Loading [MathJax]/jax/output/SVG/jax.js
Research article Special Issues

Summer cooling potential of urban vegetation—a modeling study for Melbourne, Australia

  • The summer cooling potential of urban vegetation is investigated using an urban climate model for the current and future climates in the Melbourne central business district (CBD) area with various urban forms and vegetation schemes. Simulation results suggest that the average seasonal summer temperatures can be reduced in the range of around 0.5 and 2°C if the Melbourne CBD were replaced by vegetated suburbs and planted parklands, respectively, benefiting a reduction in the number of hot days. It was also found that despite the projected warming in the future and variations in the climate projections among different climate models, the average seasonal cooling potential due to various urban vegetation schemes may not change significantly in comparison with those predicted for the current climate, indicating little dependency on climate change. This finding suggests that the average seasonal cooling potential as a result of urban vegetation in future climates may be empirically quantified in similar amounts to those under the current climate. When urban climate models are used, the cooling potential of urban vegetation in future climates may be quantified by modeling several selected years with one or a few climate models.

    Citation: Dong Chen, Marcus Thatcher, Xiaoming Wang, Guy Barnett, Anthony Kachenko, Robert Prince. Summer cooling potential of urban vegetation—a modeling study for Melbourne, Australia[J]. AIMS Environmental Science, 2015, 2(3): 648-667. doi: 10.3934/environsci.2015.3.648

    Related Papers:

    [1] Jia-Min Luo, Hou-Biao Li, Wei-Bo Wei . Block splitting preconditioner for time-space fractional diffusion equations. Electronic Research Archive, 2022, 30(3): 780-797. doi: 10.3934/era.2022041
    [2] Xing Zhang, Xiaoyu Jiang, Zhaolin Jiang, Heejung Byun . Algorithms for solving a class of real quasi-symmetric Toeplitz linear systems and its applications. Electronic Research Archive, 2023, 31(4): 1966-1981. doi: 10.3934/era.2023101
    [3] Xin Liu, Guang-Xin Huang . New error bounds for the tensor complementarity problem. Electronic Research Archive, 2022, 30(6): 2196-2204. doi: 10.3934/era.2022111
    [4] Peng Zhou, Teng Wang . The parameter-Newton iteration for the second-order cone linear complementarity problem. Electronic Research Archive, 2022, 30(4): 1454-1462. doi: 10.3934/era.2022076
    [5] Haiyan Song, Fei Sun . A numerical method for parabolic complementarity problem. Electronic Research Archive, 2023, 31(2): 1048-1064. doi: 10.3934/era.2023052
    [6] Qian He, Wenxin Du, Feng Shi, Jiaping Yu . A fast method for solving time-dependent nonlinear convection diffusion problems. Electronic Research Archive, 2022, 30(6): 2165-2182. doi: 10.3934/era.2022109
    [7] Yan Li, Yaqiang Wang . Some new results for $ B_1 $-matrices. Electronic Research Archive, 2023, 31(8): 4773-4787. doi: 10.3934/era.2023244
    [8] Yiyuan Qian, Kai Zhang, Jingzhi Li, Xiaoshen Wang . Adaptive neural network surrogate model for solving the implied volatility of time-dependent American option via Bayesian inference. Electronic Research Archive, 2022, 30(6): 2335-2355. doi: 10.3934/era.2022119
    [9] Guoliang Ju, Can Chen, Rongliang Chen, Jingzhi Li, Kaitai Li, Shaohui Zhang . Numerical simulation for 3D flow in flow channel of aeroengine turbine fan based on dimension splitting method. Electronic Research Archive, 2020, 28(2): 837-851. doi: 10.3934/era.2020043
    [10] Saeedreza Tofighi, Farshad Merrikh-Bayat, Farhad Bayat . Designing and tuning MIMO feedforward controllers using iterated LMI restriction. Electronic Research Archive, 2022, 30(7): 2465-2486. doi: 10.3934/era.2022126
  • The summer cooling potential of urban vegetation is investigated using an urban climate model for the current and future climates in the Melbourne central business district (CBD) area with various urban forms and vegetation schemes. Simulation results suggest that the average seasonal summer temperatures can be reduced in the range of around 0.5 and 2°C if the Melbourne CBD were replaced by vegetated suburbs and planted parklands, respectively, benefiting a reduction in the number of hot days. It was also found that despite the projected warming in the future and variations in the climate projections among different climate models, the average seasonal cooling potential due to various urban vegetation schemes may not change significantly in comparison with those predicted for the current climate, indicating little dependency on climate change. This finding suggests that the average seasonal cooling potential as a result of urban vegetation in future climates may be empirically quantified in similar amounts to those under the current climate. When urban climate models are used, the cooling potential of urban vegetation in future climates may be quantified by modeling several selected years with one or a few climate models.


    In this paper, we are concerned with the solution of the linear complementarity problem, abbreviated as LCP, that consists in finding a pair of real vectors $ z \in \mathbb{R}^n $ and $ v \in \mathbb{R}^n $ satisfying the conditions

    $ z0,v:=Az+q0,zv=0, $ (1.1)

    where $ A \in \mathbb{R}^{n \times n} $ is a given matrix, $ q \in \mathbb{R}^n $ is a given vector.

    The LCP (1.1) not only provides a unified framework for linear programming, quadratic programming, bi-matrix games, but also can be used to model many practically relevant situations such as spatial price balance problem, obstacles and free boundary problem, market equilibrium problem, optimal control problem, contact mechanics problem and so forth. To solve the LCP (1.1) numerically, various iteration methods have been presented and investigated, for example, the pivot algorithms [1,2], the projected iterative methods [3,4,5], the SOR-like iteration methods [6,7], the multisplitting methods [8,9,10,11,12,13], the modulus-based matrix splitting (MMS) methods [14,15], the Newton-type iteration methods [16,17], the multigrid methods [18] and others. Notably, among these methods, the MMS iteration method is particularly attractive since its ability to obtain numerical solutions more quickly and accurately which was first introduced in [14], and was extended in many works [19,20,21,22,23]. Making use of $ z = \frac{|x|+x}{\gamma} $ and $ v = \frac{\Omega}{\gamma}(|x|-x) $, Bai [14] transformed the LCP (1.1) into an equivalent system of fixed-point equation

    $ (Ω+A)x=(ΩA)|x|γq, $ (1.2)

    where $ \gamma $ is a positive constant and $ \Omega \in \mathbb{R}^{n \times n} $ is a positive diagonal matrix. Based on (1.2), the MMS method was presented as follows.

    Method 1.1 (MMS method). Let $ A = M-N $ be a splitting of the given matrix $ A \in \mathbb{R}^{n \times n} $, and the matrix $ \Omega+M $ be nonsingular, where $ \Omega \in \mathbb{R}^{n \times n} $ is a positive diagonal matrix. Given a nonnegative initial vector $ x^0 \in \mathbb{R}^n $, for $ k = 0, 1, 2, \ldots $ until the iteration sequence $ \{z^k\}^{+\infty}_{k = 0} \subset \mathbb{R}^n $ converges, compute $ x^{k+1} \in \mathbb{R}^n $ by solving the linear system

    $ (M+Ω)xk+1=Nxk+(ΩA)|xk|γq, $

    and set

    $ zk+1=1γ(|xk+1|+xk+1), $

    where $ \gamma $ is a positive constant.

    Furthermore, motivated by this method for solving the LCP (1.1), many researchers extended the MMS iteration method together with its variants to solve the nonlinear complementarity problems [24,25,26], the horizontal linear complementarity problems [27], the implicit complementarity problems [28,29,30], the second-order cone linear complementarity problems [31], the circular cone nonlinear complementarity problems [32], the semidefinite linear complementarity problems [33] and so forth.

    Recently, from a different perspective, Wu and Li [34] subtly designed a new equivalent form by directly exploiting the inequality system of the LCP (1.1) and reformulated the LCP (1.1) as a system of fixed-point equation without employing variable transformation, which could be described as follows

    $ (Ω+A)z=|(ΩA)zq|q. $ (1.3)

    Based on (1.3), a new modulus-based matrix splitting (NMMS) iteration method for solving the large and sparse LCP (1.1) was presented as Method 1.2.

    Method 1.2 (NMMS method). Let $ A = M-N $ be a splitting of the given matrix $ A \in \mathbb{R}^{n \times n} $, and matrix $ \Omega+M $ be nonsingular, where $ \Omega \in \mathbb{R}^{n \times n} $ is a positive diagonal matrix. Given a nonnegative initial vector $ z^0 \in\mathbb{R}^n $, for $ k = 0, 1, 2, \ldots $ until the iteration sequence $ \{z^k\}^{+\infty}_{k = 0} \subset \mathbb{R}^n $ converges, compute $ z^{k+1} \in \mathbb{R}^n $ by solving the linear system

    $ (Ω+M)zk+1=Nzk+|(AΩ)zk+q|q. $

    The NMMS iteration method has the merits of simple calculation and high calculation efficiency, so it is feasible and practical in actual implementations. Investigating Method 1.1 and Method 1.2, the MMS and NMMS iteration methods have resemblances, but they do not belong to each other. Compared with the MMS method, the NMMS method does not need to use the skill of variable transformation in the process of iteration, which provides a new general framework for solving the LCP (1.1). It was shown in [34] that the NMMS iteration method is superior to the MMS iteration method for certain LCPs. Furthermore, by ingeniously utilizing the matrix splitting technique and properly choosing the involved relaxation parameters, the NMMS iteration method can induce some new modulus-based relaxation methods, such as the new modulus-based Jacobi (NMJ) method, the new modulus-based Gauss-Seidel (NMGS) method, the new modulus-based successive overrelaxation (NMSOR) method and the new modulus-based accelerated overrelaxation (NMAOR) method. In this paper, we mainly focus on the NMMS iteration method for solving the LCP (1.1).

    Preconditioned acceleration is a classical acceleration technique for fixed-point iterations, and can essentially improve the convergence rate. In order to accelerate the convergence of the MMS iteration method for solving the LCP (1.1), some preconditioning solvers have been developed. For example, Li and Zheng [35] and Zheng and Luo [36] respectively developed a preconditioned MMS iteration method and a preconditioned two-step MMS iteration method by utilizing a variable transformation and the preconditioners were both chosen as

    $ ˉP=(1t1t1t1). $ (1.4)

    Ren et al. [37] proposed the preconditioned general two-step MMS iteration method based on the two-step MMS iteration method [38] and gave its convergence analysis. Wu et al. [39] presented the preconditioned general MMS iteration method by making use of the left multiplicative preconditioner in the implicit fixed-point equation, and four different preconditioners were chosen for comparison with $ P_1 = I + t_1 C_1 $ and $ P_2 = I + t_2 (C_1 + C_m) $, which were both lower-triangular matrices, $ P_3 = I + t_3 C_1^{\top} $, which was the preconditioner in (1.4), and $ P_4 = I + t_4 (C_1 + C_1^{\top}) $, which was a Hessenberg matrix. The element $ c_{kj} $ of $ C_i $ was given as

    $ ckj={1,fork=j+i,0,others, $

    and $ t_s > 0 $, $ s = 1, 2, 3, 4 $. Experimental results show that the preconditioners $ P_1 $ and $ P_2 $ have better computational efficiency than $ P_3 $ and $ P_4 $ in most cases. Dai et al. [40] proposed a preconditioner $ \tilde{P} $ which was defined as follows

    $ ˜P=(1a1k1ak1k1a1krakrkr1ak1krakrkrakrk1ak1k11ank1ak1k1ankrakrkr1), $ (1.5)

    and suggested a preconditioned two-step MMS iteration method for the LCP (1.1) associated with an $ M $-matrix.

    In this paper, we get inspiration from the work of [35] and extend Method 1.2 to a more general framework with a customized preconditioner. Different from the above mentioned preconditioners, we develop a generalized preconditioner associated with both $ H_+ $-matrix $ A $ and vector $ q $ of the LCP (1.1) and devise a preconditioned new modulus-based matrix splitting (PNMMS) iteration method for solving the LCP (1.1) of $ H_+ $-matrix. Particularly, the PNMMS iteration method can yield a series of preconditioned relaxation modulus-based matrix splitting iteration methods by suitable choices of matrix splitting. We give the convergence analysis of the PNMMS iteration method under some mild conditions and provide a comparison theorem to show the PNMMS iteration method accelerates the convergence rate theoretically.

    The rest of this paper is arranged as follows. In section 2, we present some classical definitions and preliminary results relevant to our later developments. Section 3 establishes the PNMMS iteration method for solving the LCP (1.1) and its convergence properties are explored in detail in section 4. The comparison theorem between the NMMS and the PNMMS method is presented in section 5. Section 6 provides some numerical examples to illustrate the theoretical results. Finally, some concluding remarks are given in section 7.

    In this section, we will present the notations and some auxiliary results that lay our claims' foundation.

    Let $ A = (a_{ij}) \in \mathbb{R}^{n \times n} $. $ \mathit{\boldsymbol{tridiag}}(a, b, c) $ represents a matrix with $ a, b, c $ as the subdiagonal, main diagonal and superdiagonal entries in the matrix. We denote the spectral radius of matrix $ A $ by $ \rho(A) $. $ I $ is the identity matrix with suitable dimension. $ A $ is referred to a $ Z $-matrix if $ a_{ij} < 0 $ for any $ i \neq j $. If $ A $ is a $ Z $-matrix and satisfies $ A^{-1} \geqslant 0 $, then the matrix $ A $ is called an $ M $-matrix. The comparison matrix of $ A $ is denoted by $ \langle A \rangle = (\langle a \rangle_{ij}) \in \mathbb{R}^{n \times n} $, where

    $ aij={|aii|,ifi=j,|aij|,ifij. $

    Obviously, the comparison matrix is a $ Z $-matrix. $ A $ is called an $ H $-matrix if its comparison matrix is an $ M $-matrix. If $ A $ is an $ H $-matrix with positive diagonals, it is an $ H_+ $-matrix, see [41]. An $ M $-matrix is an $ H_+ $-matrix, and an $ H_+ $-matrix is an $ H $-matrix.

    Let $ A = D-L-U = D-B $, where $ D $, $ -L $, $ -U $ and $ -B $ represent the diagonal matrix, strictly lower triangular matrix, strictly upper triangular matrix and off-diagonal matrix of matrix $ A $, respectively. We say $ A = M-N $ is a splitting if $ M $ is nonsingular. The splitting $ A = M-N $ is called a weak regular splitting of $ A \in \mathbb{R}^{n \times n} $, if $ M^{-1} \geqslant 0, M^{-1} N \geqslant 0 $, see [42]; an $ M $-splitting if $ M $ is an $ M $-matrix and $ N $ is nonnegative; an $ H $-splitting if $ \langle M \rangle - |N| $ is an $ M $-matrix; an $ H $-compatible splitting if $ \langle A \rangle = \langle M \rangle - |N| $, see [15]. Note that an $ M $-splitting is an $ H $-compatible splitting, and an $ H $-compatible splitting is an $ H $-splitting.

    Lemma 2.1 ([14]). Let $ A \in \mathbb{R}^{n \times n} $ be an $ H_+ $-matrix, then the LCP (1.1) has a unique solution for any $ q \in \mathbb{R}^n $.

    Lemma 2.2 ([43]). Let $ A \in \mathbb{R}^{n \times n} $ be an $ H_+ $-matrix, then $ |A^{-1}| \leqslant \langle A \rangle ^ {-1} $.

    Lemma 2.3 ([44]). Let $ A $ be a $ Z $-matrix, then the following statements are equivalent:

    $ A $ is an $ M $-matrix;

    There exists a positive vector $ x $, such that $ Ax > 0 $;

    Let $ A = M-N $ be a splitting of $ A $ and $ M^{-1} \geqslant 0 $, $ N \geqslant 0 $, then $ \rho (M^{-1} N) < 1 $.

    Lemma 2.4 ([44]). Let $ A $, $ B $ be two $ Z $-matrices, $ A $ be an $ M $-matrix and $ B \geqslant A $, then $ B $ is an $ M $-matrix.

    Lemma 2.5 ([45]). $ A $ is monotone if and only if $ A \in \mathbb{R}^{n \times n} $ is nonsingular with $ A^{-1} \geqslant 0 $.

    Lemma 2.6 ([46]). Suppose that $ E = F-G $ and $ \bar{E} = \bar{F} - \bar{G} $ are weak regular splittings of the monotone matrices $ E $ and $ \bar{E} $, respectively, such that $ F^{-1} \leqslant \bar{F}^{-1} $. If there exists a positive vector $ x $ such that $ 0 \leqslant Ex \leqslant \bar{E}x $, then for the monotonic norm associated with $ x $, $ \| \bar{F}^{-1} \bar{G} \|_x \leqslant \| F^{-1} G \|_x $. In particular, if $ F^{-1} G $ has a positive Perron vector, then $ \rho(\bar{F}^{-1} \bar{G}) \leqslant \rho(F^{-1} G) $.

    Lemma 2.7 ([47]). Let $ A = (a_{ij}) \in \mathbb{R}^{n \times n} $ be an $ M $-matrix, then there exists $ \delta_0 > 0 $ such that for any $ 0 < \delta \leqslant \delta_0 $, $ A(\delta) = (\; a_{ij}(\delta)\; ) \in \mathbb{R}^{n \times n} $ is a nonsingular $ M $-matrix, where

    $ aij(δ)={aij,aij0,δ,aij=0. $

    In this section, the PNMMS iteration method for solving the LCP (1.1) will be constructed and the new generalized preconditioner will be introduced.

    Enlightened by the idea of preconditioner in [40], we propose a generalized preconditioner $ P $ associated with both $ H_+ $-matrix $ A $ and vector $ q $ of the LCP (1.1) with the following form

    $ P:=(pij)=(1|a1k1|ak1k1|a1kr|akrkr1|ak1kr|akrkr|akrk1|ak1k11|ank1|ak1k1|ankr|akrkr1), $ (3.1)

    where $ p_{ii} = 1 $, the elements $ p_{ik_m} = \frac{|a_{ik_m}|}{a_{k_mk_m}} \geqslant 0 $, $ m \in \{ 1, 2, \ldots, r \} $ and $ k_m $ satisfies $ q_{k_m} < 0 $, while other entries are all $ 0 $.

    It is worth noting that the preconditioner (3.1) is established on the premise that $ A $ is an $ H_+ $-matrix, which is an extension of the preconditioner established by $ M $-matrix in [40], and naturally includes (1.5).

    Let $ PA = \bar{M} - \bar{N} $ be a splitting of the matrix $ PA $, we can rewrite the fixed-point system (1.3) as

    $ (PΩ+ˉM)z=ˉNz+|P(ΩA)zPq|Pq, $

    then we construct the PNMMS iteration method below.

    Method 3.1 (PNMMS method). Let $ P \in \mathbb{R}^{n \times n} $ be a given preconditioner, $ PA = \bar{M} - \bar{N} $ be a splitting of the matrix $ PA\in \mathbb{R}^{n \times n} $, and the matrix $ P\Omega + \bar{M} $ be nonsingular, where $ \Omega \in \mathbb{R}^{n \times n} $ is a positive diagonal matrix. Given a nonnegative initial vector $ z^0 \in\mathbb{R}^n $, for $ k = 0, 1, 2, \ldots $ until the iteration sequence $ \{z^k\}^{+\infty}_{k = 0} \subset \mathbb{R}^n $ converges, compute $ z^{k+1} \in \mathbb{R}^n $ by solving the linear system

    $ (PΩ+ˉM)zk+1=ˉNzk+|P(ΩA)zkPq|Pq. $ (3.2)

    Method 3.1 provides a general framework of the PNMMS method for solving the LCP (1.1). Besides including the NMMS method [34] as special case, it can generate a series of relaxation versions by suitable choices of matrix splitting. The framework of the PNMMS method is summarized as the following Algorithm 1.

    Algorithm 1 The PNMMS method for the LCP (1.1).
    Step 0 : We have $ A $, $ P $, $ \Omega \in \mathbb{R}^{n \times n} $ and $ q \in \mathbb{R}^n $ in advance. Select an arbitrary initial vector $ z^0 \in \mathbb{R}^n $. Give $ \varepsilon $ and set $ k:=0 $.
    Step 1 : Compute
         $ ˉA=PA,ˉq=Pq,ˉΩ=PΩ. $
    Step 2 : Consider $ \bar{A} = \bar{M} -\bar{N} $ be a splitting of $ \bar{A} $.
    Step 3 : Solve $ z^{k+1} $ by
         $ (ˉΩ+ˉM)zk+1=ˉNzk+|(ˉΩˉA)zkˉq|ˉq. $
    Step 4 : If Res =$ \| \min(Az+q, z) \|_2 \; \leqslant \varepsilon $, then stop. If not, then turn to Step 5.
    Step 5 : Set $ k:=k+1 $, then turn back to Step 3.

     | Show Table
    DownLoad: CSV

    Remark 3.1. Let $ P \in \mathbb{R}^{n \times n} $ be a given preconditioner and $ PA = \bar{M}-\bar{N} = \bar{D}-\bar{L}-\bar{U} $ be the splitting of the matrix $ PA \in \mathbb{R}^{n \times n} $. Here, we give the following remarks on Method 3.1.

    When $ P = I $, then Method 3.1 reduces to the NMMS method [34].

    When $ \bar{M} = \bar{D}, \; \bar{N} = \bar{L} + \bar{U} $, then Method 3.1 reduces to the preconditioned new modulus-based Jacobi (PNMJ) method:

    $ (PΩ+ˉD)zk+1=(ˉL+ˉU)zk+|P(ΩA)zkPq|Pq. $

    When $ \bar{M} = \bar{D} - \bar{L}, \; \bar{N} = \bar{U} $, then Method 3.1 becomes the preconditioned new modulus-based Gauss-Seidel (PNMGS) method:

    $ (PΩ+ˉDˉL)zk+1=ˉUzk+|P(ΩA)zkPq|Pq. $

    When $ \bar{M} = \frac{1}{\alpha} \bar{D} - \bar{L}, \; \bar{N} = \frac{1-\alpha}{\alpha} \bar{D} + \bar{U} $, then Method 3.1 turns into the preconditioned new modulus-based successive overrelaxation (PNMSOR) method:

    $ (αPΩ+ˉDαˉL)zk+1=((1α)ˉD+αˉU)zk+α(|P(ΩA)zkPq|Pq). $

    When $ \bar{M} = \frac{1}{\alpha} \bar{D} - \frac{\beta}{\alpha} \bar{L}, \; \bar{N} = \frac{1-\alpha}{\alpha} \bar{D} + \frac{\alpha-\beta}{\alpha} \bar{L} + \bar{U} $, then Method 3.1 reduces to the preconditioned new modulus-based accelerated overrelaxation (PNMAOR) method:

    $ (αPΩ+ˉDβˉL)zk+1=((1α)ˉD+(αβ)ˉL+αˉU)zk+α(|P(ΩA)zkPq|Pq). $

    In this section, we will analyze the convergence of Method 3.1 for the LCP (1.1) with an $ H_+ $-matrix. Some mild convergence conditions are given to guarantee the convergence of Method 3.1.

    First of all, a general convergence condition for Method 3.1 is established in Theorem 4.1.

    Theorem 4.1. Let $ A \in \mathbb{R}^{n \times n} $ be an $ H_+ $-matrix, $ P $ be a given nonsingular matrix with positive diagonals such that $ PA $ is an $ H_+ $-matrix. Make $ PA = \bar{M} - \bar{N} $ be a splitting of the matrix $ PA $ and $ P\Omega + \bar{M} $ be an invertible $ H_+ $-matrix, where $ \Omega $ is a positive diagonal matrix. Let

    $ ˉF:=PΩ+ˉM,ˉG:=|ˉN|+|P||ΩA|, $ (4.1)

    if $ \rho(\bar{F}^{-1} \bar{G}) < 1 $, then the iteration sequence $ \{z^k\}^{+\infty}_{k = 0} \subset \mathbb{R}^n $ produced by Method 3.1 converges to the unique solution $ z^* \in \mathbb{R}^n $ of the LCP (1.1) with a nonnegative initial vector.

    Proof. Let $ A $ be an $ H_+ $-matrix, it follows from Lemma 2.1 that the LCP (1.1) has a unique solution $ z^* $, which means

    $ (PΩ+ˉM)z=ˉNz+|P(ΩA)zPq|Pq. $ (4.2)

    Subtracting (4.2) from (3.2), we have

    $ (PΩ+ˉM)(zk+1z)=ˉN(zkz)+|P(ΩA)zkPq||P(ΩA)zPq|. $

    If $ P\Omega + \bar{M} $ is invertible, then it holds that

    $ zk+1z=(PΩ+ˉM)1(ˉN(zkz)+|P(ΩA)zkPq||P(ΩA)zPq|). $ (4.3)

    Taking absolute value on both sides of (4.3) and utilizing the triangle inequality, one can obtain

    $ |zk+1z|=|(PΩ+ˉM)1(ˉN(zkz)+|P(ΩA)zkPq||P(ΩA)zPq|)||(PΩ+ˉM)1|(|ˉN(zkz)|+||P(ΩA)zkPq||P(ΩA)zPq||)|(PΩ+ˉM)1|(|ˉN||zkz|+|P||ΩA||zkz|)=|(PΩ+ˉM)1|(|ˉN|+|P||ΩA|)|zkz|PΩ+ˉM1(|ˉN|+|P||ΩA|)|zkz|:=ˉF1ˉG|zkz|, $

    where the last inequality follows from Lemma 2.2. Evidently, if $ \rho (\bar{F}^{-1} \bar{G}) < 1 $, then the sequence $ \{z^k\}^{+\infty}_{k = 0} $ converges to the unique solution $ z^* $ of the LCP (1.1).

    In particular, if $ P = I $, the following corollary can be obtained.

    Corollary 4.1. Let $ A \in \mathbb{R}^{n \times n} $ be an $ H_+ $-matrix, $ A = M-N $ be a splitting of the matrix $ A $, and the matrix $ \Omega+M $ be nonsingular $ H_+ $-matrix, where $ \Omega $ is a positive diagonal matrix. Let

    $ F: = \langle \Omega + M \rangle,\; G : = |N|+|\Omega-A|, $

    if $ \rho(F^{-1} G) < 1 $, then the iteration sequence $ \{z^k\}^{+\infty}_{k = 0} \subset \mathbb{R}^n $ produced by Method 1.2 converges to the unique solution $ z^* \in \mathbb{R}^n $ of the LCP (1.1) with a nonnegative initial vector.

    Theorem 4.2. Let $ A \in \mathbb{R}^{n \times n} $ be an $ H_+ $-matrix, $ P $ be a given nonsingular matrix with positive diagonals such that $ PA $ is an $ H_+ $-matrix. Make $ PA = \bar{M} - \bar{N} $ be a splitting of the matrix $ PA $ and $ P\Omega + \bar{M} $ is an invertible $ H_+ $-matrix. The diagonal matrix satisfies

    $ DxΩx<(PA+|P|A)x2BP $ (4.4)

    or

    $ 12D1P(|P||A|PA)x<Ωx<Dx, $ (4.5)

    where $ A = D-B $, $ P = D_P - B_P $ and $ x $ is an identity column vector. Then the iteration sequence $ \{z^k\}^{+\infty}_{k = 0} \subset \mathbb{R}^n $ produced by Method 3.1 converges to the unique solution $ z^* \in \mathbb{R}^n $ of the LCP (1.1) with a nonnegative initial vector.

    Proof. Denote $ \bar{E} : = \bar{F} - \bar{G} $, where $ \bar{F} $ and $ \bar{G} $ are given as in (4.1), then it can be concluded that

    $ ˉE=PΩ+ˉM|ˉN||P||ΩA|=(DPΩ+DˉM)|BPΩ+BˉM||ˉN||P||ΩA|DPΩ+DˉM|BPΩ||BˉM||ˉN||P||ΩA|=PΩ+ˉM|ˉN||P||ΩA|=PA+PΩ|P||ΩA|PA+PΩ|P|(|ΩD|+|B|)={PA+|P|A2|BP|Ω,ΩD,PA|P||A|+2DPΩ,Ω<D. $

    For the case $ \Omega \geqslant D $, the parameter $ \Omega $ satisfies (4.4), we have

    $ (PA+|P|A2|BP|Ω)x>0. $

    It is obvious that $ \langle PA \rangle + |P| \langle A \rangle - 2 |B_P| \Omega $ is a $ Z $-matrix. According to Lemma 2.3, it implies that $ \langle PA \rangle + |P| \langle A \rangle - 2 |B_P| \Omega $ is an $ M $-matrix. It can be got from Lemma 2.4 that $ \bar{E} $ is an $ M $-matrix.

    For the case $ \Omega < D $, the parameter $ \Omega $ satisfies (4.5), it holds that

    $ (PA|P||A|+2DPΩ)x>0. $

    Analogously, $ \langle PA \rangle - |P| |A| + 2 D_P \Omega $ is an $ M $-matrix. In the light of Lemma 2.4, it follows that the $ Z $-matrix $ \bar{E} $ is a nonsingular $ M $-matrix.

    As we know $ \bar{E} = \bar{F} - \bar{G} $ be a splitting of the $ M $-matrix $ \bar{E} $. Since $ P\Omega + \bar{M} $ is an $ H_+ $-matrix, then $ \bar{F}^{-1} = \langle P\Omega + \bar{M} \rangle ^{-1} \geqslant 0 $ and $ \bar{F} $ is an $ M $-matrix. It is obvious that $ \bar{G} = |\bar{N}| + |P| |\Omega-A| \geqslant 0 $. Then Lemma 2.3 leads to $ \rho (\bar{F}^{-1} \bar{G}) < 1 $, the assertion then follows by Theorem 4.1, the proof is completed.

    In particular, if $ P = I $, it implies that $ \| B_P \|_\infty = 0 $. Taking the right-hand side of (4.4) to be $ +\infty $, then the following corollary can be obtained. It is worth noting that Corollary 4.2 leads to a broader convergence region than Theorem 4.2 in [34].

    Corollary 4.2. Let $ A \in \mathbb{R}^{n \times n} $ be an $ H_+ $-matrix, $ A = M-N $ be a splitting of the matrix $ A $, and the matrix $ \Omega+M $ be nonsingular $ H_+ $-matrix. If the diagonal matrix $ \Omega $ satisfies

    $ ΩDorΩx>|B|x, $

    where $ A = D-B $ and $ x $ is an identity column vector. Then the iteration sequence $ \{z^k\}^{+\infty}_{k = 0} \subset \mathbb{R}^n $ produced by Method 3.1 converges to the unique solution $ z^* \in \mathbb{R}^n $ of the LCP (1.1) with a nonnegative initial vector.

    Similarly, we establish the following convergence theorem on the PNMAOR method.

    Theorem 4.3. Let $ A \in \mathbb{R}^{n \times n} $ be an $ H_+ $-matrix, $ P $ be a given nonsingular matrix with positive diagonals such that $ PA $ is an $ H_+ $-matrix. Make $ PA = \bar{D} - \bar{L} - \bar{U} = \bar{D} - \bar{B} $, $ P = D_P - B_P $ and $ \rho : = \rho(\bar{D}^{-1} (|\bar{B}| + | B_P \Omega |)) $. If the positive diagonal matrix $ \Omega $ satisfies $ D_P \Omega \geqslant \frac{1}{2\alpha} \bar{D} $. Then for any initial vector, the PNMAOR iteration method is convergent if the following conditions are satisfied

    (1) when $ \frac{1}{2\alpha} \bar{D} \leqslant D_P \Omega < \frac{1}{\alpha} \bar{D} $,

    $ 0βα,12(1ρ)<α<32(1+ρ),ρ<12; $
    $ α<β<14ρ,4βρ+12<α<34βρ2,ρ<14β. $

    (2) when $ D_P \Omega \geqslant \frac{1}{\alpha} \bar{D} $,

    $ 0βα,0<α<21+ρ,ρ<1; $
    $ α<β<12ρ,2βρ<α<22βρ,ρ<12β. $

    Proof. Since

    $ ˉM=1αˉDβαˉL,ˉN=1ααˉD+αβαˉL+ˉU, $

    where $ PA = \bar{M} - \bar{N} $. By some calculations, it holds that

    $ ˉF=PΩ+ˉM=PΩ+1αˉDβαˉL=DPΩ+1αˉD|BPΩ+βαˉL|DPΩ+1αˉD|BPΩ|βα|ˉL|, $

    and

    $ ˉG=|ˉN|+|P||ΩA|2|ˉN|+|PΩˉM|=2|1ααˉD+αβαˉL+ˉU|+|PΩ1αˉD+βαˉL|2|1α|αˉD+2|αβ|α|ˉL|+2|ˉU|+|PΩ1αˉD+βαˉL|=2|1α|αˉD+2|αβ|α|ˉL|+2|ˉU|+|DPΩ1αˉD|+|BPΩβαˉL|2|1α|αˉD+2|αβ|α|ˉL|+2|ˉU|+|DPΩ1αˉD|+|BPΩ|+βα|ˉL|, $

    where $ \bar{F} $ and $ \bar{G} $ are defined as (4.1). It is obvious to see that $ \bar{F} $ is an $ M $-matrix and $ \bar{G} \geqslant 0 $. According to Lemma 2.3, we need to prove $ \bar{E} = \bar{F} -\bar{G} $ is an $ M $-matrix, where

    $ ˉEDPΩ|DPΩ1αˉD|+12|1α|αˉD2(|αβ|+β)α|ˉL|2|ˉU|2|BPΩ|. $ (4.6)

    When $ \frac{1}{2\alpha} \bar{D} \leqslant D_P \Omega < \frac{1}{\alpha} \bar{D} $ and $ 0 \leqslant \beta \leqslant \alpha $, we know $ D_P \Omega - |D_P \Omega - \frac{1}{\alpha} \bar{D}| \geqslant 0 $. Based on (4.6), we can simplify it to

    $ ˉE12|1α|αˉD2|ˉL|2|ˉU|2|BPΩ|=12|1α|αˉD2(|ˉB|+|BPΩ|):=ˆE. $

    From Lemma 2.4, if $ \hat{E} $ is an $ M $-matrix, then $ \bar{E} $ is an $ M $-matrix, and it holds if and only if

    $ 12|1α|0,ρ(α12|1α|ˉD12(|ˉB|+|BPΩ|))<1, $

    and then we can obtain

    $ 12(1ρ)<α<32(1+ρ),ρ<12. $

    When $ \frac{1}{2\alpha} \bar{D} \leqslant D_P \Omega < \frac{1}{\alpha} \bar{D} $ and $ \alpha < \beta $, we know $ D_P \Omega - |D_P \Omega - \frac{1}{\alpha} \bar{D}| \geqslant 0 $ and $ \alpha |\bar{L}| \geqslant 0 $. Based on (4.6), we can simplify it to

    $ ˉE12|1α|αˉD4βα|ˉL|2|ˉU|2|BPΩ|12|1α|αˉD4βα(|ˉB|+|BPΩ|):=ˆE. $

    From Lemma 2.4, if $ \hat{E} $ is an $ M $-matrix, then $ \bar{E} $ is an $ M $-matrix, and it holds if and only if

    $ 12|1α|0,ρ(α12|1α|ˉD14βα(|ˉB|+|BPΩ|))<1, $

    and then we get

    $ 4βρ+12<α<34βρ2,ρ<14β. $

    When $ \Omega \geqslant \frac{1}{\alpha} \bar{D} $ and $ 0 \leqslant \beta \leqslant \alpha $, we know $ D_P \Omega - |D_P \Omega - \frac{1}{\alpha} \bar{D}| = \frac{1}{\alpha} \bar{D} > 0 $. Based on (4.6), we can simplify it to

    $ ˉE1αˉD+12|1α|αˉD2|ˉL|2|ˉU|2|BPΩ|=2(1|1α|)αˉD2(|ˉB|+|BPΩ|):=ˆE. $

    From Lemma 2.4, if $ \hat{E} $ is an $ M $-matrix, then $ \bar{E} $ is an $ M $-matrix, and it holds if and only if

    $ 1|1α|0,ρ(α2(1|1α|)ˉD12(|ˉB|+|BPΩ|))<1, $

    and then we have

    $ 0<α<21+ρ,ρ<1. $

    When $ \Omega \geqslant \frac{1}{\alpha} \bar{D} $ and $ \alpha < \beta $, we know $ D_P \Omega - |D_P \Omega - \frac{1}{\alpha} \bar{D}| = \frac{1}{\alpha} \bar{D} > 0 $ and $ \alpha |\bar{L}| \geqslant 0 $. Based on (4.6), we can simplify it to

    $ ˉE1αˉD+12|1α|αˉD4βα|ˉL|2|ˉU|2|BPΩ|=2(1|1α|)αˉD4βα(|ˉB|+|BPΩ|):=ˆE. $

    From Lemma 2.4, if $ \hat{E} $ is an $ M $-matrix, then $ \bar{E} $ is an $ M $-matrix, and it holds if and only if

    $ 1|1α|0,ρ(α2(1|1α|)ˉD14βα(|ˉB|+|BPΩ|))<1, $

    and then we obtain

    $ 2βρ<α<22βρ,ρ<12β. $

    Therefore, the convergence of the PNMAOR method can be proved by Lemma 2.3, thus completing the proof.

    Under the conditions of Theorem 4.3, if we take the specific choices of $ \alpha $ and $ \beta $ for the PNMAOR method, the following corollaries on the PNMJ, PNMGS and PNMSOR methods can be derived.

    Corollary 4.3. Let $ A \in \mathbb{R}^{n \times n} $ be an $ H_+ $-matrix, and $ P $ be a given nonsingular matrix with positive diagonals such that $ PA $ is an $ H_+ $-matrix. Make $ PA = \bar{D} - \bar{L} - \bar{U} = \bar{D} - \bar{B} $, $ P = D_P - B_P $ and $ \rho : = \rho(\bar{D}^{-1} (|\bar{B}| + | B_P \Omega |)) $. If the positive diagonal matrix $ \Omega $ satisfies $ D_P \Omega \geqslant \frac{1}{2\alpha} \bar{D} $. Then for any initial vector,

    if $ \alpha = 1 $ and $ \beta = 0 $, the PNMJ iteration method is convergent;

    if $ \alpha = \beta = 1 $, the PNMGS iteration method is convergent;

    if $ \alpha = \beta $, the PNMSOR iteration method is convergent for

    $ {12(1ρ)<α<32(1+ρ),ρ<12,if12αˉDDPΩ<1αˉD,0<α<21+ρ,ρ<1,ifDPΩ1αˉD. $

    When $ P = I $, the convergence theorem of the PNMAOR method can be extended to the NMAOR method in [34]. For most cases, the range of the parameters of the AOR method is usually set as $ 0 \leqslant \beta \leqslant \alpha $, then the following result can be obtained.

    Corollary 4.4. Let $ A \in \mathbb{R}^{n \times n} $ be an $ H_+ $-matrix. Make $ A = D-L-U = D-B $ satisfy $ \rho : = \rho(D^{-1} |B|) < \frac{1}{2} $ and $ \Omega \geqslant \frac{1}{2\alpha} D $. Then for any initial vector, the NMAOR iteration method is convergent for

    $ 0βαand12(1ρ)<α<32(1+ρ). $

    In this section, we provide a comparison theorem between the PNMMS iteration method and the NMMS iteration method, which indicates that the PNMMS method for solving the LCP (1.1) can accelerate the convergence rate of the original NMMS method.

    Let

    $ Ω=D,M=DL,N=UandˉM=ˉDˉL,ˉN=ˉU, $

    where $ A = D-L-U $ and $ PA = \bar{D} - \bar{L} - \bar{U} $. It is easy to see that this is a special case of the NMMS method and the PNMMS method, other relaxation versions can also be theoretically analyzed in the similar way.

    We get the following useful lemma on the premise of the structure-preserving preconditioner $ P $ in (3.1). The proof of Lemma 5.1 is similar to that of Lemma 4.1 in [48] and thus we omit the detail.

    Lemma 5.1 ([48]). Let $ A \in \mathbb{R}^{n \times n} $ be an $ H_+ $-matrix, $ P $ be the preconditioner from (3.1) such that $ PA $ is an $ H_+ $-matrix. Assume that $ D $, $ L $ and $ \bar{D} $, $ \bar{L} $ are given by $ A = D-L-U $ and $ PA = \bar{D} - \bar{L} - \bar{U} $, respectively. Then

    $ ˉDD,|L||ˉL|. $

    Theorem 5.1. Let $ A \in \mathbb{R}^{n \times n} $ be an $ H_+ $-matrix, $ P $ be the preconditioner in (3.1) such that $ PA $ is an $ H_+ $-matrix. Make $ A $ and $ PA $ have the splitting $ A = D-L-U $ and $ PA = \bar{D} - \bar{L} - \bar{U} $, respectively. Then for the iterative matrices $ F^{-1}G $ of the NMMS method and $ \bar{F}^{-1} \bar{G} $ of the PNMMS method, it holds that

    $ ρ(ˉF1ˉG)ρ(F1G)<1, $

    where $ F $, $ G $ are given as

    $ F=2D|L|,G=|L|+2|U| $ (5.1)

    and $ \bar{F} $, $ \bar{G} $ are given as

    $ ˉF=2ˉD|ˉL|,ˉG=|ˉL|+2|ˉU|. $ (5.2)

    Proof. Since

    $ |ΩA|=|ΩD+L+U||ΩD+L|+|U|, $

    we generalize the convergence conditions of Corollary 4.1 and Theorem 4.1, and obtain the conclusions $ \rho(F^{-1} G) < 1 $ and $ \rho(\bar{F}^{-1} \bar{G}) < 1 $, where $ F $, $ G $ and $ \bar{F} $, $ \bar{G} $ are given as (5.1) and (5.2), respectively. Now we only need to prove $ \rho(\bar{F}^{-1} \bar{G}) \leqslant \rho(F^{-1}G) $.

    Here, we denote

    $ E:=FG=2D2|L|2|U|,ˉE:=ˉFˉG=2ˉD2|ˉL|2|ˉU|. $ (5.3)

    It is easy to check that $ E $ and $ \bar{E} $ of (5.3) are both $ M $-matrices, then $ E^{-1} \geqslant 0 $ and $ \bar{E}^{-1} \geqslant 0 $. In this way, Lemma 2.5 shows that $ E $ and $ \bar{E} $ are monotone matrices. Since $ F = 2D-|L| $ and $ \bar{F} = 2\bar{D} - |\bar{L}| $ are both $ M $-matrices, we have $ F^{-1} \geqslant 0 $ and $ \bar{F}^{-1} \geqslant 0 $. Evidently, the matrix $ G = |L|+2|U| \geqslant 0 $ and $ \bar{G} = |\bar{L}| + 2|\bar{U}| \geqslant 0 $ are nonnegative matrices. So we know that $ E = F-G $ and $ \bar{E} = \bar{F}-\bar{G} $ are weak regular splittings. From Lemma 5.1, we figure out that $ 2\bar{D}-|\bar{L}| \leqslant 2D-|L| $, hence $ \left(2D-|L| \right)^{-1} \leqslant \left(2\bar{D}-|\bar{L}| \right)^{-1} $, that is to say $ F^{-1} \leqslant \bar{F}^{-1} $. Following Lemma 2.3, since $ E $ is an $ M $-matrix, there exists a vector $ x > 0 $ such that $ Ex > 0 $. For the preconditioner (3.1), we have $ P \geqslant I $. Moreover $ \bar{E} = PE $, we infer the conclusion $ 0 \leqslant Ex \leqslant \bar{E}x $ easily.

    If the matrix $ A $ is irreducible, then $ F^{-1} G $ is also a nonnegative irreducible matrix. In combination with Lemma 2.6 and Perror-Frobeni theorem [45], $ F^{-1}G $ has a positive Perron vector such that $ \rho(\bar{F}^{-1} \bar{G}) \leqslant \rho(F^{-1}G) $. However, if the matrix $ A $ is reducible, then we can construct an irreducible matrix $ A(\delta) $ by Lemma 2.7 which leads to $ \rho(\bar{F}^{-1} \bar{G}) \leqslant \rho(F^{-1}G) $.

    In view of the above, the comparison theorem shows that the convergence rate of the PNMMS method is faster than the NMMS method whenever these methods are convergent.

    In this section, four numerical examples will be presented to illustrate the efficiency of the PNMMS iteration method for solving the LCP (1.1). All test problems are conducted in MATLAB R2014b on a PC Windows 10 operating system with an intel i5-10400F CPU and 8GB RAM. In the numerical results, we report the number of iteration steps (denoted by "Iter"), the elapsed CPU time in seconds (denoted by "Time"), the relative residual (denoted by "Res") and the spectral radius (denoted by "Rho"). The stopping criterion of iteration is defined as

    $ Res=min(Azk+q,zk)2106, $

    or the prescribed maximal iteration number $ k_{max} = 500 $ is exceeded ($ "-" $ is used in the following tables to demonstrate this circumstance). All tests are started from the initial vector $ z^0 = (1, 0, 1, 0, \cdots, 1, 0, \cdots)^{\top} \in \mathbb{R}^n $.

    With regard to the comparison of Method 3.1 and Method 1.2, we exhibit the performance of the PNMSOR and the NMSOR method. In our implementations, the parameter $ \Omega $ is chosen as $ \Omega = \frac{1}{\alpha} D $, the parameter $ \alpha $ is obtained experimentally.

    Example 6.1 ([14]). Consider the LCP (1.1) with $ A = \hat{A} + \mu I \in \mathbb{R}^{n \times n} $, in which

    $ ˆA=tridiag(I,S,I)=(SIISIISIISIIS)Rn×n $

    with $ S = \mathit{\boldsymbol{tridiag}}(-1, 4, -1) \in \mathbb{R}^{m \times m} $ and $ n = m^2 $, the vector

    $ q=(1,1,1,1,,1,1,)Rn. $

    For this example, the system matrix $ A $ is a strictly diagonally dominant symmetric positive definite $ H_+ $-matrix when $ \mu > 0 $, it is known that the LCP (1.1) has a unique solution. The preconditioner is chosen as (3.1), where $ k_m \in \{ 1, 3, 5, 7, \cdots \} $.

    The value of optimal parameter $ \alpha $ involved in the PNMSOR and NMSOR methods is obtained experimentally, which leads to the least number of iteration steps. We present the iteration steps for the PNMSOR and NMSOR methods under different $ \alpha $ for the test problem in Figure 1. As shown in Figure 1, the PNMSOR method is better no matter how the parameter $ \alpha $ is chosen. When the parameter selection is $ \alpha \in (0.9, 1.1) $, it can be regarded as a good choice, and then we set $ \alpha = 1 $. Numerical results for Example 6.1 with the different problem sizes of $ n $ and $ \mu = 4 $ are reported in Table 1.

    Figure 1.  Experimental optimal parameter for Example 6.1.
    Table 1.  Numerical results for Example 6.1.
    Method $ n $
    $ 256 $ $ 1024 $ $ 4096 $ $ 16384 $
    NMSOR Iter $ 10 $ $ 11 $ $ 11 $ $ 11 $
    Time $ 0.0021 $ $ 0.1123 $ $ 2.0915 $ $ 131.5611 $
    Res $ 6.0407\times10^{-7} $ $ 2.0204\times10^{-7} $ $ 3.9786\times10^{-7} $ $ 7.7943\times10^{-7} $
    Rho $ 4.1313\times10^{-1} $ $ 4.1930\times10^{-1} $ $ 4.2096\times10^{-1} $ $ 4.2139\times10^{-1} $
    PNMSOR Iter 7 7 7 7
    Time 0.0014 0.0739 1.2387 75.1883
    Res $ 1.0844\times10^{-7} $ $ 1.6364\times10^{-7} $ $ 2.4015\times10^{-7} $ $ 3.5057\times10^{-7} $
    Rho $ 2.7729\times10^{-1} $ $ 2.8296\times10^{-1} $ $ 2.8451\times10^{-1} $ $ 2.8491\times10^{-1} $

     | Show Table
    DownLoad: CSV

    It follows from Table 1 that the PNMSOR method is superior to the NMSOR method with respect to iteration steps and the elapsed CPU time. We also present the spectral radius of the iterative matrix, which further verifies the theoretical result of the comparison theorem from the numerical experiment. In addition, we provide a diagram of the relationship between the iteration steps and the relative residual of two methods in Figure 2. It follows from Figure 2. that the relative residual of the PNMSOR method decreases faster than that of the NMSOR method in each step, and the final error accuracy can be determined to be about $ 10^{-15} $. That is to say, even if we improve the accuracy of the solution, the PNMSOR method also has great advantage and can be solved at a faster speed. As a result, the PNMSOR method has better computational efficiency in Example 6.1.

    Figure 2.  Residual comparison for Example 6.1.

    Example 6.2 ([14]). Consider the LCP (1.1) with $ A = \hat{A} + \mu I \in \mathbb{R}^{n \times n} $, in which

    $ ˆA=tridiag(0.5I,S,1.5I)=(S1.5I0.5IS1.5I0.5IS0.5I1.5IS1.5I0.5IS)Rn×n $

    with $ S = \mathit{\boldsymbol{tridiag}}(-0.5, 4, -1.5) \in \mathbb{R}^{m \times m} $ and $ n = m^2 $, the vector

    $ q=(1,1,1,1,,1,1,)Rn. $

    For this example, the matrix $ A $ is a nonsymmetric positive definite $ H_+ $-matrix with strict diagonal dominance when $ \mu > 0 $, thus the LCP (1.1) has a unique solution. We present the iteration steps for the PNMSOR and NMSOR methods under different $ \alpha $ and the residual comparison for the test problem in Figure 3 and Figure 4, respectively. The experimentally optimal parameter $ \alpha $ is located in $ (0.85, 1.2) $, and we choose $ \alpha = 1 $. Numerical results for Example 6.2 with the different problem sizes of $ n $ and $ \mu = 4 $ are reported in Table 2.

    Figure 3.  Experimental optimal parameter for Example 6.2.
    Figure 4.  Residual comparison for Example 6.2.
    Table 2.  Numerical results for Example 6.2.
    Method $ n $
    $ 256 $ $ 1024 $ $ 4096 $ $ 16384 $
    NMSOR Iter $ 12 $ $ 12 $ $ 13 $ $ 13 $
    Time $ 0.0020 $ $ 0.1249 $ $ 2.4304 $ $ 136.7768 $
    Res $ 2.6442\times10^{-7} $ $ 7.7866\times10^{-7} $ $ 3.4928\times10^{-7} $ $ 7.3951\times10^{-7} $
    Rho $ 3.4965\times10^{-1} $ $ 3.5477\times10^{-1} $ $ 3.5615\times10^{-1} $ $ 3.7080\times10^{-1} $
    PNMSOR Iter 6 6 7 7
    Time 0.0011 0.0693 1.2343 66.7233
    Res $ 5.7054\times10^{-7} $ $ 8.6806\times10^{-7} $ $ 8.3153\times10^{-7} $ $ 1.2105\times10^{-7} $
    Rho $ 2.2499\times10^{-1} $ $ 2.2935\times10^{-1} $ $ 2.3055\times10^{-1} $ $ 2.3512\times10^{-1} $

     | Show Table
    DownLoad: CSV

    It follows from Table 2 that the performance of the PNMSOR method is much more competitive than the NMSOR method in terms of computing efficiency, especially for large and sparse problems.

    Example 6.3 (Black-Scholes American option pricing). Consider the American option pricing problem which was introduced in [50]. Let $ V(S, t) $ and $ G(S, t) $ represent the value of an American option and the given payoff function of this option correspondingly. By a standard no-arbitrage argument, $ V(S, t) $ must satisfy the following complementarity conditions

    $ {(Vt+12σ2S22VS2+(rδ)SVSrV)(V(S,t)G(S,t))=0,Vt+12σ2S22VS2+(rδ)SVSrV0,V(S,t)G(S,t)0,S0,0tT. $

    This model can be further reformulated into the following inequality system

    $ ut2ux20,ug0and(ut2ux2)(ug)=0, $ (6.1)

    which satisfies $ u(x, 0) = g(x, 0) $, $ 0 \leqslant t \leqslant \frac{1}{2} \sigma^2 T $ and $ {\lim\limits_{x \to \pm \infty}} u(x, t) = {\lim\limits_{x \to \pm \infty}} g(x, t) $. Here, we limit $ x \in [a, b] $ and choose the values of $ a $ and $ b $ based on the way in [50]. Using the forward difference scheme for time $ t $ and implicit difference scheme for the price $ x $ to discretize (6.1), one can obtain

    $ Aub0,ug0and(Aub)(ug)=0. $ (6.2)

    By utilizing the transformation $ z = u-g, \; q = Ag-b $, then (6.2) can be rewritten as the LCP (1.1) [50].

    Following the parameter setting in [50], we take

    $ A=(1+2λθλθλθ1+2λθλθλθ1+2λθλθλθ1+2λθλθλθ1+2λθ)R(n1)×(n1), $

    where $ \lambda = \frac{dt}{(dx)^2} $, $ dt = \frac{ \frac{1}{2} \sigma^2 T }{m} $ denotes the time step, $ dx = \frac{b-a}{m} $ denotes the price step. Through the different choices of parameter $ \theta $, we can obtain different schemes, i.e., $ \theta = 0, \frac{1}{2}, 1 $. Here, we choose $ \theta = 1 $, and it becomes a backward difference problem. Evidently, the matrix $ A $ is an $ H_+ $-matrix as well. After that, let $ q = Ag-b $ where $ g = 0.5 z^* $, $ b = Az^* - v^* $ and the exact solution $ z^* = (1, 0, 1, 0, \cdots, 1, 0, \cdots)^{\top} \in \mathbb{R}^{n-1} $, $ v^* = (0, 1, 0, 1, \cdots, 0, 1, \cdots)^{\top} \in \mathbb{R}^{n-1} $ and the initial value $ z^0 = (1, 1, 1, 1, \cdots, 1, 1, \cdots)^{\top} \in \mathbb{R}^{n-1} $ in this experiment.

    From Tables 36, we compare the efficiency of the PNMSOR method and the NMSOR method for solving the LCP (1.1) generated from the American option pricing, and show the influence of American option changes under different volatility ($ \sigma = 0.2, 0.6 $) and different maturity ($ T = 0.5, 5 $) on the solving efficiency. The selection of parameters depends on the reference [50] and the specific parameters are indicated in the tables below. By a simple calculation of vector $ q $, the preconditioner $ P $ is chosen the same as in Example 6.1 and $ \alpha = 1 $.

    Table 3.  Numerical results for Example 6.3. ($ a = -0.5, b = 0.5, \sigma = 0.2, T = 0.5 $).
    Method ($ m, n $)
    ($ 400,800 $) ($ 800, 1600 $) ($ 1600, 3200 $) ($ 3200, 6400 $)
    NMSOR Iter $ 41 $ $ 63 $ $ 107 $ $ 195 $
    Time $ 0.2651 $ $ 1.7211 $ $ 12.1052 $ $ 87.7615 $
    Res $ 8.4847\times10^{-8} $ $ 2.2189\times10^{-7} $ $ 3.1211\times10^{-7} $ $ 1.7606\times10^{-7} $
    Rho $ 9.5993\times10^{-1} $ $ 9.7957\times10^{-1} $ $ 9.8969\times10^{-1} $ $ 9.9482\times10^{-1} $
    PNMSOR Iter 20 29 43 69
    Time 0.1303 0.7637 4.6886 30.4895
    Res $ 5.5860\times10^{-7} $ $ 8.4083\times10^{-7} $ $ 9.4161\times10^{-7} $ $ 8.7167\times10^{-7} $
    Rho $ 8.5442\times10^{-1} $ $ 9.2228\times10^{-1} $ $ 9.5978\times10^{-1} $ $ 9.7953\times10^{-1} $

     | Show Table
    DownLoad: CSV
    Table 4.  Numerical results for Example 3. ($ a = -1, b = 1, \sigma = 0.6, T = 0.5 $).
    Method ($ m, n $)
    ($ 400,800 $) ($ 800, 1600 $) ($ 1600, 3200 $) ($ 3200, 6400 $)
    NMSOR Iter $ 69 $ $ 118 $ $ 217 $ $ 417 $
    Time $ 0.4147 $ $ 3.3851 $ $ 23.5351 $ $ 182.5583 $
    Res $ 9.8260\times10^{-7} $ $ 2.2605\times10^{-7} $ $ 1.9309\times10^{-7} $ $ 1.3172\times10^{-7} $
    Rho $ 9.8179\times10^{-1} $ $ 9.9082\times10^{-1} $ $ 9.9539\times10^{-1} $ $ 9.9769\times10^{-1} $
    PNMSOR Iter 30 45 77 134
    Time 0.1693 1.2625 8.3526 60.4824
    Res $ 7.8560\times10^{-7} $ $ 3.9124\times10^{-7} $ $ 4.1874\times10^{-7} $ $ 9.4258\times10^{-7} $
    Rho $ 9.3036\times10^{-1} $ $ 9.6410\times10^{-1} $ $ 9.8177\times10^{-1} $ $ 9.9081\times10^{-1} $

     | Show Table
    DownLoad: CSV
    Table 5.  Numerical results for Example 3. ($ a = -1.5, b = 1.5, \sigma = 0.2, T = 5 $).
    Method ($ m, n $)
    ($ 400,800 $) ($ 800, 1600 $) ($ 1600, 3200 $) ($ 3200, 6400 $)
    NMSOR Iter $ 44 $ $ 68 $ $ 119 $ $ 217 $
    Time $ 0.2755 $ $ 1.8640 $ $ 12.9576 $ $ 94.6231 $
    Res $ 7.6780\times10^{-7} $ $ 4.2072\times10^{-7} $ $ 1.2522\times10^{-7} $ $ 4.0707\times10^{-7} $
    Rho $ 9.6379\times10^{-1} $ $ 9.8158\times10^{-1} $ $ 9.9071\times10^{-1} $ $ 9.9533\times10^{-1} $
    PNMSOR Iter 23 29 46 74
    Time 0.1424 0.7828 5.0038 32.5015
    Res $ 2.8951\times10^{-7} $ $ 4.4231\times10^{-7} $ $ 9.0936\times10^{-7} $ $ 6.5158\times10^{-7} $
    Rho $ 8.6728\times10^{-1} $ $ 9.2957\times10^{-1} $ $ 9.6368\times10^{-1} $ $ 9.8155\times10^{-1} $

     | Show Table
    DownLoad: CSV
    Table 6.  Numerical results for Example 3. ($ a = -2, b = 2, \sigma = 0.6, T = 5 $).
    Method ($ m, n $)
    ($ 400,800 $) ($ 800, 1600 $) ($ 1600, 3200 $) ($ 3200, 6400 $)
    NMSOR Iter $ 144 $ $ 268 $ $ - $ $ - $
    Time $ 0.8479 $ $ 7.2326 $ $ - $ $ - $
    Res $ 8.2116\times10^{-7} $ $ 8.5279\times10^{-7} $ $ - $ $ - $
    Rho $ 9.9263\times10^{-1} $ $ 9.9631\times10^{-1} $ $ - $ $ - $
    PNMSOR Iter 54 91 166 312
    Time 0.3191 2.5341 17.6367 133.2185
    Res $ 3.3286\times10^{-7} $ $ 7.1404\times10^{-7} $ $ 4.9194\times10^{-7} $ $ 5.0296\times10^{-7} $
    Rho $ 9.7107\times10^{-1} $ $ 9.8536\times10^{-1} $ $ 9.9264\times10^{-1} $ $ 9.9631\times10^{-1} $

     | Show Table
    DownLoad: CSV

    As shown in Table 3, compared with the NMSOR method, the PNMSOR method can shorten a half of time in the case of small volatility and short maturity. And the overall elapsed CPU time is the shortest. For the case of large volatility and short maturity in Table 4, the PNMSOR method also has an incredible solving speed, but the overall elapsed CPU time is longer than that in small volatility. It can be seen from Table 5 that although the elapsed CPU time has increased, the influence of maturity limit on the solving efficiency is not as great as that of volatility. At this point, the performance of our method is still excellent. From Table 6, the case with large volatility and long maturity consumes the longest solution time, but the PNMSOR method still has its superiority. At higher dimensions, the NMSOR method can not reach sufficient accuracy within $ 500 $ steps, but the PNMSOR method can converge rapidly. We observed that experimentally, when the size is ($ 1600 $, $ 3200 $), the NMSOR method achieves $ 3.6375\times10^{-8} $ precision at step $ 516 $ and takes $ 55.0822 $ seconds; when the size is ($ 3200 $, $ 6400 $), the NMSOR method reaches the precision of $ 3.9548\times10^{-7} $ at step $ 1011 $ and costs $ 432.2135 $ seconds, what they mean is that the NMSOR method is convergent, but it does not reach sufficient accuracy within the presupposed maximum number of iteration steps. Over here, we can find the superior performance of the PNMSOR method more vividly by comparison.

    Example 6.4 (Continuous optimal control problem). Consider the quasi-variational inequality problem (QIP) from the continuous optimal control problem, which was proposed in [49]: find $ z \in K(z) $ such that

    $ (vz)(Az+F(z))0,vK(z), $ (6.3)

    where $ K(z) = \phi(z) + K $, $ K $ is a positive cone in $ \mathbb{R}^n $, $ \phi(z) $ and $ F(z) $ represent the implicit obstacle function and the mapping from $ \mathbb{R}^n $ to itself, respectively.

    The QIP (6.3) can be simplified to the LCP (1.1) by setting $ F(z) = q $ and $ v = 2z $. In Example 6.4, let $ A = \hat{A} + 4I \in \mathbb{R}^{n \times n} $, where

    $ ˆA=(SIISISIIISIS)Rn×n $

    with $ S = \mathit{\boldsymbol{tridiag}}(-1, 4, -1) \in \mathbb{R}^{m \times m} $ and $ n = m^2 $, which may be more consistent with the actual condition in the application. Apparently, there is a unique solution to this problem for any $ q \in \mathbb{R}^n $. The vector $ q $ is the same as in Example 6.1 and $ \alpha = 1 $. Numerical results for this example are reported in Table 7, from which we can find that the PNMSOR method is superior to the NMSOR method in terms of CPU time.

    Table 7.  Numerical results for Example 4.
    Method $ m $
    $ 16 $ $ 32 $ $ 64 $ $ 128 $
    NMSOR Iter $ 12 $ $ 13 $ $ 13 $ $ 14 $
    Time $ 0.0021 $ $ 0.1361 $ $ 2.4458 $ $ 179.7574 $
    Res $ 7.9676\times10^{-7} $ $ 4.3903\times10^{-7} $ $ 7.1648\times10^{-7} $ $ 2.8173\times10^{-7} $
    Rho $ 1.8952\times10^{-1} $ $ 1.9214\times10^{-1} $ $ 1.9285\times10^{-1} $ $ 1.9303\times10^{-1} $
    PNMSOR Iter 6 7 7 8
    Time 0.0015 0.0886 1.3135 103.4370
    Res $ 8.8630\times10^{-7} $ $ 3.0009\times10^{-7} $ $ 8.5745\times10^{-7} $ $ 1.1832\times10^{-7} $
    Rho $ 2.1656\times10^{-2} $ $ 2.2673\times10^{-2} $ $ 2.2966\times10^{-2} $ $ 2.3044\times10^{-2} $

     | Show Table
    DownLoad: CSV

    On the whole, from these numerical results, we can see that the PNMMS iteration method for solving the LCP (1.1) is much more competitive than the NMMS iteration method.

    In this paper, a class of preconditioned new modulus-based matrix splitting (PNMMS) method with a generalized preconditioner is developed to solve the LCP (1.1). The convergence analysis of the PNMMS method is established when $ A $ is an $ H_+ $-matrix. Particularly, we provide a comparison theorem between the PNMMS iteration method and the NMMS iteration method, which exhibits that the PNMMS method improves the convergence rate of the original NMMS method for solving the LCP (1.1). Numerical experiments are reported to demonstrate the efficiency of the proposed method.

    The first author would like to thank Dr. Cairong Chen from Fujian Normal University for his helpful discussions and guidance. The authors are grateful to the reviewers and editor for their helpful comments and suggestions which have helped to improve the paper. This work is supported by the Social Science Foundation of Liaoning Province (L22BGL028).

    The authors declare there is no conflicts of interest.

    [1] United Nations, World Urbanization Prospects, the 2014 Revision. 2014. Available from: http://esa.un.org/unpd/ accessed March 2015.
    [2] DSEWPaC (Department of Sustainability, Environment, Water, Population and Communities), State of the Environment 2011, 2011. Available from: http://www.environment.gov.au/science/soe/2011-report/contents
    [3] Morris CJG, Simmonds I, Plummer N (2001) Quantification of the Influences of Wind and Cloud on the Nocturnal Urban Heat Island of a Large City. J Appl Meteorol 40: 169-182. doi: 10.1175/1520-0450(2001)040<0169:QOTIOW>2.0.CO;2
    [4] Coutts A, Beringer J, Tapper N (2010) Changing urban climate and CO2 emissions: implications for the development of policies for sustainable cities. Urban Policy Res 28: 27-47. doi: 10.1080/08111140903437716
    [5] Wu K, Yang XQ (2013) Urbanization and heterogeneous surface warming in eastern China. Chin Sci Bull 58: 1363-1373. doi: 10.1007/s11434-012-5627-8
    [6] DSE (Department of Sustainability and Environment), Melbourne 2030: Planning for Sustainable Growth. State Government of Victoria, 2002. Available from: http://www.dtpli.vic.gov.au/planning/plans-and-policies/planning-for-melbourne/melbournes-strategic-planning-history/melbourne-2030-planning-for-sustainable-growth
    [7] Konopacki S, Akbari H (2002) Energy savings for heat island reduction strategies in Chicago and Houston (including updates for Baton Rouge, Sacramento, and Salt Lake City). Draft Final Report, LBNL-49638, University of California, Berkeley.
    [8] Kolokotroni M, Giannitsaris I, Watkins R (2006) The effect of the London Urban Heat Island on building summer cooling demand and night ventilation strategies. Sol Energ 80: 383-392. doi: 10.1016/j.solener.2005.03.010
    [9] Priyadarsini R (2011) Urban Heat Island and its Impact on Building Energy Consumption. Adv Build Energ Res 3: 261-270.
    [10] Changnon SA, Kunkel KE, Reinke BC (1996) Impacts and responses to the 1995 heat wave: A call to action. Bull Am Meteorol Soc 77: 1497-1505. doi: 10.1175/1520-0477(1996)077<1497:IARTTH>2.0.CO;2
    [11] Haines A, Kovats RS, Campbell-Lendrum D, et al. (2006) Climate change and human health: impacts, vulnerability, and mitigation. Lancet 367: 2101-2109. doi: 10.1016/S0140-6736(06)68933-2
    [12] Cadot E, Rodwin VG, Spira A (2007) In the heat of the summer: lessons from the heat waves in Paris. J Urban Health 84: 466-468. doi: 10.1007/s11524-007-9161-y
    [13] Luber G (2008) Climate Change and Extreme Heat Events, Am J Prev Med 35: 429-435.
    [14] Nicholls N, Skinner C, Loughnan M, et al. (2008) A simple heat alert system for Melbourne, Australia, Int J Biometeorol 52: 375-384.
    [15] Kovats RS, Hajat S (2008) Heat stress and public health: a critical review. Annu Rev Public Health 29: 41-55. doi: 10.1146/annurev.publhealth.29.020907.090843
    [16] Loughnan ME, Nicholls N, Tapper NJ (2010) The effects of summer temperature, age and socioeconomic circumstance on acute myocardial infarction admissions in Melbourne, Australia. Int J Health Geogr 9: 41. doi: 10.1186/1476-072X-9-41
    [17] DHS, January 2009 Heatwave in Victoria: an assessment of health impacts. Victorian Government Department of Human Services, Victoria, 2009. Available from: http://docs.health.vic.gov.au/docs/doc/F7EEA4050981101ACA257AD80074AE8B/$FILE/heat_health_impact_rpt_Vic2009.pdf
    [18] Alexander LV, Arblaster J (2008) Assessing trends in observed and modelled climate extremes over Australia in relation to future projections. Int J Climatol 29: 417-435.
    [19] Solecki WD, Rosenzweig C, Parshall L, et al. (2005) Mitigation of the heat island effect in urban New Jersey. Global Environ Chang Part B: Environ Hazards 6: 39-49.
    [20] Gill SE, Handley JF, Ennos AR, et al. (2008) Characterising the urban environment of UK cities and towns: A template for landscape planning. Landscape Urban Plann 87: 210-222. doi: 10.1016/j.landurbplan.2008.06.008
    [21] Gaitani N, Spanou A, Saliari M, et al. (2011) Improving the microclimate in urban areas: a case study in the centre of Athens. Build Serv Eng Res Technol 32: 53-71. doi: 10.1177/0143624410394518
    [22] Kleerekoper L, van Esch M, Salcedo TB (2012) How to make a city climate proof, addressing the urban heat island effect. Resour Conserv Recycl 64: 30-38. doi: 10.1016/j.resconrec.2011.06.004
    [23] DCLG, Building a greener future: towards zero carbon development. UK: Department of Communities and Local Government, 2007. Available from: http://webarchive.nationalarchives.gov.uk/20120919132719/http://www.communities.gov.uk/documents/planningandbuilding/pdf/153125.pdf
    [24] European Commission, Low energy buildings in Europe: current state of play, definition and best practice. 2009. Available from:http: //regions202020.eu/cms/inspiration/resources/PublicResource/330/view
    [25] Wang XM, Chen D, Ren ZG (2010) Assessment of climate change impact on residential building heating and cooling energy requirement in Australia. Build Environ 45: 1663-1682. doi: 10.1016/j.buildenv.2010.01.022
    [26] Rosenfeld AH, Akbari H, Romm JJ, et al. (1998) Cool communities: strategies for heat island mitigation and smog reduction. Energ Build 28: 51-62. doi: 10.1016/S0378-7788(97)00063-7
    [27] Akbari H, Pomerantz M, Taha H (2001) Cool surfaces and shade trees to reduce energy use and improve air quality in urban areas. Sol Energ 70: 295-310. doi: 10.1016/S0038-092X(00)00089-X
    [28] U.S. Environmental Protection Agency, Reducing Urban Heat Islands: Compendium of Strategies. 2008. Available from: http: //www.epa.gov/hiri/resources/compendium.htm
    [29] Memon RA, Leung DYC, Liu CH (2008) A review on the generation, determination and mitigation of Urban Heat Island. J Environ Sci 20: 120-128. doi: 10.1016/S1001-0742(08)60019-4
    [30] Santamouris M (2012) Cooling the cities - a review of reflective and green roof mitigation technologies to fight heat island and improve comfort in urban environments. Sol Energ 103: 680-703.
    [31] Liu K, Bass B (2005) Performance of Green Roof Systems. National Research Council Canada, Report No. NRCC-47705, Toronto, Canada.
    [32] Rosenzweig C, Solecki W, Parshall L, et al. (2006) Mitigating New York City's Heat Island with Urban Forestry, Living Roofs, and Light Surfaces. Sixth Symposium on the Urban Environment and Forum on Managing our Physical and Natural Resources, American Meteorological Society, Atlanta, GA.
    [33] Alexandri E, Jones P (2008) Temperature decreases in an urban canyon due to green walls and green roofs in diverse climates. Build Environ 43: 480-493. doi: 10.1016/j.buildenv.2006.10.055
    [34] Wong JKW, Lau LSK (2013) From the ‘urban heat island’ to the ‘green island’? A preliminary investigation into the potential of retrofitting green roofs in Mongkok district of Hong Kong. Habit Int 39: 25-35.
    [35] Susca T, Gaffin SR, Dell'Osso GR (2011) Positive effects of vegetation: Urban heat island and green roofs, Environ Pollut 159: 2119-2126.
    [36] Xu T, Sathaye J, Akbari H, et al. (2012) Quantifying the direct benefits of cool roofs in an urban setting: Reduced cooling energy use and lowered greenhouse gas emissions. Build Environ 48: 1-6.
    [37] Smith GB, Aguilar JLC, Gentle AR, et al. (2012) Multi-parameter sensitivity analysis: A design methodology applied to energy efficiency in temperate climate houses. Energy Build 55: 668-673. doi: 10.1016/j.enbuild.2012.09.007
    [38] Bozonnet E, Musy M, Calmet I, et al. (2013) Modeling methods to assess urban fluxes and heat island mitigation measures from street to city scale. Int J Low Carbon Technol 0: 1-16.
    [39] Sailor DJ (1995) Simulated urban response to modifications in surface albedo and vegetative cover. J Appl Meteor 34: 1694- 1704. doi: 10.1175/1520-0450-34.7.1694
    [40] Taha H, Douglas S, Haney J (1997) Mesoscale meteorological and air quality impacts of increased urban albedo and vegetation. Energ Build 25: 169-177. doi: 10.1016/S0378-7788(96)01006-7
    [41] Shashua-Bar L, Hoffman ME (2000) Vegetation as a climatic component in the design of an urban street: An empirical model for predicting the cooling effect of urban green areas with trees. Energy Build 31: 221-35. doi: 10.1016/S0378-7788(99)00018-3
    [42] Kong FH, Yin HW, Wang CZ, et al. (2014) A satellite image-based analysis of factors contributing to the green-space cool island intensity on a city scale. Urban For Urban Gree 13: 846-853. doi: 10.1016/j.ufug.2014.09.009
    [43] Perini K, Magliocco A (2014) Effects of vegetation, urban density, building height, and atmospheric conditions on local temperatures and thermal comfort. Urban For Urban Gree 13:495-506. doi: 10.1016/j.ufug.2014.03.003
    [44] Chen C, Yue Y, Jiang W (2014) Numerical Simulation on Cooling Effects of Greening for Alleviating Urban Heat Island Effect in North China. Appl Mech Mater 675-677: 1227-1233. doi: 10.4028/www.scientific.net/AMM.675-677.1227
    [45] Yang JB, Liu HN, Sun JN, et al. (2015) Further Development of the Regional Boundary Layer Model to Study the Impacts of Greenery on the Urban Thermal Environment. J Appl Meteor Climatol 54: 137-152. doi: 10.1175/JAMC-D-14-0057.1
    [46] Gromke C, Blocken B, Janssen W, et al. (2015) CFD analysis of transpirational cooling by vegetation: Case study for specific meteorological conditions during a heat wave in Arnhem, Netherlands, Build Environ 83: 11-26.
    [47] Middel A, Chhetri N, Quay R (2015) Urban forestry and cool roofs: Assessment of heat mitigation strategies in Phoenix residential neighborhoods. Urban For Urban Gree 14: 178-186. doi: 10.1016/j.ufug.2014.09.010
    [48] Thatcher M, Hurley P (2012) Simulating Australian urban climate in a mesoscale atmospheric numerical model. Boundary Layer Meteorol 142: 149-175. doi: 10.1007/s10546-011-9663-8
    [49] Hurley P, Physick W, Luhar A (2005) TAPM - A practical approach to prognostic meteorological and air pollution modeling. Environ Model Sotfw 20: 737-752. doi: 10.1016/j.envsoft.2004.04.006
    [50] Masson V (2000) A physically-based scheme for the urban energy budget in atmospheric models. Boundary Layer Meteorol 94: 357-397. doi: 10.1023/A:1002463829265
    [51] Harman I, Barlow J, Belcher S (2004) Scalar fluxes from urban street canyons. Part II: Model. Boundary Layer Meteorol 113: 387-409. doi: 10.1007/s10546-004-6205-7
    [52] Coutts A, Beringer J, Tapper N (2007) Impact of increasing urban density on local climate: spatial and temporal variations in the surface energy balance in Melbourne, Australia. J Appl Meteor Climatol 46: 477-493. doi: 10.1175/JAM2462.1
    [53] McGregor J, C-CAM: Geometric aspects and dynamical formulation. CSIRO Atmospheric Research, 2005. Available from: www.cmar.csiro.au/e-print/open/mcgregor_2005a.pdf
    [54] McGregor J, Dix M (2008) An updated description of the conformal-cubic atmospheric model. High Resolution Simulation of the Atmosphere and Ocean, Hamilton, K. and Ohfuchi, W., Eds., Springer 51-76.
    [55] Katzfey J, McGregor J, Nguyen K, et al. Dynamical downscaling techniques: impacts on regional climate change signals. In: Anderssen RS, Braddock RD and Newham LTH (ed) 18th World IMACS congress and MODSIM09 international congress on modelling and simulation. 2009, July; Cairns. Modelling and Simulation Society of Australia and New Zealand. pp 2377-2383.
    [56] Nguyen K, Katzfey J, McGregor J (2011) Global 60 km simulations with the Conformal Cubic Atmospheric Model: Evaluation over the tropics. Clim Dyn 39: 637-654.
    [57] City of Melbourne, Urban Forest Strategy Make a Great City Greener 2013-2032. 2015. Available from: http://www.melbourne.vic.gov.au/Sustainability/UrbanForest/Documents/Urban_Forest_Strategy.pdf
  • Reader Comments
  • © 2015 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(7083) PDF downloads(1292) Cited by(6)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog