Research article Special Issues

A novel binary genetic differential evolution optimization algorithm for wind layout problems

  • Received: 23 November 2023 Revised: 10 January 2024 Accepted: 23 January 2024 Published: 05 February 2024
  • This paper addresses the increasingly critical issue of environmental optimization in the context of rapid economic development, with a focus on wind farm layout optimization. As the demand for sustainable resource management, climate change mitigation, and biodiversity conservation rises, so does the complexity of managing environmental impacts and promoting sustainable practices. Wind farm layout optimization, a vital subset of environmental optimization, involves the strategic placement of wind turbines to maximize energy production and minimize environmental impacts. Traditional methods, such as heuristic approaches, gradient-based optimization, and rule-based strategies, have been employed to tackle these challenges. However, they often face limitations in exploring the solution space efficiently and avoiding local optima. To advance the field, this study introduces LSHADE-SPAGA, a novel algorithm that combines a binary genetic operator with the LSHADE differential evolution algorithm, effectively balancing global exploration and local exploitation capabilities. This hybrid approach is designed to navigate the complexities of wind farm layout optimization, considering factors like wind patterns, terrain, and land use constraints. Extensive testing, including 156 instances across different wind scenarios and layout constraints, demonstrates LSHADE-SPAGA's superiority over seven state-of-the-art algorithms in both the ability of jumping out of the local optima and solution quality.

    Citation: Yanting Liu, Zhe Xu, Yongjia Yu, Xingzhi Chang. A novel binary genetic differential evolution optimization algorithm for wind layout problems[J]. AIMS Energy, 2024, 12(1): 321-349. doi: 10.3934/energy.2024016

    Related Papers:

  • This paper addresses the increasingly critical issue of environmental optimization in the context of rapid economic development, with a focus on wind farm layout optimization. As the demand for sustainable resource management, climate change mitigation, and biodiversity conservation rises, so does the complexity of managing environmental impacts and promoting sustainable practices. Wind farm layout optimization, a vital subset of environmental optimization, involves the strategic placement of wind turbines to maximize energy production and minimize environmental impacts. Traditional methods, such as heuristic approaches, gradient-based optimization, and rule-based strategies, have been employed to tackle these challenges. However, they often face limitations in exploring the solution space efficiently and avoiding local optima. To advance the field, this study introduces LSHADE-SPAGA, a novel algorithm that combines a binary genetic operator with the LSHADE differential evolution algorithm, effectively balancing global exploration and local exploitation capabilities. This hybrid approach is designed to navigate the complexities of wind farm layout optimization, considering factors like wind patterns, terrain, and land use constraints. Extensive testing, including 156 instances across different wind scenarios and layout constraints, demonstrates LSHADE-SPAGA's superiority over seven state-of-the-art algorithms in both the ability of jumping out of the local optima and solution quality.



    加载中


    [1] Abido MA (2003) Environmental/economic power dispatch using multiobjective evolutionary algorithms. IEEE Trans Power Syst 18: 1529–1537. https://doi.org/10.1109/TPWRS.2003.818693 doi: 10.1109/TPWRS.2003.818693
    [2] Lei ZY, Gao SC, Zhang ZM, et al. (2023) A chaotic local search-based particle swarm optimizer for large-scale complex wind farm layout optimization. IEEE/CAA J Autom Sin 10: 1168–1180. https://doi.org/10.1109/JAS.2023.123387 doi: 10.1109/JAS.2023.123387
    [3] Lei ZY, Gao SC, Wang YR, et al. (2022) An adaptive replacement strategy-incorporated particle swarm optimizer for wind farm layout optimization. Energy Convers Manage 269: 116174. https://doi.org/10.1016/j.enconman.2022.116174 doi: 10.1016/j.enconman.2022.116174
    [4] Lei ZY, Gao SC, Zhang ZM, et al. (2022) MO4: A many-objective evolutionary algorithm for protein structure prediction. IEEE Trans Evol Comput 26: 417–430. https://doi.org/10.1109/TEVC.2021.3095481 doi: 10.1109/TEVC.2021.3095481
    [5] Wang YR, Yu Y, Cao SY, et al. (2020) A review of applications of artificial intelligent algorithms in wind farms. Artif Intell Rev 53: 3447–3500. https://doi.org/10.1007/s10462-019-09768-7 doi: 10.1007/s10462-019-09768-7
    [6] Kiehbadroudinezhad M, Merabet M, Rajabipour A, et al. (2020) Optimization of wind/solar energy microgrid by division algorithm considering human health and environmental impacts for power-water cogeneration. Energy Convers Manage 252: 115064. https://doi.org/10.1016/j.enconman.2021.115064 doi: 10.1016/j.enconman.2021.115064
    [7] Reddy SR (2020) Wind farm layout optimization (WindFLO): An advanced framework for fast wind farm analysis and optimization. Appl Energy 269: 115090. https://doi.org/10.1016/j.apenergy.2020.115090 doi: 10.1016/j.apenergy.2020.115090
    [8] Liu ZQ, Peng J, Hua X, et al. (2021) Wind farm optimization considering non-uniformly distributed turbulence intensity. Sustainable Energy Technol Assess 43: 100970. https://doi.org/10.1016/j.seta.2020.100970 doi: 10.1016/j.seta.2020.100970
    [9] Gualtieri G (2020) Comparative analysis and improvement of grid-based wind farm layout optimization. Energy Convers Manage 208: 112593. https://doi.org/10.1016/j.enconman.2020.112593 doi: 10.1016/j.enconman.2020.112593
    [10] Moreno SR, Pierezan J, dos Santos Coelho L, et al. (2021) Multi-objective lightning search algorithm applied to wind farm layout optimization. Energy 216: 119214. https://doi.org/10.1016/j.energy.2020.119214 doi: 10.1016/j.energy.2020.119214
    [11] Beşkirli M, Koç İ, Haklı H, et al. (2018) A new optimization algorithm for solving wind turbine placement problem: Binary artificial algae algorithm. Renewable Energy 121: 301–308. https://doi.org/10.1016/j.renene.2017.12.087 doi: 10.1016/j.renene.2017.12.087
    [12] Nash R, Nouri R, Vasel-Be-Hagh A (2021) Wind turbine wake control strategies: A review and concept proposal. Energy Convers Manage 245: 114581. https://doi.org/10.1016/j.enconman.2021.114581 doi: 10.1016/j.enconman.2021.114581
    [13] Lee CY, Hasegawa H, Gao SC (2022) Complex-valued neural networks: A comprehensive survey. IEEE/CAA J Autom Sin 9: 1406–1426. https://doi.org/10.1109/JAS.2022.105743 doi: 10.1109/JAS.2022.105743
    [14] Wang RL, Lei ZZ, Zhang ZM, et al. (2022) Dendritic convolutional neural network. IEEJ Trans Electr Electron Eng 17: 302–304. https://doi.org/10.1002/tee.23513 doi: 10.1002/tee.23513
    [15] Yu Y, Lei ZZ, Wang YR, et al. (2022) Improving dendritic neuron model with dynamic scale-free network-based differential evolution. IEEE/CAA J Autom Sin 9: 99–110. https://doi.org/10.1109/JAS.2021.1004284 doi: 10.1109/JAS.2021.1004284
    [16] Garcia Marquez FP, Peinado Gonzalo A (2022) A comprehensive review of artificial intelligence and wind energy. Arch Comput Methods Eng 29: 2935–2958. https://doi.org/10.1007/s11831-021-09678-4 doi: 10.1007/s11831-021-09678-4
    [17] Lei ZY, Gao SC, Hasegawa H, et al. (2023) Fully complex-valued gated recurrent neural network for ultrasound imaging. IEEE Trans Neural Networks Learn Syst, 1–14. https://doi.org/10.1109/TNNLS.2023.3282231
    [18] Yu XB, Lu YC (2023) Reinforcement learning-based multi-objective differential evolution for wind farm layout optimization. Energy 284: 129300. https://doi.org/10.1016/j.energy.2023.129300 doi: 10.1016/j.energy.2023.129300
    [19] Bai FY, Ju XL, Wang SY, et al. (2022) Wind farm layout optimization using adaptive evolutionary algorithm with monte carlo tree search reinforcement learning. Energy Convers Manage 252: 115047. https://doi.org/10.1016/j.enconman.2021.115047 doi: 10.1016/j.enconman.2021.115047
    [20] Asaah P, Hao LL, Ji J (2021) Optimal placement of wind turbines in wind farm layout using particle swarm optimization. J Mod Power Syst Clean Energy 9: 367–375. https://doi.org/10.35833/MPCE.2019.000087 doi: 10.35833/MPCE.2019.000087
    [21] Reddy SR (2021) An efficient method for modeling terrain and complex terrain boundaries in constrained wind farm layout optimization. Renewable Energy 165: 162–173. https://doi.org/10.1016/j.renene.2020.10.076 doi: 10.1016/j.renene.2020.10.076
    [22] Mittal P, Mitra K (2020) In search of flexible and robust wind farm layouts considering wind state uncertainty. J Cleaner Prod 248: 119195. https://doi.org/10.1016/j.jclepro.2019.119195 doi: 10.1016/j.jclepro.2019.119195
    [23] Chen K, Song MX, Zhang X, et al. (2016) Wind turbine layout optimization with multiple hub height wind turbines using greedy algorithm. Renewable Energy 96: 676–686. https://doi.org/10.1016/j.renene.2016.05.018 doi: 10.1016/j.renene.2016.05.018
    [24] Guirguis D, Romero DA, Amon CH (2016) Toward efficient optimization of wind farm layouts: Utilizing exact gradient information. Appl Energy 179: 110–123. https://doi.org/10.1016/j.apenergy.2016.06.101 doi: 10.1016/j.apenergy.2016.06.101
    [25] Rehman S, Khan SA, Alhems LM (2020) A rule-based fuzzy logic methodology for multi-criteria selection of wind turbines. Sustainability 12: 8467. https://doi.org/10.3390/su12208467 doi: 10.3390/su12208467
    [26] Grady S, Hussaini M, Abdullah MM (2005) Placement of wind turbines using genetic algorithms. Renewable Energy 30: 259–270. https://doi.org/10.1016/j.renene.2004.05.007 doi: 10.1016/j.renene.2004.05.007
    [27] Zhong L, Sui QY, Yu JTY, et al. (2023) Elite-of-the-elites driven five-layered gravitational search algorithm for optimization. IEEJ Trans Electr Electron Eng 18: 1958–1960. https://doi.org/10.1002/tee.23921 doi: 10.1002/tee.23921
    [28] Sui QY, Zhong L, Yu JTY, et al. (2023) Particle swarm optimization with average individuals distance-incorporated exploitation. IEEJ Trans Electr Electron Eng 18: 1722–1724. https://doi.org/10.1002/tee.23896 doi: 10.1002/tee.23896
    [29] Wang ZQ, Gao SC, Zhou MC, et al. (2023) Information-theory-based nondominated sorting ant colony optimization for multiobjective feature selection in classification. IEEE Trans Cybern 53: 5276–5289. https://doi.org/10.1016/j.asoc.2023.110064 doi: 10.1016/j.asoc.2023.110064
    [30] Wang KY, Wang YR, Tao SC, et al. (2023) Spherical search algorithm with adaptive population control for global continuous optimization problems. Appl Soft Comput 132: 109845. https://doi.org/10.1016/j.asoc.2022.109845 doi: 10.1016/j.asoc.2022.109845
    [31] Yu Y, Gao SC, Zhou MC, et al. (2022) Scale-free network-based differential evolution to solve function optimization and parameter estimation of photovoltaic models. Swarm Evol Comput 74: 101142. https://doi.org/10.1016/j.swevo.2022.101142 doi: 10.1016/j.swevo.2022.101142
    [32] Xu Z, Gao SC, Yang HC, et al. (2021) SCJADE: Yet another state-of-the-art differential evolution algorithm. IEEJ Trans Electr Electron Eng 16: 644–646. https://doi.org/10.1002/tee.23340 doi: 10.1002/tee.23340
    [33] Gao SC, Wang KY, Tao SC, et al. (2021) A state-of-the-art differential evolution algorithm for parameter estimation of solar photovoltaic models. Energy Convers Manage 230: 113784. https://doi.org/10.1016/j.enconman.2020.113784 doi: 10.1016/j.enconman.2020.113784
    [34] Qureshi TA, Warudkar V (2023) Wind farm layout optimization through optimal wind turbine placement using a hybrid particle swarm optimization and genetic algorithm. Environ Sci Pollut Res 30: 77436–77452. https://doi.org/10.1007/s11356-023-27849-7 doi: 10.1007/s11356-023-27849-7
    [35] Yang HC, Gao SC, Lei ZY, et al. (2023) An improved spherical evolution with enhanced exploration capabilities to address wind farm layout optimization problem. Eng Appl Artif Intell 123: 106198. https://doi.org/10.1016/j.engappai.2023.106198 doi: 10.1016/j.engappai.2023.106198
    [36] Yu Y, Zhang TF, Lei ZZ, et al. (2023) A chaotic local search-based LSHADE with enhanced memory storage mechanism for wind farm layout optimization. Appl Soft Comput 141: 110306. https://doi.org/10.1016/j.asoc.2023.110306 doi: 10.1016/j.asoc.2023.110306
    [37] Kunakote T, Sabangban N, Kumar S, et al. (2022) Comparative performance of twelve metaheuristics for wind farm layout optimisation. Arch Comput Methods Eng 29: 717–730. https://doi.org/10.1007/s11831-021-09586-7 doi: 10.1007/s11831-021-09586-7
    [38] Long H, Li PK, Gu W (2020) A data-driven evolutionary algorithm for wind farm layout optimization. Energy 208: 118310. https://doi.org/10.1016/j.energy.2020.118310 doi: 10.1016/j.energy.2020.118310
    [39] Gao SC, Zhou MC, Wang YR, et al. (2019) Dendritic neuron model with effective learning algorithms for classification, approximation, and prediction. IEEE Trans Neural Networks Learn Syst 30: 601–604. https://doi.org/10.1109/TNNLS.2018.2846646 doi: 10.1109/TNNLS.2018.2846646
    [40] Gao SC, Zhou MC, Wang ZQ, et al. (2023) Fully complex-valued dendritic neuron model. IEEE Trans Neural Networks Learn Syst 34: 2105–2118. https://doi.org/10.1109/TNNLS.2021.3105901 doi: 10.1109/TNNLS.2021.3105901
    [41] Ju X, Liu F (2019) Wind farm layout optimization using self-informed genetic algorithm with information guided exploitation. Appl Energy 248: 429–445. https://doi.org/10.1016/j.apenergy.2019.04.084 doi: 10.1016/j.apenergy.2019.04.084
    [42] Ju XL, Liu F, Wang L, et al. (2019) Wind farm layout optimization based on support vector regression guided genetic algorithm with consideration of participation among landowners. Energy Convers Manage 196: 1267–1281. https://doi.org/10.1016/j.enconman.2019.06.082 doi: 10.1016/j.enconman.2019.06.082
    [43] Zhang YY, Chen GY, Cheng L, et al. (2019) Methods to balance the exploration and exploitation in differential evolution from different scales: A survey. Neurocomputing 561: 126899. https://doi.org/10.1016/j.neucom.2023.126899 doi: 10.1016/j.neucom.2023.126899
    [44] Zhang ZH, Yu QR, Yang HC, et al. (2024) Triple-layered chaotic differential evolution algorithm for layout optimization of offshore wave energy converters. Expert Syst Appl 239: 122439. https://doi.org/10.1016/j.eswa.2023.122439 doi: 10.1016/j.eswa.2023.122439
    [45] Cai ZH, Yang X, Zhou MC, et al. (2023) Toward explicit control between exploration and exploitation in evolutionary algorithms: A case study of differential evolution. Inf Sci 649: 119656. https://doi.org/10.1016/j.ins.2023.119656 doi: 10.1016/j.ins.2023.119656
    [46] Gupta S, Singh S, Su R, et al. (2023) Multiple elite individual guided piecewise search-based differential evolution. IEEE/CAA J Autom Sin 10: 135–158. https://doi.org/10.1109/JAS.2023.123018 doi: 10.1109/JAS.2023.123018
    [47] Li XS, Li JY, Yang HC, et al. (2022) Population interaction network in representative differential evolution algorithms: Power-law outperforms Poisson distribution. Phys A 603: 127764. https://doi.org/10.1016/j.physa.2022.127764 doi: 10.1016/j.physa.2022.127764
    [48] Yu Y, Wang KY, Zhang TF, et al. (2022) A population diversity-controlled differential evolution for parameter estimation of solar photovoltaic models. Sustainable Energy Technol Assess 51: 101938. https://doi.org/10.1016/j.seta.2021.101938 doi: 10.1016/j.seta.2021.101938
    [49] Tanabe R, Fukunaga AS (2014) Improving the search performance of SHADE using linear population size reduction. 2014 IEEE Congress on Evolutionary Computation (CEC), Beijing, China, 1658–1665. https://doi.org/10.1109/CEC.2014.6900380
    [50] Mohamed AW, Hadi AA, Fattouh AM, et al. (2022) LSHADE with semi-parameter adaptation hybrid with CMA-ES for solving CEC 2017 benchmark problems. 2017 IEEE Congress on Evolutionary Computation (CEC), Donostia, Spain, 145–152. https://doi.org/10.1109/CEC.2017.7969307
    [51] Mosetti G, Poloni C, Diviacco B (1994) Optimization of wind turbine positioning in large windfarms by means of a genetic algorithm. J Wind Eng Ind Aerodyn 51: 105–116. https://doi.org/10.1016/0167-6105(94)90080-9 doi: 10.1016/0167-6105(94)90080-9
    [52] Shakoor R, Hassan MY, Raheem A, et al. (2016) Wake effect modeling: A review of wind farm layout optimization using Jensen's model. Renewable Sustainable Energy Rev 58: 1048–1059. https://doi.org/10.1016/j.rser.2015.12.229 doi: 10.1016/j.rser.2015.12.229
    [53] Rao RV, Keesari HS (2018) Multi-team perturbation guiding jaya algorithm for optimization of wind farm layout. Appl Soft Comput 71: 800–815. https://doi.org/10.1016/j.asoc.2018.07.036 doi: 10.1016/j.asoc.2018.07.036
    [54] Sorkhabi SYD, Romero DA, Beck JC, et al. (2018) Constrained multi-objective wind farm layout optimization: Novel constraint handling approach based on constraint programming. Renewable Energy 126: 341–353. https://doi.org/10.1016/j.renene.2018.03.053 doi: 10.1016/j.renene.2018.03.053
    [55] Zergane S, Smaili A, Masson C (2018) Optimization of wind turbine placement in a wind farm using a new pseudo-random number generation method. Renewable Energy 125: 166–171. https://doi.org/10.1016/j.renene.2018.02.082 doi: 10.1016/j.renene.2018.02.082
    [56] Rizk-Allah RM, Hassanien AE (2023) A hybrid equilibrium algorithm and pattern search technique for wind farm layout optimization problem. ISA Trans 132: 402–418. https://doi.org/10.1016/j.isatra.2022.06.014 doi: 10.1016/j.isatra.2022.06.014
    [57] Sun HY, Yang HX (2023) Wind farm layout and hub height optimization with a novel wake model. Appl Energy 348: 121554. https://doi.org/10.1016/j.apenergy.2023.121554 doi: 10.1016/j.apenergy.2023.121554
    [58] González JS, Rodriguez AGG, Mora JC, et al. (2010) Optimization of wind farm turbines layout using an evolutive algorithm. Renewable Energy 35: 1671–1681. https://doi.org/10.1016/j.renene.2010.01.010 doi: 10.1016/j.renene.2010.01.010
    [59] Abdelsalam AM, El-Shorbagy MA (2018) Optimization of wind turbines siting in a wind farm using genetic algorithm based local search. Renewable Energy 123: 748–755. https://doi.org/10.1016/j.renene.2018.02.083 doi: 10.1016/j.renene.2018.02.083
    [60] Wolpert DH, Macready WG (1997) No free lunch theorems for optimization. IEEE Trans Evol Comput 1: 67–82. https://doi.org/10.1109/4235.585893 doi: 10.1109/4235.585893
    [61] Sui QY, Yu Y, Wang KY, et al. (2024) Best-worst individuals driven multiple-layered differential evolution. Inf Sci 655: 119889. https://doi.org/10.1016/j.ins.2023.119889 doi: 10.1016/j.ins.2023.119889
    [62] Tanabe R, Fukunaga A (2013) Success-history based parameter adaptation for differential evolution. 2013 IEEE Congress on Evolutionary Computation, Cancun, Mexico, 71–78. https://doi.org/10.1109/CEC.2013.6557555
    [63] Gao SC, Yu Y, Wang YR (2021) Chaotic local search-based differential evolution algorithms for optimization. IEEE Trans Syst Man Cybern: Syst 51: 3954–3967. https://doi.org/10.1109/TSMC.2019.2956121 doi: 10.1109/TSMC.2019.2956121
    [64] Hansen N (2006) Advances on estimation of distribution algorithms. In: Jose A. Lozano, Pedro Larrañaga, Iñaki Inza, Endika Bengoetxea, Towards a New Evolutionary Computation, 1st Ed, Springer Berlin, Heidelberg. 192: 75–102. https://doi.org/10.1007/3-540-32494-1_4
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(854) PDF downloads(108) Cited by(0)

Article outline

Figures and Tables

Figures(14)  /  Tables(8)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog