Review Topical Sections

Global nuclear energy: an uncertain future

  • Received: 29 June 2021 Accepted: 02 September 2021 Published: 15 September 2021
  • Nuclear energy currently accounts for a declining share of global electricity, but it is possible that rising concerns about global climate change and China's ambitious nuclear program could reverse this trend. This review attempts to assess the global future of nuclear power, showing how the optimistic forecasts in the early days of nuclear power have been replaced by far more modest forecasts. The review first discusses the controversies surrounding nuclear power. It then briefly examines the prospects for three proposed reactors of the future: Small Modular Reactors; Generation IV breeder reactors; fusion reactors. It finally discusses the social and political context for nuclear power, both today and in the future.

    Citation: Patrick Moriarty. Global nuclear energy: an uncertain future[J]. AIMS Energy, 2021, 9(5): 1027-1042. doi: 10.3934/energy.2021047

    Related Papers:

  • Nuclear energy currently accounts for a declining share of global electricity, but it is possible that rising concerns about global climate change and China's ambitious nuclear program could reverse this trend. This review attempts to assess the global future of nuclear power, showing how the optimistic forecasts in the early days of nuclear power have been replaced by far more modest forecasts. The review first discusses the controversies surrounding nuclear power. It then briefly examines the prospects for three proposed reactors of the future: Small Modular Reactors; Generation IV breeder reactors; fusion reactors. It finally discusses the social and political context for nuclear power, both today and in the future.



    加载中


    [1] Krymm R, Woite G (1976) Estimates of future demand for uranium and nuclear fuel cycle services. IAEA Bull 18 (5/6).
    [2] Lane JA (1959) Economics of nuclear power. Annu Rev Nucl Sci 9: 473-492. doi: 10.1146/annurev.ns.09.120159.002353
    [3] Zimmermann CF, Pohl RO (1977) The potential contribution of nuclear energy to U.S. energy requirement. Energy 2: 465-471.
    [4] Joskow PL, Baughman ML (1976) The future of the U.S. nuclear energy industry. Bell J Econ 7: 3-32.
    [5] Moriarty P, Honnery D (2011) Rise and fall of the carbon civilisation. Springer, London, UK.
    [6] BP (2021) BP statistical review of world energy. BP, London, UK.
    [7] IEA (2019) Nuclear Power in a Clean Energy System. IEA Paris, France.
    [8] Smil V (2016) "Too cheap to meter" nuclear power revisited. IEEE Spectrum. Available from: https://spectrum.ieee.org/energy/nuclear/too-cheap-to-meter-nuclear-power-revisited.
    [9] Bernhoft S, Sowder A, Austin R (2020) The nuclear mission in an integrated, carbon-free energy future. Responsabilité Environ 97: 107-111. doi: 10.3917/re1.097.0107
    [10] Froggatt A, Schneider M (2015) Nuclear power versus renewable energy: a trend analysis. Proc IEEE 103: 487-490. doi: 10.1109/JPROC.2015.2414485
    [11] Machin A (2020) The agony of nuclear: sustaining democratic disagreement in the Anthropocene. Sustain: Sci, Practice Pol 16: 286-297.
    [12] Moriarty P, Honnery D (2019) Sustainable energy resources: Prospects and policy. In: Rasul MG, Azad AK, Sharma SC (eds), Clean energy for sustainable development. Elsevier, London, UK.
    [13] Moriarty P, Honnery D (2018) Energy policy and economics under climate change. AIMS Energy 6: 272-290. doi: 10.3934/energy.2018.2.272
    [14] Stover D, Emanuel K (2017) A climate scientist for nuclear energy. Bull Atom Scientists 73: 7-12. doi: 10.1080/00963402.2016.1264205
    [15] Li J, Zhang J, Duan X (2010) Magnetic fusion development for global warming suppression. Nucl Fusion 50: 014005. doi: 10.1088/0029-5515/50/1/014005
    [16] Kharecha PA, Hansen JE (2013) Prevented mortality and greenhouse gas emissions from historical and projected nuclear power. Environ Sci Technol 47: 4889-4895. doi: 10.1021/es3051197
    [17] Intergovernmental Panel on Climate Change (IPCC) (2021) Climate change 2021: The physical science basis. AR6, WG1. CUP, Cambridge UK. Available from: https://www.ipcc.ch/assessment-report/ar6/ (Also earlier reports).
    [18] Moriarty P, Honnery D (2016) Can renewable energy power the future? Energy Pol 93: 3-7.
    [19] Capellán-Pérez I, de Castro C, González LJM (2019) Dynamic Energy Return on Energy Investment (EROI) and material requirements in scenarios of global transition to renewable energies. Energy Strategy Rev 26: 100399. doi: 10.1016/j.esr.2019.100399
    [20] Bragg-Sitton SM, Boardman R, Rabiti C, et al. (2020) Reimagining future energy systems: Overview of the US program to maximize energy utilization via integrated nuclear-renewable energy systems. Int J Energy Res 44: 8156-8169. doi: 10.1002/er.5207
    [21] Kramer D (2018) US nuclear industry fights for survival. Phys Today 71: 26.
    [22] Grossman L (2017) Nuclear holiday. New Sci, 20 May: 20-21.
    [23] Johnstone P, Sovacool BK, MacKerron G, et al. (2016) Nuclear power: serious risks. Science 354: 1112. doi: 10.1126/science.aal1777
    [24] Lovins AB (2016) Nuclear power: deployment speed. Science 354: 1112-1113.
    [25] Granger Morgan M, Abdulla A, Ford MJ, et al. (2018) US nuclear power: The vanishing low-carbon wedge. PNAS 115: 7184-7189. doi: 10.1073/pnas.1804655115
    [26] Alonso A, Brook BW, Meneley DA, et al. (2015) Why nuclear energy is essential to reduce anthropogenic greenhouse gas emission rates. EPJ Nucl Sci Technol 1: 3. doi: 10.1051/epjn/e2015-50027-y
    [27] Squassoni S (2017). The incredible shrinking nuclear offset to climate change. Bull Atom Scientists 73: 17-26. doi: 10.1080/00963402.2016.1264208
    [28] Makhijani A (2008) Nuclear isn't necessary. Nature Reports: Clim Change 2: 132-134.
    [29] McCombie C, Jefferson M (2016) Renewable and nuclear electricity: Comparison of environmental impacts. Energy Pol 96: 758-769. doi: 10.1016/j.enpol.2016.03.022
    [30] Weißbach D, Ruprecht G, Huke A, et al. (2013) Energy intensities, EROIs (energy returned on invested), and energy payback times of electricity generating power plants. Energy 52: 210-221. doi: 10.1016/j.energy.2013.01.029
    [31] Hall CAS, Lambert JG, Balogh SB (2014) EROI of different fuels and the implications for society. Energy Pol 64: 141-152. doi: 10.1016/j.enpol.2013.05.049
    [32] Vine D, Juliani T (2014) Climate solutions: the role of nuclear power. Arlington, VA: Center for Climate and Energy Solutions, April: 11pp.
    [33] Ramana MV (2021) Small modular and advanced nuclear reactors: A reality check. IEEE Access 9: 42091.
    [34] Sekimoto H (2017) A roadmap of innovative nuclear energy system. J Phys Conf Series 799 (012001).
    [35] Warren P, De Simone G (2014) Fuelling the future? Energy Pol 74: S5-S15.
    [36] Dittmar M (2013) The end of cheap uranium. Sci Total Environ 461/462: 792-798. doi: 10.1016/j.scitotenv.2013.04.035
    [37] Abbott A (2015) Researchers pin down risks of low-dose radiation. Nature 523: 17-18. doi: 10.1038/523017a
    [38] Grape S, Svä rd SJ, Hellesen C, et al. (2014) New perspectives on nuclear power—Generation IV nuclear energy systems to strengthen nuclear non-proliferation and support nuclear disarmament. Energy Pol 73: 815-819. doi: 10.1016/j.enpol.2014.06.026
    [39] Perrow C (2011) Fukushima and the inevitability of accidents. Bull Atom Scientists 67: 44-52.
    [40] Rose T, Sweeting T (2016) How safe is nuclear power? A statistical study suggests less than expected. Bull Atom Scientists 72: 112-115. doi: 10.1080/00963402.2016.1145910
    [41] Sutou S (2020) Black rain in Hiroshima: a critique to the Life Span Study of A-bomb survivors, basis of the linear no-threshold model. Genes Environ 42: 1. doi: 10.1186/s41021-019-0141-8
    [42] Hall H (2019) Is low-dose radiation good for you? The questionable claims for hormesis. Skeptic 24: 1.
    [43] Takeda S, Pearson R (2018) Nuclear fusion power plants. Available from: http://dx.doi.org/10.5772/intechopen.80241.
    [44] Post RF (1971) Fusion power. PNAS 68: 1931-1937. doi: 10.1073/pnas.68.8.1931
    [45] Moriarty P, Honnery D (2007) Intermittent renewable energy: The only future source of hydrogen? Int J Hydrog Energy 32: 1616-1624.
    [46] Kembleton R (2019) Nuclear fusion: What of the future? In Letcher T (ed), Managing global warming: An interface of technology and human issues. Academic Press, London, UK., pp.199-220.
    [47] Jassby D (2018) ITER is a showcase... for the drawbacks of fusion energy. Available from: https://sites.nationalacademies.org/cs/groups/bpasite/documents/webpage/bpa_184876.pdf.
    [48] Wikipedia (2021) Generation IV reactor. Available from: https://en.wikipedia.org/wiki/Generation_IV_reactor.
    [49] D'Auria F, Debrecin N, Glaeser H (2019) The technological challenge for current generation nuclear reactors. J Nucl Energy Technol (NUCET) 5: 183-199. doi: 10.3897/nucet.5.38117
    [50] Sovacool BK, Ramana MV (2015) Back to the future: small modular reactors, nuclear fantasies, and symbolic convergence. Sci, Technol, Human Values 40: 96-125. doi: 10.1177/0162243914542350
    [51] Mignacca B, Locatelli G, Sainati T (2020) Deeds not words: Barriers and remedies for Small Modular nuclear Reactors. Energy 206: 118137. doi: 10.1016/j.energy.2020.118137
    [52] Hussein EMA (2020) Emerging small modular nuclear power reactors: A critical review. Phys Open 5: 100038. doi: 10.1016/j.physo.2020.100038
    [53] International Atomic Energy Agency (IAEA) (2018) Experience in modelling nuclear energy systems with MESSAGE: Country case studies. IAEA-TECDOC-1837. Available from: https://www-pub.iaea.org/MTCD/Publications/PDF/TE-1837web.pdf.
    [54] Buongiorno J, Carmichael B, Dunkin B, et al. (2021) Can nuclear batteries be economically competitive in large markets? Energies 4385.
    [55] Testoni R, Bersano A, Segantin S (2021) Review of nuclear microreactors: Status, potentialities and challenges. Progr Nucl Energy 138: 103822. doi: 10.1016/j.pnucene.2021.103822
    [56] Weinberg AM, Hammond RP (1973) Limits to the use of energy. Am Sci 58: 412-418.
    [57] Locatelli G, Mancini M, Todeschini N (2013) Generation IV nuclear reactors: Current status and future prospects. Energy Pol 61: 1503-1520. doi: 10.1016/j.enpol.2013.06.101
    [58] Kooyman T (2021) Current state of partitioning and transmutation studies for advanced nuclear fuel cycles. Annals Nucl Energy 157: 108239. doi: 10.1016/j.anucene.2021.108239
    [59] Hoegh-Guldberg O, Jacob D, Taylor M, et al. (2019) The human imperative of stabilizing global climate change at 1.5 ℃. Science 365: 1263.
    [60] Hirsch RL (2017) Necessary and sufficient conditions for practical fusion power. Phys Today 70: 11-13. doi: 10.1063/PT.3.3746
    [61] Hassanein A, Sizyuk V (2021) Potential design problems for ITER fusion device. Sci Reports 11: 2069.
    [62] Coady D, Parry I, Louis Sears L, et al. (2017) How Large Are Global Fossil Fuel Subsidies? World Dev 91: 11-27.
    [63] Sovacool BK, Hess DJ, Amir S, et al. (2020) Sociotechnical agendas: Reviewing future directions for energy and climate research. Energy Res Soc Sci 70: 101617. doi: 10.1016/j.erss.2020.101617
    [64] Wealer B, Bauer S, Hirschhausen Cv, et al. (2021) Investing into third generation nuclear power plants - Review of recent trends and analysis of future investments using Monte Carlo Simulation. Renewable Sustainable Energy Rev 143: 110836. doi: 10.1016/j.rser.2021.110836
    [65] Anderson M (2020) limited progress for U.S. nuclear. IEEE Spectrum June: 6-7.
    [66] Normille D (2021) Why cleaning up Fukushima's damaged reactors will take another 30 years. Science 371: 983. doi: 10.1126/science.371.6533.983
    [67] Velenturf APM, Purnell P (2021) Principles for a sustainable circular economy. Sustain Prod Consumption 27: 1437-1457. doi: 10.1016/j.spc.2021.02.018
    [68] Fitzpatrick MC, Blois JL, Williams JW, et al. (2018) How will climate novelty influence ecological forecasts? Using the Quaternary to assess future reliability. Glob Change Biol 24: 3575-3586. doi: 10.1111/gcb.14138
    [69] Lange S, Volkholz J, Geiger T, et al. (2020) Projecting exposure to extreme climate impact events across six event categories and three spatial scales. Earth's Future 11: e2020EF001616.
    [70] Büntgen U, Urban O, Krusic PJ, et al. (2021) Recent European drought extremes beyond Common Era background variability. Nature Geosci 14: 190-196. doi: 10.1038/s41561-021-00698-0
    [71] Jenkins LS, Alvarez R, Jordaan SM (2020) Unmanaged climate risks to spent fuel from U.S. nuclear power plants: The case of sea-level rise. Energy Pol 137: 111106.
    [72] MacKerron G (2019) Future prospects on coping with nuclear waste. In: Haas R, Mez L, Ajanovic A (Eds) The technological and economic future of nuclear power. Springer VS. Available from: https://doi.org/10.1007/978-3-658-25987-7_1.
    [73] Bowrey B (2020) Nuclear waste and society: A historiographic review and analysis of two approaches. Intersect 14: 1-16.
    [74] Cornwall W (2020) A dam big problem. Science 369: 907-909.
    [75] Perrow C (1999) Normal accidents: Living with high risk technologies (Updated Edition). Princeton Univ Press, Princeton, NJ, USA.
    [76] Wikipedia (2021) Superphenix. Available from: https://en.wikipedia.org/wiki/Superphenix.
    [77] United Nations (UN) (2021) Treaty on the non-proliferation of nuclear weapons (NPT). Available from: https://www.un.org/disarmament/wmd/nuclear/npt/.
    [78] Kosai S, Unesaki H (2017) Quantitative analysis on the impact of nuclear energy supply disruption on electricity supply security. Appl Energy 208: 1198-1207. doi: 10.1016/j.apenergy.2017.09.033
    [79] Markard J, Bento N, Kittner N, et al. (2020) Destined for decline? Examining nuclear energy from a technological innovation systems perspective. Energy Res Soc Sci 67: 101512. doi: 10.1016/j.erss.2020.101512
    [80] Ripple WJ, Wolf C, Newsome T, et al. (2019) World scientists' warning of a climate emergency. BioSci: 1-5.
    [81] Jacobson MZ (2017) Roadmaps to transition countries to 100% clean, renewable energy for all purposes to curtail global warming, air pollution, and energy risk. Earth's Future 5: 948-952. doi: 10.1002/2017EF000672
    [82] Davis SJ, Lewis NS, Shaner M, et al. (2018) Net-zero emissions energy systems. Science 360: eaas9793.
    [83] Kammen DM (2020) Over the hump: Have we reached the peak of carbon emissions? Bull Atom Sci 76: 256-262.
    [84] Smil V (2018) It'll be harder than we thought to get the carbon out. IEEE Spectr 55: 72-75. doi: 10.1109/MSPEC.2018.8362233
    [85] Moriarty P, Honnery D (2020) Feasibility of a 100% global renewable energy system. Energies 13: 5543. doi: 10.3390/en13215543
    [86] Heard B, Brook B, Wigley T, et al. (2017) Burden of proof: A comprehensive review of the feasibility of 100% renewable-electricity systems. Renewable Sustainable Energy Rev 76: 1122-1133. doi: 10.1016/j.rser.2017.03.114
    [87] Moriarty P, Wang SJ (2015) Assessing global renewable energy forecasts. Energy Proc 75: 2523-2528. doi: 10.1016/j.egypro.2015.07.256
    [88] Nieto J, Carpintero O, Miguel LJ, et al. (2020) Macroeconomic modelling under energy constraints: Global low carbon transition scenarios. Energy Pol 137: 111090. doi: 10.1016/j.enpol.2019.111090
    [89] Moriarty P, Honnery D (2021) The limits of renewable energy. AIMS Energy 9: 812-829. doi: 10.3934/energy.2021037
    [90] International Energy Agency (IEA) (2020) Key world energy statistics 2020. Paris, IEA/OECD.
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(5407) PDF downloads(565) Cited by(15)

Article outline

Figures and Tables

Figures(2)  /  Tables(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog