+1 · (−F(a, a′) · b0 + V1(a, a′) · µ1 + V2(a, a′) · µ2) = λt+1 · V2(a, a′) · µ1

where et+1 · µ2 = λt+1 · µ1 with λt+1 , 0 by et+1 ∈ W\V (1). Hence form LHS = RHS we have
V2(a, a′) = 0. Thus V (1) ·W ⊆ ⟨b0, µ1⟩. Since W · ⟨µ1, b0⟩ = 0 by arguments above, V (1) ·W (k) = 0 for
all k ⩾ 2. Since m is generated by W, we conclude that V (1) ⊆ ⟨b0, µ1⟩.

(ii) Firstly as F(et+1, ei) = 0 for 1 ⩽ i ⩽ t and from (i) we have et+1 · ei ∈ ⟨µ1⟩. Thus if we replace ei

by ei − λ
−1
t+1V1(ei, et+1) · µ2 then et+1 · ei = 0 and we still have F(ei, e j) = δi, j. Furtherly by (3.2) we have:

e2
t+1 = b0 + V1(et+1, et+1) · µ1 + V2(et+1, et+1) · µ2.

then we can replace et+1 by et+1−
V1(et+1,et+1)

2λt+1
·µ2 to make V1(et+1, et+1) = 0. Note that this will not affect the

multiplication of et+1 and ei for i ⩽ t. Then by (i) and Lemma 2.10 we conclude that V2(et+1, et+1) , 0
if and only if dim(m2) = 3. Now if V2(et+1, et+1) , 0, we replace µ2 by V2(et+1, et+1) · µ2 to make
e2

t+1 = b0 + δ · µ2 and then replace µ1 by et+1 · µ2 to make et+1 · µ2 = µ1. □

3.2.2. Ker(F) ⫋ V(1)

In this subcase we start with the following observation.

Observation 3.7. codim(Ker(F),V(1)) = 1.

Proof. As Ker(F) ⊆ V(1) ⊆ V (1) ⊆ W and Ker(F|W) = Ker(F), we have a natural injective linear map:

V(1)/Ker(F)
σ
7−→ (W/V (1))∗

α 7→ σ(α) : β→ F(α, β)

hence codim(Ker(F),V(1)) ⩽ codim(V (1),W) = 1, concluding the proof. □

Note that by the assumption of dim(W) ⩾ 5 we have codim(V(1),V (1)) ⩾ 1. And by Ker(F|W) =
Ker(F) we have a decomposition of W in this subcase:

W =

V (1)︷                              ︸︸                              ︷
Ker(F)︷  ︸︸  ︷
⟨µ1, µ2⟩ ⊕⟨g1⟩︸          ︷︷          ︸

V(1)

⊕⟨e1, e2, ..., et⟩ ⊕⟨ f1⟩ (t ⩾ 1) (3.4)

We now can find a suitable b0.
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Lemma 3.8. Let b0 = e2
1 then b0 ∈ m

2\W and b0 ·W = b0 ·m = 0, V (1) ·m ⊆ ⟨µ1, b0⟩.

Proof. First we check that b0 ·W = b0 ·m = 0. For b0 · g1 = 0:

b0 · g1 = e2
1 · g1 = e1 · (F(e1, g1) · b0 + V1(e1, g1) · µ1 + V2(e1, g1) · µ2) = 0,

where the last equation follows from F(e1, g1) = 0 and e1 ∈ V (1).
To show b0 · ei = 0 for any 1 ⩽ i ⩽ t. Firstly note that if t ⩾ 2 then we can prove it by using the

same computation as (3.3).
Now we assume t = 1. As g1 ∈ V(1)\Ker(F) we can assume F(g1, f1) = 1 moreover we can assume

F( f1, e1) = 0 up to replacing e1 by e1 − F(e1, f1) · g1. Then the calculation of b0 · e1 follows:

b0 · e1 = ( f1 · g1 − V1( f1, g1) · µ1 − V2( f1, g1) · µ2) · e1 = g1 · f1 · e1

= g1 · (F( f1, e1) · b0 + V1( f1, e1) · µ1 + V2( f1, e1) · µ2) = 0,

where the last equation follows from g1 ∈ V (1). Then the calculation of b0 · f1 follows:

b0 · f1 = e2
1 · f1 = e1 · (F(e1, f1) · b0 + V1(e1, f1) · µ1 + V2(e1, f1) · µ2) = 0.

Finally we conclude that V (1) ·W ⊆ ⟨b0, µ1⟩ by multiplyng f1 to both sides of the formula (3.2). □

3.2.3. Ker(F) · Ker(F) , 0

By Lemma 3.5 we have µ1 · Ker(F) = 0 and µ2 ·W ⊆ ⟨µ1⟩, hence we can assume µ2
2 = µ1. Now we

have a decomposition of W:
W = ⟨µ1, µ2⟩ ⊕ ⟨e1, ..., et⟩, (3.5)

with F(ei, e j) = δi, j. Moreover for any ei with ei · µ2 = λi · µ1 we can replace ei by ei − λi · µ2 to make
ei · µ2 = 0, which does not affect the value of F(ei, e j) as µ2 ∈ Ker(F). Then V (1) = ⟨µ1, e1, ..., et⟩ and
we can find suitable b0 as before, which also gives a normalization of this subcase:

Lemma 3.9. Let b0 = e2
1 then b0 ∈ m\W and

(i) b0 ·W = b0 ·m = 0, V (1) ·m ⊆ ⟨µ1, b0⟩.
(ii) µ2

2 = µ1, ei · µ2 = ei · µ1 = 0.

Proof. It suffices to prove (i). First we note that we can use the same method in Lemma 3.6 to show
b0 ·W = 0. Then it suffices to prove V (1) · m ⊆ ⟨µ1, b0⟩. For any a ∈ V (1), a′ ∈ W equation (3.2) still
holds and in this case we multiply it by µ2:

LHS =µ2 · a · a′ = 0.
RHS =µ2 · (F(a, a′) · b0 + V1(a, a′) · µ1 + V2(a, a′) · µ2) = V2(a, a′) · µ1.

Then from LHS = RHS we have V2(a, a′) = 0, concluding the proof. □

4. Classification of actions with unfixed singularities

4.1. Classification of actions with unfixed singularities (I): dim(Q) ⩾ 5

In this and next subsections we always consider additive actions on hyperquadrics of corank two
with unfixed singularities. Firstly we give the algebraic version of the flow chart, which induces an
algebraic structure sequence for a given triple (R,W, F). Then by analyzing the sequence we nor-
malize the structure of (R,W, F). Finally we show the uniqueness of the normalized structure up to
equivalences.
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4.1.1. Algebraic version of the flow chart

Recall in the proof of Theorem 1.6, we have represented an operation (Gn
a,Q,P

m)→ (G(1),Q(1), L(1))
by (R,W, F) → (R(1),V (1), F(1)) or (R,W, F) → (R(1),V (1)). In Proposition 3.3, we also gave the alge-
braic criterion for the output condition in the flow chart. Thus the algebraic version of the flow chart
naturally arises as the following:

V (0) = W,V(0) = Ker(F)

V (k) · V(k) = 0 output (A, k)

V(k) ⊆ V(k+1) output (B, k + 1)

V(k) = V(k+1) output (C, k + 1)k = k + 1

k = 0
yes

no
no

yes
yesno

where for any (V (k),V(k)) if V (k) · V(k) , 0 we furtherly define:

V (k+1) = {α ∈ V (k) : α · V(k) = 0}
V(k+1) = Ker(F|V(k+1) )

(4.1)

and we represent the final output by (x, s,V (s),V(s)), where for a output (x, t) we set s = t−1 if x ∈ {B,C}
and s = t if x = A.

Then for the final output we obtain an algebraic structure sequence as follows:

Ker(F) = V(0) ⊆ ... ⊆ V(s) ⊆ V (s) ⊆ ... ⊆ V (0) = W, (4.2)

where V (k) · V(k−1) = 0 for 1 ⩽ k ⩽ s.
For the sequence, our first step is to generalize Proposition 3.4 (i) and Observation 3.7 to the fol-

lowing.

Proposition 4.1. For an algebraic structure sequence: {(V (k),V(k)) : 0 ⩽ k ⩽ s}:
A(k) : if V (k+1) ⫋ V (k) then codim(V (k+1),V (k)) = 1;
B(k) : if V(k) ⫋ V(k+1) then codim(V(k),V(k+1)) = 1.

Proof. Firstly note that if V (k+1) ⫋ V (k) then V (i+1) ⫋ V (i) for any i ⩽ k − 1, similarly if V(k) ⫋ V(k+1) then
V(i) ⫋ V(i+1) for any i ⩽ k − 1. Hence we can prove A(k)and B(k) by induction on k.

For k = 0, A(0) follows from Lemma 3.5 and B(0) follows from Observation 3.7. Now assuming
A(k−1) and B(k−1) is true for some k ⩾ 1, then for a given (V(k),V (k)) in the process we already have
V(k−1) ⫋ V(k) ⊆ V (k) ⫋ V (k−1) with V (k) · V(k−1) = 0 and codim(V(k−1),V(k)) = 1 by induction. Now
since (R,W, F) represents an action on a hyperquadric of corank two with unfixed singularities and
V(k) ⊆ V(0) = W,V (k) ⊆ V (1), we have V (k) · V(k) ⊆ V (1) ·W ⊆ ⟨µ1⟩ by Proposition 3.4 (ii). Hence by the
definition of V (k+1) we conclude that codim(V (k+1),V (k)) ⩽ 1, implying A(k).
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Now if V(k) ⫋ V(k+1) then from the process we already have V (k+1) ⫋ V (k) and A(k) holds. Moreover
we have the chain V(k) ⫋ V(k+1) ⊆ V (k+1) ⫋ V (k), which induces an injective map:

V(k+1)/V(k)
σk
7−−→ (V (k)/V (k+1))∗

α 7→ σ(α) : β 7→ F(α, β)

It follows that codim(V(k),V(k+1)) ⩽ codim(V (k+1),V (k)) = 1, implying B(k).
□

4.1.2. Normalization

In this subsection we normalize the structure of (R,W, F) by analyzing the algebraic structure se-
quence case by case.

In the following, we always start with a b0 ∈ m
2\W and a basis of Ker(F), µ1, µ2, satisfying

Proposition 3.4. We furtherly define V(−1) = ⟨µ1⟩.

Case 1. x = A. In this case the sequence becomes

V(−1) ⫋ Ker(F) = V(0) ⫋ ... ⫋ V(s) ⊆ V (s) ⫋ ... ⫋ V (0) = W,

with V (k) · V(k−1) = V (s) · V(s) = 0 for 1 ⩽ k ⩽ s (here s ⩾ 1 as we assume there exist unfixed singular
points). Then we have the following normalization.

Lemma 4.2. (i) If V (s) , V(s) then there exist fi ∈ V (i−1)\V (i), gi ∈ V(i)\V(i−1) for 1 ⩽ i ⩽ s, g0 � µ2 and
{ek : 1 ⩽ k ⩽ p} ⊆ V (s)\V(s) such that

V (s) = V(s) ⊕ ⟨e1, ..., ep⟩,

ek · el = δk,l · b0 + V1(ek, el) · µ1,
(4.3)

and

ek · fi = ek · gi = fi · f j = fv · gv′ = 0,
fi · gi = b0, fi · gi−1 = µ1, f 2

1 = δ · µ2,
(4.4)

for 1 ⩽ i ⩽ s, 1 ⩽ k, l ⩽ p, v − v′ < {0, 1}, 2 ⩽ j ⩽ s when s ⩾ 2,

δ =

0 if dim(m2) = 2;

1 if dim(m2) = 3

and the matrix Λ = (V1(ek, el) : 1 ⩽ k, l ⩽ p) is of the canonical form (see (4.6) below).
(ii) If V (s) = V(s) then there exist fi ∈ V (i−1)\V (i), gi ∈ V(i)\V(i−1) for 1 ⩽ i ⩽ s, g0 � µ2 such that

fi · f j = fv · gv′ = 0, fi · gi = b0, fi · gi−1 = µ1, f 2
1 = δ · µ2,

for 1 ⩽ i ⩽ s, v − v′ < {0, 1}, 2 ⩽ j ⩽ s when s ⩾ 2, and δ is the same as in (i).
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Proof. Recall by Proposition 3.4 (ii) we always have V (0) · V (0) ⊆ ⟨µ1, µ2, b0⟩ and V (1) · V (0) ⊆ ⟨µ1, b0⟩.
Hence if choosing any nonzero fi ∈ V (i−1)\V (i) and any nonzero hi−1 ∈ V(i−1)\V(i−2) then we can have
fi · hi−1 = c · µ1 for some nonzero c as V (i−1) · V(i−2) = 0, V (i−1) · V(i−1) , 0 and codim(V(i−2),V(i−1)) = 1.
Moreover choosing any nonzero gi ∈ V(i)\V(i−1) we have F( fi, gi) , 0 from the definition of V(i).

(i) If V(s) , V (s) we can choose ek’s satisfying (4.3), i.e., F(ek, el) = δk,l. Then we find fi, gi

inductively. For i = s we first choose fs ∈ V (s−1)\V (s), gs ∈ V(s)\V(s−1) and hs−1 ∈ V(s−1)\V(s−2) s.t.
fs · hs−1 = µ1, F( fs, gs) = 1 and F( fs, fs) = 0. Then for the multiplications:

fs · gs = b0 + V1( fs, gs) · µ1,

fs · ek = F( fs, ek) · b0 + V1( fs, ek) · µ1,

f 2
s = V1( fs, fs) · µ1 + V2( fs, fs) · µ2,

we can normalize them through the following steps:

gs 7→ gs − V1( fs, gs) · hs−1 to make gs · fs = b0

ek 7→ ek + F( fs, ek) · gs − V1( fs, ek) · hs−1 to make fs · ek = 0

fs 7→ fs − (V1( fs, fs)/2) · hs−1 to make f 2
s =

0 if s ⩾ 2
d0 · µ2 if s = 1

for some d0 ∈ K, where the arrow A 7→ B means to replace A by B.
Now if s ⩾ 2 and assuming we have found S i0 = { fi, gi : i ⩾ i0+1} for some 1 ⩽ i0 ⩽ s−1 satisfying

(4.4) except that if there exist i such that i ⩾ i0 + 2 then fi · gi−1 = ci ·µ1 for some nonzero ci ∈ K . Then
we furtherly choose fi0 ∈ V (i0−1)\V (i0), gi0 ∈ V(i0)\V(i0−1) and hi0−1 ∈ V(i0−1)\V(i0−2) s.t. fi0 · hi0−1 = µ1,
F( fi0 , gi0) = 1 and F( fi0 , fi0) = 0. And we normalize the multiplications through the following steps.
Firstly:

fi0 7→ fi0 −

s∑
i=i0+1

(F( fi0 , fi) · gi + F( fi0 , gi) · fi) −
p∑

k=1

F(ek, fi0) · ek

to make F(α, fi0) = 0 for all α ∈ S i0 ∪ {ek : 1 ⩽ k ⩽ p}. Then

α 7→ α − V1(α, fi0) · hi0−1 to make α · fi0 = 0
gi0 7→ gi0 − V1( fi0 , gi0) · hi0−1 to make fi0 · gi0 = b0

fi0 7→ fi0 − (V1( fi0 , fi0)/2) · hi0−1 to make f 2
i0 =

0 if i0 ⩾ 2
d0 · µ2 if i0 = 1

for some d0 ∈ K. Moreover from the discussion at the beginning we have fi0+1 · gi0 = ci0+1 · µ1 with
some nonzero ci0+1 ∈ K. And from m2 ⊆ ⟨µ1, µ2, b0⟩, b0 · m = 0,V (1) · m ⊆ ⟨b0, µ1⟩ we have d0 = 0
if and only if dim(m2) = 2. Finally note that the symmetric matrix Λ = (V1(ek, el)) under orthogonal
transformations on {e1, ..., ep} transforms as the matrix of a bilinear form. And a such transformation
will not affect our normalization on other elements, hence from [5, Chapter XI §3], Λ = (V1(ei, e j)) can
be transformed into a canonical symmetric block diagonal matrix (see (4.6) in Proposition 4.3).
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To finish our normalization it suffices to make fi · gi−1 = µ1 and f 2
1 = δ · µ2. To do this we firstly

replace fi by xi · fi and replace gi by yi · gi. Then the condition ( fi · gi−1 = µ1, f 2
1 = δ · µ2, fi · gi = b0)

gives a system of equations for {xi, y j : 1 ⩽ i ⩽ s, 0 ⩽ j ⩽ s}:

xi · yi = 1, xi · yi−1 = c−1
i , x2

1 · d0 = y0 · δ (4.5)

for which we have a solution to be calculated inductively:

(δ = 1)


xi = y−1

i

yi = yi−1 · ci

y0 = (d0
c2

1
)

1
3

and (δ = 0)

xi = y−1
i

yi = yi−1 · ci

concluding the normalization.
(ii) If V (s) = V(s) then the process of normalization will be the same as in (i) except that we do not need
to choose ek at the beginning. □

Following our normalization we can thus determine the normalized structure of (R,W, F) in Case 1.

Proposition 4.3 (Classification of Type A). (R,W, F) can be transformed into the following:
•Type A1: Q(s) is a projective space (equivalently V(s) = V (s))

M(F,TypeA1) =



0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 . . . 0 0 . . . 1

0 0
... . . . 0

...
...
...

0 0 0 . . . 0 1 . . . 0
0 0 0 . . . 1 0 . . . 0

0 0
...

...
... 0 . . . 0

0 0 1 . . . 0 0 . . . 0


,

W = ⟨µ1, µ2⟩ ⊕ ⟨g1, ..., gs⟩ ⊕ ⟨ fs, ..., f1⟩.
R � K[µ1, µ2, g1, ..., gs, f1, ..., fs]/(µ1 ·W, gi · µ2, fl · µ2, gi · fi − gv · fv, gl−1 · fl − µ1, f1 · µ2 − µ1, f 2

1 − δ ·

µ2, gi · gv, fh · gh′ , fl · fi, 1 ⩽ i, v ⩽ s, h − h′ < {0, 1}, 2 ⩽ l ⩽ s when s ⩾ 2) where

δ =

0 if dim(m2) = 2;

1 if dim(m3) = 3
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•Type A2: Q(s) is a hyperquadric (equivalently V(s) , V (s)).

M(F,TypeA2) =



0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 . . . 0 0 . . . 0 0 . . . 1

0 0
... . . . 0

... . . .
...
...

...
...

0 0 0 . . . 0 0 . . . 0 1 . . . 0
0 0 0 . . . 0 1 . . . 0 0 . . . 0

0 0
... . . . 0

...
. . .

...
... . . .

...

0 0 0 . . . 0 0 . . . 1 0 . . . 0
0 0 0 . . . 1 0 . . . 0 0 . . . 0

0 0
...

...
...
... . . .

... 0 . . . 0
0 0 1 . . . 0 0 . . . 0 0 . . . 0



,

W = ⟨µ1, µ2⟩ ⊕ ⟨g1, ..., gs⟩ ⊕ ⟨e1, ..., ep⟩ ⊕ ⟨ fs, ..., f1⟩.
R � K[µ1, µ2, g1, ..., gs, e1, ..., ep, f1, ..., fs]/(µ1 · W, gi · µ2, ei′ · µ2, fl · µ2, gi · fi − e2

i′ + λi′i′µ1, ei′ · ei′′ −

λi′i′′µ1, gl−1 · fl − µ1, f1 · µ2 − µ1, f 2
1 − δ · µ2, gi · gv, fl · fi, fh · gh′ , ei′ · fi, ei′ · gi , 1 ⩽ i, v ⩽ s, 1 ⩽ i′ , i′′ ⩽

p, h − h′ < {0, 1}, 2 ⩽ l ⩽ s when s ⩾ 2) where δ is the same as in Type A1 and Λ = (λi′i′′) is of the
standard form, i.e., a symmetric block diagonal t × t-matrix such that each block Λk is

λk


1 0 0

0 . . .
. . .

. . .
. . . 0

0 0 1

 +
1
2


0 1 0

1 . . .
. . .

. . .
. . . 1

0 1 0

 +
i
2


0 1 0
. . .
. . . −1

1 . . .
. . . 0

0 −1 0

 (4.6)

with some λk ∈ K.

Case 2. x = B. In this case the sequence becomes

⟨µ1⟩ = V(−1) ⊆ Ker(F) = V(0) ⊆ ... ⊆ V(s) ⊆ V (s) ⊆ ... ⊆ V (0) = W,

with V (k) · V(k−1) = 0 for k ⩾ 0 and V2
(s) , 0. We have the following normalization.

Lemma 4.4. (i) If V (s) , V(s) and s ⩾ 1 then there exist fi ∈ V (i−1)\V (i), gi ∈ Vi\V(i−1) for 1 ⩽ i ⩽ s,
g0 � µ2 and {ek : 1 ⩽ k ⩽ p} ⊆ V (s)\V(s) such that

V (s) = V(s) ⊕ ⟨e1, ..., ep⟩,

ek · el = δk,l · b0 + V1(ek, el) · µ1,
(4.7)

and

ek · fi = ek · gi = fi · f j = fv · gv′ = 0,
fi · gi = b0, fi · gi−1 = µ1, f 2

1 = δ · µ2, g2
s = µ1,

(4.8)

for 1 ⩽ i ⩽ s, 1 ⩽ k, l ⩽ p, v − v′ < {0, 1}, 2 ⩽ j ⩽ s when s ⩾ 2,

δ =

0 if dim(m2) = 2;

1 if dim(m3) = 3
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and the matrix Λ = (V1(ek, el)) is of the canonical form (4.6).
(ii) If V (s) = V(s) and s ⩾ 1 then there exists fi ∈ V (i−1)\V (i), gi ∈ V(i)\V(i−1) for 1 ⩽ i ⩽ s, g0 = µ2

such that

fi · gi = b0, fi · gi−1 = µ1, fi · f j = fv · gv′ = 0, f 2
1 = δ · µ2, g2

s = µ1,

for 1 ⩽ i ⩽ s, v − v′ < {0, 1}, 2 ⩽ j ⩽ s when s ⩾ 2, and δ is the same as in (i).
(iii) If s = 0 then there exists a basis of Ker(F) = ⟨µ1, µ2⟩ and {ek : 1 ⩽ k ⩽ p} such that

µ2
2 = µ1, ek · µ2 = 0 and

W = Ker(F) ⊕ ⟨e1, ..., ep⟩

ek · el = δk,l · b0 + V1(ek, el) · µ1,

and the matrix Λ = (V1(ek, el)) is of the canonical form (4.6).

Proof. (i) As in Case 1.(i) we can first choose ek satisfying (4.7). Also we can choose fs ∈ V (s−1)\V (s),
gs ∈ V(s)\V(s−1) and hs−1 ∈ V(s−1)\V(s−2) s.t. fs · hs−1 = µ1, F( fs, gs) = 1 and F( fs, fs) = 0. Then as
V(s) · V(s) , 0, V(s−1) · V(s) ⊆ V(s−1) · V (s) = 0 and codim(V(s−1),V(s)) = 1 we conclude that g2

s is a nonzero
element in ⟨µ1⟩ and hence we can assume g2

s = µ1. Now we normalize the multiplications between
fs, gs, ek through the following steps:

ek 7→ ek − V1(gs, ek) · gs to make gs · ek = 0

fs 7→ fs −

p∑
k=1

F(ek, fs) · ek to make F( fs, ek) = 0

ek 7→ ek − V1( fs, ek) · hs−1 to make fs · ek = 0
gs 7→ gs − V1(gs, fs) · hs−1 to make fs · gs = b0

fs 7→ fs − (V1( fs, fs)/2) · hs−1 to make f 2
s =

0 if s ⩾ 2
d0 · µ2 if s = 1

for some d0 ∈ K.
After this note that we can still use previous inductive operations in Case 1 to find fi, gi for i ⩽ s−1,

namely we can find suitable fi, gi satisfying (4.8) except that we have fi · gi−1 = ci · µ1 and f 2
1 = d0 · µ2

for some nonzero ci ∈ K and d0 = 0 if and only if dim(m2) = 2. Also for the same reason as in Case 1
we can assume Λ = (V1(ek, el)) is of the canonical form.

Now to finish our normalization we replace fi by xi · fi, replace gi by yi · gi and replace µ1 by z0 · µ1.
Then it suffices to satisfy the condition ( fi · gi−1 = µ1, f 2

1 = δ · µ2, fi · gi = b0, g2
s = µ1), which gives a

system of equations for {xi, y j, z0 ∈ K : 1 ⩽ i ⩽ s, 0 ⩽ j ⩽ s}:

xi · yi = 1, xi · yi−1 = z0 · c−1
i , x2

1 · d0 = y0 · δ, y2
s = z0

for which we have a solution (where c �
∏s

i=1 ci ) to be calculated inductively:

(δ = 1)


xi = y−1

i

yi = yi−1 · ci · z−1
0

z0 = ( c3·d0
c2

1
)

2
6s−1 , y0 = (d0·z2

0
c2

1
)

1
3

and (δ = 0)


xi = y−1

i

yi = yi−1 · ci

y0 = c−1, z0 = 1
concluding our normalization.
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(ii) If V (s) = V(s) then the process will be the same as (i) except that we do not need to choose ek at
the beginning.

(iii) Note that s = 0 is equivalent to Ker(F) · Ker(F) , 0, which is just the Case 2 in the proof of
Proposition 3.4. Hence the assertion follows from Lemma 3.9. □

We can now determine the algebraic structure of (R,W, F) in Case 2.

Proposition 4.5 (Classification of Type B). (R,W, F) can be transformed into the following:
•Type B0 : s = 0 (Ker(F) · Ker(F) , 0)

M(F,TypeB0) =



0 0 0 0 0
0 0 0 0 0
0 0 1 . . . 0

0 0
...
. . .

...

0 0 0 . . . 1


, W = ⟨µ1, µ2⟩ ⊕ ⟨e1, ..., ep⟩

R � K[µ1, µ2, e1, ..., ep]/(µ1 ·W, µ2
2 − µ1, ei · µ2, ei · e j − λi, j · µ1, e2

i − e2
j − (λi,i − λ j, j) · µ1, 1 ⩽ i , j ⩽ p)

where Λ = (λi, j) is of the canonical form (4.6).

•Type B1: s ⩾ 1 and Q(s) is a projective space (equivalently V(s) = V (s)).

M(F,TypeB1) = M(F,TypeA1),

W = ⟨µ1, µ2⟩ ⊕ ⟨g1, ..., gs⟩ ⊕ ⟨ fs, ..., f1⟩,
R � K[µ1, µ2, g1, .., gs, f1, .., fs]/(µ1 ·W, gi · µ2, fl · µ2, g2

s − µ1, gi · fi − gv · fv, gl−1 · fl − µ1, f1 · µ2 − µ1, f 2
1 −

δ · µ2, fh · gh′ , fi · fl, gi · gl′ , 1 ⩽ i , v ⩽ s, h − h′ < {0, 1}, 2 ⩽ l ⩽ s, 1 ⩽ l′ ⩽ s − 1 when s ⩾ 2) where δ
is the same as in Type A1.

•Type B2: s ⩾ 1 and Q(s) is a hyperquadric (equiuvalently V(s) , V (s)).

M(F,TypeB2) = M(F,TypeA2),

W = ⟨µ1, µ2⟩ ⊕ ⟨g1, ..., gs⟩ ⊕ ⟨e1, ..., ep⟩ ⊕ ⟨ fs, ..., f1⟩,
R � K[µ1, µ2, g1, ..., gs, e1, ..., ep, f1, ..., fs]/(µ1 ·W, gi · µ2, ei′ · µ2, fl · µ2, g2

s − µ1, gi · fi − e2
i′ + λi′i′µ1, gl−1 ·

fl − µ1, ei′ · ei′′ − λi′i′′µ1, ei′ · fi, ei′ · gi, f1 · µ2 − µ1, f 2
1 − δ · µ2, gi · gl′ , fi · fl, fh · gh′ , 1 ⩽ i ⩽ s, 1 ⩽ i′ , i′′ ⩽

p, h − h′ < {0, 1}, 2 ⩽ l ⩽ s, 1 ⩽ l′ ⩽ s − 1 when s ⩾ 2)
where Λ = (λi′i′′) is of the canonical form (4.6) and δ is the same as in Type A1.

Case 3. x = C. In this case the algebraic sequence becomes

⟨µ1⟩ = V(−1) ⊆ Ker(F) = V(0) ⊆ ... ⊆ V(s) = V(s+1) ⊆ V (s+1) ⊆ V (s) ⊆ ... ⊆ V (0) = W,

with V (k) · V(k−1) = 0 if k ⩾ 0 and V(s) · V(s) = 0. We have the following normalization.

Lemma 4.6. (i) If V(s+1) , V (s+1) and s ⩾ 1 then there exist fi ∈ V (i−1)\V (i), g j ∈ V( j)\V( j−1) for
1 ⩽ i ⩽ s + 1, 1 ⩽ j ⩽ s, g0 � µ2 and {ek : 1 ⩽ k ⩽ p} ⊆ V (s+1)\V(s+1) such that

V (s+1) = V(s+1) ⊕ ⟨e1, ..., ep⟩

ek · el = δk,l · b0 + V1(ek, el) · µ1
(4.9)

Electronic Research Archive Volume 30, Issue 1, 1–34.



24

and

ek · fi = ek · g j = f j · f j′ = fv · gv′ = 0
f j · g j = f 2

s+1 = b0, fi · gi−1 = µ1, f 2
1 = δ · µ2,

(4.10)

for 1 ⩽ i ⩽ s + 1, 1 ⩽ k, l ⩽ p, v − v′ < {0, 1}, 1 ⩽ j ⩽ s, 2 ⩽ j′ ⩽ s + 1,

δ =

0 if dim(m2) = 2;

1 if dim(m3) = 3

and the matrix Λ = (V1(ek, el)) is of the canonical form (4.6).
(ii) If V (s+1) = V(s+1) and s ⩾ 1 then there exist fi ∈ V (i−1)\V (i), g j ∈ V( j)\V( j−1) for 1 ⩽ i ⩽ s + 1, 1 ⩽ j ⩽
s, g0 = µ2 such that

f j · f j′ = fv · gv′ = 0, f j · g j = f 2
s+1 = b0, fi · gi−1 = µ1, f 2

1 = δ · µ2,

for 1 ⩽ i ⩽ s + 1, v − v′ < {0, 1}, 1 ⩽ j ⩽ s, 2 ⩽ j′ ⩽ s + 1, and δ is the same as in (i).
(iii) If s = 0 then there exist {ek : 1 ⩽ k ⩽ p + 1} such that ep+1 ∈ W\V (1) and:

V (1) = ⟨µ1, µ2⟩ ⊕ ⟨e1, ..., ep⟩,

ek · el = δk,l · b0 + V1(ek, el) · µ1,

ep+1 · µ2 = µ1, ep+1 · ek = 0, e2
p+1 = b0 + δ · µ2,

for 1 ⩽ k, l ⩽ p and δ is the same as in (i).

Proof. (i) Firstly we can choose ek satisfying (4.9) and from V(s) = Ker(F|V(s) ) we can choose fs+1 ∈

V (s)\V (s+1) s.t. F(ek, fs+1) = 0 and F( fs+1, fs+1) = 1. Furtherly we can choose fs ∈ V (s−1)\V (s), gs ∈

V(s)\V(s−1) and hs−1 ∈ V(s−1)\V(s−2) s.t. fs · hs−1 = µ1, F( fs, gs) = 1 and F( fs, fs) = 0. Moreover we
have fs+1 · gs = cs+1 · µ1 for some nonzero cs+1 ∈ K. Now we normalize the multiplications between
ek, fs, gs, fs+1 through the following steps:

ek 7→ ek − c−1
s+1 · V1( fs+1, ek) · gs to make fs+1 · ek = 0

fs+1 7→ fs+1 − c−1
s+1 · (V1( fs+1, fs+1)/2) · gs to make f 2

s+1 = b0

fs 7→ fs −

p∑
k=1

F(ek, fs) · ek − F( fs, fs+1) · fs+1 to make F( fs, ek) = F( fs, fs+1) = 0

and for any α ∈ {ek, fs+1 : 1 ⩽ k ⩽ p}

α 7→ α − V1(α, fs) · hs−1 to make fs · α = 0
gs 7→ gs − V1( fs, gs) · hs−1 to make gs · fs = b0

fs 7→ fs − (V1( fs, fs)/2) · hs−1 to make f 2
s =

0 if s ⩾ 2
d0 · µ2 if s = 1

After this as in Case 1 and 2, we can still inductively find suitable fi, gi satisfying (4.10) except that we
have fi · gi−1 = ci · µ1 and f 2

1 = d0 · µ2 for some nonzero ci ∈ K and d0 = 0 if and only if dim(m2) = 2.
Also we can assume Λ = (V1(ek, el)) is of the canonical form (4.6).
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Now to finish our normalization we again replace fi by xi · fi, replace g j by y j · g j and replace µ1 by
z0 · µ1. Then the condition ( fi · gi−1 = µ1, f 2

1 = δ · µ2, fi · gi = b0, f 2
s+1 = b0) gives a system of equations

for {xi, y j, z0, ∈ K : 1 ⩽ i ⩽ s + 1, 0 ⩽ j ⩽ s}:

xk · yk = 1, xk · yk−1 = z0 · c−1
k , x

2
s+1 = 1, d0 · x2

1 = δ · y0, xs+1 · ys = z0 · c−1
s+1

where 1 ⩽ k ⩽ s, and for which we have a solution:

(δ = 1)



xk = y−1
k

yk = yk−1 · ck · z−1
0

z0 = (c3 · c−2
1 · d0)

1
3s+4

y0 = ( z2
0·d0

c2
1

)
1
3

xs+1 = 1

and (δ = 0)


xk = y−1

k

yk = yk−1 · ck · z−1
0

z0 = 1, y0 = c−1, xs+1 = 1

where c �
∏s+1

i=0 ci, concluding the normalization.
(ii) If V(s+1) = V (s+1) then similarly the process will be the same as (i) except that we do not need to

choose ek at the beginning.
(iii) If s = 0 then the assertion follows from Lemma 3.6. □

Proposition 4.7 (Classification of Type C). (R,W, F) can be transformed into the following:
•Type C0: s = 0 (equivalently V(1) = Ker(F))

M(F,TypeC0) =



0 0 0 0 0
0 0 0 0 0
0 0 1 . . . 0

0 0
...
. . .

...

0 0 0 . . . 1


, W = ⟨µ1, µ2⟩ ⊕ ⟨e1, ..., ep, ep+1⟩

R � K[µ1, µ2, e1, ..., ep, ep+1]/(µ1 ·W, µ2 · ei, ei · e j − λi, j · µ1, e2
i − e2

j − (λi,i − λ j, j) · µ1, ep+1 · ei, e2
p+1 − δ ·

µ2 − e2
i + λi,i · µ1, 1 ⩽ i , j ⩽ p)

where Λ = (λi,i′) is of the canonical form (4.6) and δ is the same as in Type A1.

•Type C1: Q(s+1) is a projective space (equivalently V(s+1) = V (s+1))

M(F,TypeC1) =



0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 . . . 0 0 0 . . . 1

0 0
... . . . 0 0

...
...
...

0 0 0 0 0 0 1 0 0
0 0 0 . . . 0 1 0 . . . 0
0 0 0 . . . 1 0 0 . . . 0

0 0
...

...
... 0 0 . . . 0

0 0 1 . . . 0 0 0 . . . 0


W = ⟨µ1, µ2⟩ ⊕ ⟨g1, ..., gs⟩ ⊕ ⟨ fs+1, fs, ..., f1⟩

R � K[µ1, µ2, g1, ..., gs, f1, ..., fs, fs+1]/(µ1 ·W, gi · µ2, fl · µ2, gi · gv, gi · fi − gv · fv, gl−1 · fl − µ1, fl · fl′ , fh ·
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gh′ , f1 · µ2 − µ1, f 2
1 − δ · µ2, f 2

s+1 − fi · gi, 1 ⩽ i, v ⩽ s, 2 ⩽ l ⩽ s + 1, 1 ⩽ l′ ⩽ s, h − h′ < {0, 1}) where δ is
the same as in Type C0.

•Type C2: Q(s+1) is a hyperquadric (equivalently V(s+1) , V (s+1)).

M(F,TypeC2) =



0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 . . . 0 0 . . . 0 0 0 . . . 1
...
...
... . . .

...
... . . .

...
...
...

...
...

0 0 0 . . . 0 0 . . . 0 0 1 . . . 0
0 0 0 . . . 0 1 . . . 0 0 0 . . . 0
...
...
... . . .

...
...
. . .

...
...
... . . .

...

0 0 0 . . . 0 0 . . . 1 0 0 . . . 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 . . . 1 0 . . . 0 0 0 . . . 0
...
...
...

...
...
... . . .

...
...
... . . .

...

0 0 1 . . . 0 0 . . . 0 0 0 . . . 0


W = ⟨µ1, µ2⟩ ⊕ ⟨g1, ..., gs⟩ ⊕ ⟨e1, ..., ep⟩ ⊕ ⟨ fs+1, fs, ..., f1⟩

R � K[µ1, µ2, g1, ..., gs, e1, ..., ep, f1, ..., fs, fs+1]/(µ1 ·W, gi · µ2, ei′ · µ2, fl · µ2, gi · gv, fh · gh′ , fl · fl′ , gi · fi −

e2
i′ + λi′i′µ1, gl−1 · fl − µ1, f1 · µ2 − µ1, ei′ · ei′′ − λi′i′′µ1, ei′ · fl′ , ei′ · fs+1, f 2

1 − δ · µ2, f 2
s+1 − fi · gi, 1 ⩽ i, v ⩽

s, 2 ⩽ l ⩽ s + 1, 1 ⩽ i′ , i′′ ⩽ p, 1 ⩽ l′ ⩽ s, h − h′ < {0, 1})
where Λ = (λi′i′′) is of the canonical form (4.6) and δ is the same as in Type C0.

We now give a characterization of dim(m2).

Proposition 4.8. Given an additive action on a hyperquadric Q of corank two with unfixed singularities
and dim(Q) ⩾ 5, we represent it by (R,W, F) with m the maximal ideal, then dim(m2) = l(Gn

a,Q).

Proof. Note that for any α ∈ R, dim(Gn
a · [α]) = dim(g(Gn

a) · α) = dim(α · W). Thus the boundary
Q\O = Q ∩ P(m) as dim(Gn

a · [x]) = dim(Gn
a · [1R]) = dim(O) for any invertible element x in R. Then

for any x = [α] in the boundary, as α ∈ m, we have dim(Gn
a · [α]) = dim(α ·W)) ⩽ dim(m2), concluding

that l(Gn
a,Q) ⩽ dim(m2). On the other hand, by our normalization results of each type, we can find a

suitable element in the boundary whose orbit has dimension d = dim(m2) as follows.
If the action is not of Type B0 or C0. By Lemma 4.2, Lemma 4.4 and Lemma 4.6, we have [ f1] ∈

Q\O and dim( f1 ·W) = dim(m2).
If the action is of Type B0. By Lemma 4.4, we have [e1+i·e2+µ2] ∈ Q\O and dim((e1+i·e2+µ2)·W) =

dim(m2), where i2 = −1.
If the action is of Type C0. By Lemma 4.6 (iii), we have [ep+1 + i · e1] ∈ Q\O and dim((ep+1 + i · e1) ·

W) = dim(m2), where i2 = −1. □

In the following for a normalized structure of each type we call the normalized basis of W, i.e.,
{ fi, g j, ek, µ1, µ2} a set of normalized elements and we call the matrix Λ = (λi, j) (if exists) to be the
canonical matrix of the action.
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4.1.3. Uniqueness

In this section we finish our classification by showing that the normalized structrue is determined
by l(Gn

a,Q) and the canonical matrix(if exists) up to certain elementary transformations.
Given two additive actions on hyperquadrics of corank two with unfixed singularities (Gn

a,Q) and
(Gn

a,Q
′) for n ⩾ 5, we represent them by (R,W, F) and (R′,W ′, F′) respectively, and represent their

final outputs in the algebraic version of flow chart by (x, s,V (s),V(s)) and (x′, s′,V ′(s′),V ′(s′)) respectively.
Furthermore define {(V (k),V(k)) : k ⩽ s} and {(V ′(k),V ′(k)) : k ⩽ s′} to be the algebraic sturcture sequences
of the two actions. Then we have the following.

Theorem 4.9. (i) If the two actions are equivalent, i.e., there exist

Γ : R 7→ R′

such that Γ is a local K-algebra isomorphism and Γ(W) = W ′. Then
(i.a) (R,W, F) and (R′,W ′, F′) are of the same normalized type with s = s′ and l(Gn

a,Q) = l(Gn
a,Q

′).
(i.b) if they are of Type A1, B1 or C1, then they have the same normalized structure.
(i.c) if they are not of Type A1, B1 or C1, then their canonical matrices Λ and Λ′ differ up to a

permutation of blocks, a scalar multiplication, and adding a scalar matrix (which we call elementary
transformations).
Conversely

(ii) if the two actions are of the same type with l(Gn
a,Q) = l(Gn

a,Q
′), s = s′ and when they are not of

Type A1, B1 or C1, suppose that their canonical matrices differ up to above elementary transformations.
Then the two actions are equivalent.

We first prove (i.a) and (i.b).

Proof of Theorem 4.9 (i.a) and (i.b). (i.a) Firstly as Γ is an isomorphism, we conclude that l(Gn
a,Q) =

l(Gn
a,Q

′) by Proposition 4.8. By Γ(W) = W ′ and Lemma 2.7 we have F(a, b) = c · F′(Γ(a),Γ(b)) for
some nonzero c ∈ K, for any a, b ∈ R. Then from the algebraic version of the flow chart and our
definition of (V (k),V(k)) for each k, we conclude that s = s′, Γ(V(k)) = V ′(k) and Γ(V (k)) = V ′(k) for each k,
implying that the two actions are of the same normalized type shown in Section 4.1.2.

(i.b) Note that the set of normalized elements of these types does not contain ek hence the structure
only depends on s and l(Gn

a,Q) by our normalization result, concluding the proof. □

To prove (i.c) and (ii), we separate it into two cases.
Case 1. If s ⩾ 1, let {µ1, µ2, ek, gi, f1, b0 : 1 ⩽ k ⩽ p, 1 ⩽ i ⩽ s} and {µ′1, µ

′
2, e
′
k, g
′
i , f ′1 , b

′
0 : 1 ⩽ k ⩽ p, 1 ⩽

i ⩽ s} be the associated elements in the normalized structures respectively. Then the isomorphism Γ
gives :

Γ(b0) = cΓ · b′0 + fW′ , (4.11)
Γ( f1) = c1 · f ′1 + f1,W′ , (4.12)
Γ(µv) = fv,1 · µ

′
1 + fv,2 · µ

′
2, (4.13)

Γ(ek) =
p∑

l=1

ak,l · e′l +
s∑

i=1

bk,i · g′i + ck,1 · µ
′
1 + ck,2 · µ

′
2, (4.14)
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where fW′ ∈ W ′, f1,W′ ∈ V ′(1) and v ∈ {1, 2}, 1 ⩽ k ⩽ p, cΓ, c1 , 0 ∈ K. Moreover we define A = (ak,l)
then we have the following.

Lemma 4.10. (i) F′(Γ(a),Γ(b)) = cΓ · F(a, b).
(ii) fW′ = λ

(1) · µ′1 + λ
(2) · µ′2 ∈ ⟨µ

′
1, µ
′
2⟩, λ

(2) = f1,2 = 0 and f1,1, f2,2 , 0.
(iii) A′ · A = cΓ · Ip.

Proof. (i) Let a · b = F(a, b) · b0 + (a · b)|W . Then under the notation of Lemma 2.8 we have:

F′(Γ(a),Γ(b)) = y′0(Γ(a · b)) = F(a, b) · y′0(Γ(b0))
= F(a, b) · y′0(cΓ · b′0 + fW′) = cΓ · F(a, b).

(ii) The first assertion follows from b0 ∈ m
2 and Γ(m2) = (m′)2 ⊆ ⟨µ′1, µ

′
2, b
′
0⟩. For λ(2), from f1 · b0 = 0

we have:

0 = Γ(b0) · Γ( f1) =(cΓ · b′0 + λ
(1) · µ′1 + λ

(2) · µ′2) · (c1 · f ′1 + f1,W′) = c1 · λ
(2) · µ′1,

concluding that λ(2) = 0 as c1 is nonzero in K. For f1,2, from f1 · µ1 = 0 we have

0 = Γ(µ1) · Γ( f0) =( f1,1 · µ
′
1 + f1,2 · µ

′
2) · (c1 · f ′1 + f1,W′) = c1 · f1,2 · µ

′
1,

concluding that f1,2 = 0, hence f1,1 , 0 and f2,2 , 0.
(iii) Using (i) and (4.14) we have :

δk,k′ · cΓ = cΓ · F(ek, ek′) = F′(Γ(ek),Γ(ek′))

=

p∑
l,l′=1

δl,l′ · ak,l · ak′,l′ =

p∑
l=1

ak,l · ak′,l,

concluding that A′ · A = cΓ · Ip. □

Now we are ready to prove Theorem 4.9 (i.c) and (ii) when s ⩾ 1.

Proof of Theorem 4.9 (i.c),(ii) when s ⩾ 1. (i.c) Computing Γ(ek · ek′) = Γ(ek) · Γ(ek′):

LHS = Γ(δk,k′ · b0 + λk,k′ · µ1) = δk,k′ · cΓ · b′0 + (δk,k′ · λ
(1) + λk,k′ · f1,1) · µ′1.

RHS = (
p∑

l,l′=1

ak,l · ak′,l′ · δl,l′) · b′0 + (δ′ · bk,s · bk′,s +

p∑
l,l′=1

ak,l · λ
′
l,l′ · ak′,l′) · µ′1.

where δ′ , 0 if (g′s)
2 = µ1, i.e., the action is of Type B2. And we claim in this case bk,s = 0, implying

δ′ · bk,s · bk′,s′ = 0. This follows from computing Γ(ek · gs) = Γ(ek) · Γ(gs) from two sides.
Now from LHS = RHS combined with A′ · A = cΓ · Ip we have the equation:

Λ′ = (
λ(1)

cΓ
) · Ip + (

f1,1

c2
Γ

) · A′ΛA

hence from [5, Chapter XI §3] we conclude that Λ and Λ′ differ up to the listed elementary transfor-
mations.
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(ii) If the two actions have the same normalized type with l(Gn
a,Q) = l(Gn

a,Q
′), s = s′, Λ and

Λ′ differ up to elementary transformations, then by our normalization result, to give the isomorphism
between actions it suffices to find a new set of normalized elements of (R,W) having the canonical
matrix which equals Λ′. In the following we find the new normalized set {µ(0)

1 , µ
(0)
2 , g

(0)
j , e

(0)
k , f (0)

i , b
(0)
0 }

case by case.
1). (up to a permutation of blocks)
Note that any permutation of blocks can be induced by a permutation of {ek : 1 ⩽ k ⩽ p}. Hence

the new set of normalized elements can be defined through a suitable permutation of ek and identity on
other elements.

2). (up to adding a scalar matrix) we assume Λ′ = Λ + h · Ip for some nonzero h ∈ K.
In this case it suffices to find a new set of normalized elements with b(0)

0 = b0 − h · µ1, µ(0)
1 = µ1

and e(0)
k = ek. To find the set we run our normalization in Section 4.1.2 starting with µ1, µ2, b

(0)
0 and set

ek, fi, g j to be the initial elements we take at each step of the normalization. Then one can easily check
that after running the normalization of each type, the new set of normalized elements meets our need.

3). (up to a scalar multiplication) we assume Λ′ = h · Λ for some nonzero h ∈ K.
In this case it suffices to find a new set of normalized elements with b(0)

0 = cΓ ·b0, e
(0)
k =

√
cΓ ·ek, µ

(0)
1 =

f1,1 · µ1 for some nonzero cΓ, f1,1 ∈ K s.t. cΓ = h · f1,1. To find the elements, we define f (0)
i = xi · fi,

g(0)
j = y j ·g j and µ(0)

2 = y0 ·µ2. Then the condition ( f (0)
i ·g

(0)
i−1 = µ

(0)
1 , f (0)

i ·g
(0)
i = b(0)

0 ) and extra conditions
in different types shown in Section 4.1.2 gives a system of equations for each type:

(Type A2)


xi · yi = cΓ
xi · yi−1 = f1,1

x2
1 = y0

(Type B2)


xi · yi = cΓ
xi · yi−1 = f1,1

x2
1 = y0

y2
s = f1,1

(Type C2)


xi · yi = cΓ
xi · yi−1 = f1,1

x2
1 = y0

x2
s+1 = cΓ

with the condtion cΓ = h · f1,1 for each type.

For these equations one can easily check the existence of solutions, which enables us to find the set
of normalized elements we need.

□

Case 2. If s = 0, i.e., they are of Type B0 or C0, then we can use similar method in Case 1 to prove (i.c)
and also to prove (ii) when the two canonical matrices differ from a permutation of blocks or adding a
scalar matrix. Hence it sufficies to prove (ii) when Λ and Λ′ differ from a scalar multiplication.

As is Case 1, it sufficies to find a new set of normalized elements b(0)
0 = cΓ · b0, e

(0)
k =

√
cΓ · ek, µ

(0)
1 =

f1,1 · µ1 for some nonzero cΓ, f1,1 ∈ K s.t. cΓ = h · f1,1.
Now if the action is of Type B0 we set

µ(0)
1 = µ1, µ

(0)
2 = µ2, ei =

√
h · ei, b

(0)
0 = h · b0.

Then one can check {µ(0)
1 , µ

(0)
2 , e

(0)
i , b

(0)
0 : 1 ⩽ i ⩽ p} is the normalized set we need.
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If the action is of Type C0 we set

µ(0)
1 =

µ1

h3 , µ
(0)
2 =

µ2

h2 , e
(0)
i =

ei

h
, e(0)

p+1 =
ep+1

h
, b(0)

0 =
b0

h2 .

Then one can check {µ(0)
1 , µ

(0)
2 , e

(0)
i , e

(0)
p+1, b

(0)
0 : 1 ⩽ i ⩽ p} is the normalized set we need, concluding the

proof of Theorem 4.9.
As an application of our classification, we now prove Theorem 1.8.

Proof of Theorem 1.8. (i) Recall in Section 3.1 we have constructed (R(1),m(1)) or (R(1),V (1), F(1)) to be
the corresponding local algebra (and invariant linear form on it) of the obtained action (G(1),Q(1)) in
Theorem 1.6. Hence combined with the algebraic version of the flow chart, for a normalized structure
{(V (k),V(k)) : k ⩽ s} of an additive action (R,W, F), if the final output of the flow chart is (x, t,G(t),Q(t)),
then the output action (G(t),Q(t)) is represented by

(R(t),m(t)) = (V (t) ⊕ ⟨1R⟩,V (t)) if Q(t) is a projective space,
(R(t),V (t), F(t)) = (V (t) ⊕ ⟨b0⟩ ⊕ ⟨1R⟩,V (t), F|V(t) ) if Q(t) is a hyperquadric,

where t = s when x = A and t = s + 1 when x = B or C. Then (i) follows by Remark 2.1 and by
checking the multiplications in V (t) in different types as shown in Lemma 4.2,4.4 and 4.6.

(ii) l(Gn
a,Q) ⩽ 3 follows from Proposition 4.8 and our normalization result of each types.

codim(Q(k+1),Q(k)) = 1 follows from Proposition 4.1.
(iii) Now for two actions if they are equivalent induced by Γ : R 7→ R′ then from Theorem 4.9 (i.a)

they are of the same normalized type and t = t′, l(Gn
a,Q) = l(Gn

a,Q
′). Moreover as Γ(V (k)) = V ′(k) we

conclude that Γ|R(t) induces an isomorphism between the output actions of the two actions, which proves
the only if part of Theorem 1.8.

For the converse, it suffices to check the condition in Theorem 4.9 (ii). If s = s′ = 0 then they are
of the same type x0. If s = s′ ⩾ 1, then as the output action is equivalent, Q(t) and Q̃(t′) are either both
hyperquadrics or projective spaces, hence they are of the same type x1 or x2.

Now if they are of Type A2, B2 or Type C2, then consider the isomorphism between local algebras
induced by the equivalence of the output actions:

Γ(t) : (R(t),V (t),V(t)) 7→ (R′(t),V ′(t),V ′(t)),

using the same method in the proof of Theorem 4.9 (i.c), Γ(t) will induce elementary transformations
between the canonical matrices of the two actions. Therefore by Theorem 4.9 (ii) we conclude that the
two actions are equivalent.

□

4.2. Classification of actions with unfixed singularities (II): dim(Q) ⩽ 4

In this subsection we consider the case when dim(Q) ⩽ 4. Equivalently for a triple (R,W, F) we
have dim(W) ⩽ 4.

In the folowing we always take a basis of Ker(F) = ⟨µ1, µ2⟩ satisfying Lemma 3.5 (i). We also take
(V (1),V(1)) defined in Section 3. Then we give the classification case by case.
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Case 1. dim(W) = 4

Subcase (i): Ker(F) · Ker(F) , 0. Note that in the proof of Case 2 of Proposition 3.4 we only need to
assure the number of ek is at least two, hence this case is just the 4-dimensional version of Type B0.

Subcase (ii): Ker(F) · Ker(F) = 0 and Ker(F) = V(1). We have the following:

Ker(F) = V(1) ⫋ V (1) ⫋ W,

with codim(V(1),V (1)) = 1. In ths case, we can choose a g1 ∈ V (1)\V(1) such that F(g1, g1) = 1 as
F(g1, g1) , 0. Then for any f1 ∈ W\V (1), up to relplacing it by f1 − F( f1, g1)−1 · g1, we can have
f ( f1, g1) = 0. Finally F( f1, f1) , 0 as f1 < Ker(F), hence we can have F( f1, f1) = 1. Then we divide it
into two more subcases.

(ii.1) dim(V (1) ·W) = 3 then there exist a basis of Ker(F) = ⟨µ1, µ2⟩, f1 ∈ W\V (1), g1 ∈ V (1)\Ker(F)
and b0 ∈ m\W s.t.

g2
1 = b0, g1 · f1 = µ2, f 2

1 = b0 + λ · µ2, f1 · µ2 = µ1,

for some λ ∈ K.
To show this, from g1 ·g1 < Ker(F), g1 ·Ker(F) = 0, f1 ·µ2 ∈ ⟨µ1⟩ and our assumption dim(V (1) ·W) =

3 we conclude that g1 · f1 = c2 · µ2 + c1 · µ1 for some nonzero c2 ∈ K. Now we can normalize in the
following steps:
First we define b0 = g2

1 then we replace µ2 by f1 · g1, replace f1 by f1 −
V1( f1, f1)

2V1( f1,µ2) · µ2 and finally we
replace µ1 by f1 · µ2.

Then the classification of this case follows:

M(F) =


0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1

 , W = ⟨µ1, µ2⟩ ⊕ ⟨g1, f1⟩

and R is isomorphic to
K[µ1, µ2, g1, f1]/(µ1 ·W, µ2 · µ2, µ2 · g1, f1 · µ2 − µ1, f1 · g1 − µ2, f 2

1 − g2
1 − λ · µ2)

Moreover for the coefficient λ ∈ K we have the following uniqueness result which is easy to check.

Proposition 4.11. Two actions of Case (ii.1) with coefficients λ and λ′ respectively are equivalent if
and only if λ = ±λ′.

(ii.2) dim(V (1) ·W) = 2. Then choosing b0 = g2
1 we have V (1) ·W ⊆ ⟨µ1, b0⟩ and b0 ·W = 0. Moreover

we see f1 · µ2 = c · µ1 for some nonzero c ∈ K. And we set f 2
1 = b0 + V1( f1, f1) · µ1 + d1 · µ2. Now we

can normalize through the follwoing steps:

g1 → g1 − c−1 · V1(g1, f1) · µ2 to make g1 · f1 = 0

f1 → f1 −
V1( f1, f1)

2c
· µ2 to make f 2

1 = b0 + d1 · µ2
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and if d1 , 0 (i.e., dim(m2 = 3)) we replace µ2 by d1 · µ2 to make f 2
1 = b0 + µ2 then replace µ1 by f1 · µ2

to keep f1 · µ2 = µ1. This enables us to give the classification of this case:

M(F) =


0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1

 , W = ⟨µ1, µ2⟩ ⊕ ⟨g1, f1⟩

and R is isomorphic to
K[µ1, µ2, g1, f1]/(µ1 ·W, µ2 · µ2, µ2 · g1, f1 · µ2 − µ1, f1 · g1, f 2

1 − g2
1 − δ · µ2)

where δ is the same as we define in Section 4.1.2.

Subcase (iii): Ker(F) · Ker(F) = 0 and V(1) = V (1).
Then we can choose f1 ∈ W\V (1), g1 ∈ V (1)\Ker(F) s.t. F( f1, g1) = 1 and F( f1, f1) = F(g1, g1) = 0.

And we divide it into two more subcases.

(iii.1) dim(m2) = 2. We set b0 = g1 · f1 and replace µ1 by f1 · µ2, then we replace f1 by
f1 −

µ2
2V1( f1,µ2) to make f 2

1 = 0. Thus we have:

g1 · f1 = b0, f1 · µ2 = µ1, f 2
1 = 0, g2

1 = h · µ1

for some h ∈ K. Now if h , 0 then we can furtherly make g2
1 = µ1 through replacing elements as the

following:

µ1 =
√

h · µ1, µ2 = h
1
4 · µ2, f1 = h

1
4 · f1, g1 = h−

1
4 · g1, b0 = b0.

Then our classification of this case follows:

M(F) =


0 0 0 0
0 0 0 0
0 0 0 1
0 0 1 0

 , W = ⟨µ1, µ2⟩ ⊕ ⟨g1, f1⟩

and R is isomorphic to
K[µ1, µ2, g1, f1]/(µ1 ·W, µ2 · µ2, µ2 · g1, f1 · µ2 − µ1, g2

1 − µ1, f 2
1 )

or
K[µ1, µ2, g1, f1]/(µ1 · W, µ2 · µ2, µ2 · g1, f1 · µ2 − µ1, g2

1, f 2
1 ), depending on whether V (1) · V (1) equals to

zero or not.

(iii.2) dim(m2) = 3. We divide it into two more subcases.
If dim(V (1) ·W) = 2 then we have:

M(F) =


0 0 0 0
0 0 0 0
0 0 0 −1
0 0 −1 0

 , W = ⟨µ1, µ2⟩ ⊕ ⟨g1, f1⟩
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and R is isomorphic to
K[µ1, µ2, g1, f1]/(µ1 ·W, µ2 · µ2, µ2 · g1, f1 · µ2 − µ1, g2

1 − µ1, f 2
1 − µ2)

If dim(V (1) ·W) = 3 then we have:

M(F) =


0 0 0 0
0 0 0 0
0 0 0 1
0 0 1 0

 , W = ⟨µ1, µ2⟩ ⊕ ⟨g1, f1⟩

and R is isomorphic to
K[µ1, µ2, g1, f1]/(µ1 ·W, µ2 · µ2, µ2 · g1, f1 · µ2 − µ1, g2

1 − µ2, f 2
1 − µ2)

or
K[µ1, µ2, g1, f1]/(µ1 ·W, µ2 · µ2, µ2 · g1, f1 · µ2 − µ1, g2

1 − µ2, f 2
1 )

where one can easily check these two actions are not equivalent.
Case 2. dim(W) = 3 Then we have two subcases as follows.
Subcase (i): Ker(F) · Ker(F) , 0 then we have:

M(F) =


0 0 0
0 0 0
0 0 1

 , W = ⟨µ1, µ2⟩ ⊕ ⟨e⟩

and R is isomorphic to
K[µ1, µ2, e]/(µ1 ·W, µ2 · µ2 − µ1, µ2 · e, e3 − µ1), if dim(m2) = 2 and m3 , 0.
K[µ1, µ2, e]/(µ1 ·W, µ2 · µ2 − µ1, µ2 · e, e3), if dim(m2) = 2 and m3 = 0.
K[µ1, µ2, e]/(µ1 ·W, µ2 · µ2 − µ1, µ2 · e, e3 − µ2), if dim(m2) = 3.

Subcase (ii): Ker(F) · Ker(F) = 0 then we have:

M(F) =


0 0 0
0 0 0
0 0 1

 , W = ⟨µ1, µ2⟩ ⊕ ⟨e⟩

and R is isomorphic to
K[µ1, µ2, e]/(µ1 ·W, µ2 · µ2, µ2 · e − µ1, e3 − µ1), if dim(m2) = 2 and m3 , 0.
K[µ1, µ2, e]/(µ1 ·W, µ2 · µ2, µ2 · e − µ1, e3), if dim(m2) = 2 and m3 = 0.
K[µ1, µ2, e]/(µ1 ·W, µ2 · µ2, µ2 · e − µ1, e3 − µ2), if dim(m2) = 3
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