Research article Special Issues

Fluorescence detection of Zinc oxide nanoparticles in water contamination analysis based on surface reactivity with porphyrin

  • Received: 15 September 2017 Accepted: 12 March 2018 Published: 23 March 2018
  • A simple rapid analytical method for determining the concentration of ZnO nanoparticles in aqueous dispersion has been developed by adding porphyrin (TCPP) as a fluorophore into the water sample for fluorescence analysis. Quenching of the emission intensity at 650 nm provides a Stern-Volmer plot with adequate sensitivity for the detection of ZnO nanoparticles from 0.15 mg/mL up to 1.5 mg/mL. A new emission peak at 605 nm can be attributed to the formation of a unique ZnO-TCPP complex. This unique emission peak is good for both identification and quantitation of ZnO nanoparticles at low concentrations down to 0.0015 mg/mL. The new method affords a linear dynamic range up to 1.2 mg/mL.

    Citation: Wenyu Zhang, Edward P.C. Lai. Fluorescence detection of Zinc oxide nanoparticles in water contamination analysis based on surface reactivity with porphyrin[J]. AIMS Environmental Science, 2018, 5(2): 67-77. doi: 10.3934/environsci.2018.2.67

    Related Papers:

    [1] Xiaotong Ding, Lei Yang, Congsheng Li . Study of MI-BCI classification method based on the Riemannian transform of personalized EEG spatiotemporal features. Mathematical Biosciences and Engineering, 2023, 20(7): 12454-12471. doi: 10.3934/mbe.2023554
    [2] Ting-Huai Ma, Xin Yu, Huan Rong . A comprehensive transfer news headline generation method based on semantic prototype transduction. Mathematical Biosciences and Engineering, 2023, 20(1): 1195-1228. doi: 10.3934/mbe.2023055
    [3] Xu Yin, Ming Meng, Qingshan She, Yunyuan Gao, Zhizeng Luo . Optimal channel-based sparse time-frequency blocks common spatial pattern feature extraction method for motor imagery classification. Mathematical Biosciences and Engineering, 2021, 18(4): 4247-4263. doi: 10.3934/mbe.2021213
    [4] Yanghan Ou, Siqin Sun, Haitao Gan, Ran Zhou, Zhi Yang . An improved self-supervised learning for EEG classification. Mathematical Biosciences and Engineering, 2022, 19(7): 6907-6922. doi: 10.3934/mbe.2022325
    [5] Caixia Zheng, Huican Li, Yingying Ge, Yanlin He, Yugen Yi, Meili Zhu, Hui Sun, Jun Kong . Retinal vessel segmentation based on multi-scale feature and style transfer. Mathematical Biosciences and Engineering, 2024, 21(1): 49-74. doi: 10.3934/mbe.2024003
    [6] Xinglong Yin, Lei Liu, Huaxiao Liu, Qi Wu . Heterogeneous cross-project defect prediction with multiple source projects based on transfer learning. Mathematical Biosciences and Engineering, 2020, 17(2): 1020-1040. doi: 10.3934/mbe.2020054
    [7] Liangyu Yang, Tianyu Shi, Jidong Lv, Yan Liu, Yakang Dai, Ling Zou . A multi-feature fusion decoding study for unilateral upper-limb fine motor imagery. Mathematical Biosciences and Engineering, 2023, 20(2): 2482-2500. doi: 10.3934/mbe.2023116
    [8] Ying Chang, Lan Wang, Yunmin Zhao, Ming Liu, Jing Zhang . Research on two-class and four-class action recognition based on EEG signals. Mathematical Biosciences and Engineering, 2023, 20(6): 10376-10391. doi: 10.3934/mbe.2023455
    [9] Yongqiang Yao, Nan Ma, Cheng Wang, Zhixuan Wu, Cheng Xu, Jin Zhang . Research and implementation of variable-domain fuzzy PID intelligent control method based on Q-Learning for self-driving in complex scenarios. Mathematical Biosciences and Engineering, 2023, 20(3): 6016-6029. doi: 10.3934/mbe.2023260
    [10] Jiacan Xu, Donglin Li, Peng Zhou, Chunsheng Li, Zinan Wang, Shenghao Tong . A multi-band centroid contrastive reconstruction fusion network for motor imagery electroencephalogram signal decoding. Mathematical Biosciences and Engineering, 2023, 20(12): 20624-20647. doi: 10.3934/mbe.2023912
  • A simple rapid analytical method for determining the concentration of ZnO nanoparticles in aqueous dispersion has been developed by adding porphyrin (TCPP) as a fluorophore into the water sample for fluorescence analysis. Quenching of the emission intensity at 650 nm provides a Stern-Volmer plot with adequate sensitivity for the detection of ZnO nanoparticles from 0.15 mg/mL up to 1.5 mg/mL. A new emission peak at 605 nm can be attributed to the formation of a unique ZnO-TCPP complex. This unique emission peak is good for both identification and quantitation of ZnO nanoparticles at low concentrations down to 0.0015 mg/mL. The new method affords a linear dynamic range up to 1.2 mg/mL.


    [1] Raghupathi KR, Koodali RT, Manna AC (2011) Size-dependent bacterial growth inhibition and mechanism of antibacterial activity of zinc oxide nanoparticles. Langmuir 27: 4020–4028. doi: 10.1021/la104825u
    [2] Xia T, Kovochich M, Liong M, et al. (2008) Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties. ACS Nano 2: 2121–2134. doi: 10.1021/nn800511k
    [3] Ng KW, Khoo SPK, Heng BC, et al. (2011) The role of the tumor suppressor p53 pathway in the cellular DNA damage response to zinc oxide nanoparticles. Biomaterials 32: 8218–8225. doi: 10.1016/j.biomaterials.2011.07.036
    [4] Sharma V, Singh P, A.K. Pandey AK, et al. (2012) Induction of oxidative stress, DNA damage and apoptosis in mouse liver after sub-acute oral exposure to zinc oxide nanoparticles. Mutat Res-Gen Tox En 745: 84–91. doi: 10.1016/j.mrgentox.2011.12.009
    [5] Sharma V, Shukla RK, Saxena N, et al. (2009) DNA damaging potential of zinc oxide nanoparticles in human epidermal cells. Toxicol Lett 185: 211–218. doi: 10.1016/j.toxlet.2009.01.008
    [6] Wolfbeis OS (2015) An overview of nanoparticles commonly used in fluorescent bioimaging. Chem Soc Rev 44: 4743–4768. doi: 10.1039/C4CS00392F
    [7] Bahnemann DM, Korman C, Hoffmann MR (1987) Preparation and characterization of quantum size zinc oxide-a detailed spectroscopic study. J Phys Chem 91: 3789–3798. doi: 10.1021/j100298a015
    [8] Hong H, Shi J, Yang Y, et al. (2011) Cancer-targeted optical imaging with fluorescent zinc oxide nanowires. Nano Letters 11: 3744–3750. doi: 10.1021/nl201782m
    [9] Lee CM, Jeong HJ, Yun KN, et al. (2012) Optical imaging to trace near infrared fluorescent zinc oxide nanoparticles following oral exposure. Int J Nanomedicine 7: 3203–3209.
    [10] Singh N, Syed F, Haque FZ (2014) Ionic liquid controlled growth of zinc oxide nanoparticles and their fluorescence study in the presence of NH3 gas. Mater Sci Res India 11: 27–34. doi: 10.13005/msri/110104
    [11] Rabani J, Behar D (1989) Quenching of aqueous colloidal zinc oxide fluorescence by electron and hole scavengers-effect of a positive polyelectrolyte. J Physic Chem 93: 2559–2563. doi: 10.1021/j100343a063
    [12] Chen Z, Wu D (2014) Monodisperse BSA-conjugated zinc oxide nanoparticles based fluorescence sensors for Cu2+ ions. Sensor Actuat B-Chem 192: 83–91. doi: 10.1016/j.snb.2013.10.092
    [13] Unlu I, Soares JW, Steeves DM, et al. (2015) Photocatalytic activity and fluorescence of gold/zinc oxide nanoparticles formed by dithiol linking. Langmuir 31: 8718–8725. doi: 10.1021/acs.langmuir.5b01632
    [14] Corredor C, Borysiak MD, Wolfer J, et al. (2015) Colorimetric Detection of Catalytic Reactivity of Nanoparticles in Complex Matrices. Environ Sci Technol 49: 3611−3618.
    [15] Alsudir S, Lai EPC (2017) Selective detection of ZnO nanoparticles in aqueous suspension by capillary electrophoresis analysis using dithiothreitol and L-cysteine adsorbates. Talanta 169: 115–122. doi: 10.1016/j.talanta.2017.03.019
    [16] Biesaga M, Pyrzyńska K, Trojanowicz M (2000) Porphyrins in analytical chemistry. A review. Talanta 51: 209–224. doi: 10.1016/S0039-9140(99)00291-X
    [17] Gouterman M (1961) Spectra of porphyrins. J Mol Spectrosc 6: 138–163. doi: 10.1016/0022-2852(61)90236-3
    [18] Aly SMB, Eita M, Khan JI, et al. (2014) Remarkable fluorescence enhancement versus complex formation of cationic porphyrins on the surface of ZnO nanoparticles. J Physic Chem 118: 12154−12161.
    [19] Hiromitsu I, Kawami A, Tanaka S, et al. (2011) Luminescence of tetraphenylporphyrin by an energy transfer from photoexcited ZnO nanoparticles. Chem Phys Lett 501: 385−389.
    [20] Harriman A (1980) Luminescence of porphyrins and metalloporphyrins. Part 1-Zinc(II), nickel(II) and manganese(II) porphyrins. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases 76: 1978–1985.
    [21] Penon O, Moro AJ, Santucci D, et al. (2014) Molecular recognition of aliphatic amines by luminescent Zn-porphyrins. Inorganica Chimica Acta 417: 222–249. doi: 10.1016/j.ica.2013.12.028
    [22] Jones P, Sugino S, Yamamura S, et al. (2013) Impairments of cells and genomic DNA by environmentally transformed engineered nanomaterials. Nanoscale 5: 9511–9516. doi: 10.1039/c3nr03118g
    [23] Kang J, Wu H, Lu X, et al. (2005) Study on the interaction of new water-soluble porphyrin with DNA. Spectrochim Acta A 61: 2041–2047. doi: 10.1016/j.saa.2004.08.009
    [24] Xi G, Wang X, Chen T (2016) A reduced graphene oxide-based fluorescence resonance energy transfer sensor for highly sensitive detection of matrix metalloproteinase 2. Inte J Nanomedicine 11: 1537–1547.
    [25] Simonova OR, Zaitseva SV, Koifman OI (2008) Effect of the porphyrin structure on the kinetics of complex formation with zinc dipyrromethene in dimethylformamide. Russ J Inorg Chem 53: 391–396. doi: 10.1134/S0036023608030091
    [26] Gagne F, Auclair J, Trepanier S, et al. (2016) The impact of zinc oxide nanoparticles in freshwater mussels exposed to municipal effluents. Invertebr Surviv J 13: 281–290.
    [27] Odzak N, Kistler D, Sigg L (2017) Influence of daylight on the fate of silver and zinc oxide nanoparticles in natural aquatic environments. Environ Pollut 226: 1−11.
  • This article has been cited by:

    1. Mengfan Li, Jundi Li, Zhiyong Song, Haodong Deng, Jiaming Xu, Guizhi Xu, Wenzhe Liao, EEGNet-based multi-source domain filter for BCI transfer learning, 2024, 62, 0140-0118, 675, 10.1007/s11517-023-02967-z
    2. Xiaowei Zhang, Zhongyi Zhou, Qiqi Zhao, Kechen Hou, Xiangyu Wei, Sipo Zhang, Yikun Yang, Yanmeng Cui, Discriminative Joint Knowledge Transfer With Online Updating Mechanism for EEG-Based Emotion Recognition, 2024, 11, 2329-924X, 2918, 10.1109/TCSS.2023.3314508
    3. Muhui Xue, Baoguo Xu, Lang Li, Jingyu Ping, Minmin Miao, Huijun Li, Aiguo Song, Mean-based geodesic distance alignment transfer for decoding natural hand movement from MRCPs, 2025, 247, 02632241, 116836, 10.1016/j.measurement.2025.116836
  • Reader Comments
  • © 2018 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(8401) PDF downloads(1976) Cited by(10)

Article outline

Figures and Tables

Figures(7)  /  Tables(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog