Planet Earth is simultaneously approaching a number of ecological and resource limits. The resulting uncertainties will heavily impact future energy choices, both the level of primary energy used globally and the shares of fossil, renewable and nuclear fuels in the energy mix. This paper reviews the possible futures for the various types of renewable energy. To be viable, all potential energy sources must be assessed on their energy return on energy invested (energy return). Given that renewable energy RE growth is considered important for sustainability reasons, renewable energy must be assessed on its ecologically sustainable or 'green' energy return, which includes the energy costs of ecosystem maintenance as input energy costs. The green energy return is accordingly much lower than the conventional value, so that ecologically sustainable renewable energy is unlikely to deliver anything near existing global energy use. The paper further argues that such constraints on renewable energy growth rates mean it cannot be a timely response to global climate change. The paper concludes that energy reductions will be essential, mainly in high energy use countries.
Citation: Patrick Moriarty, Damon Honnery. The limits of renewable energy[J]. AIMS Energy, 2021, 9(4): 812-829. doi: 10.3934/energy.2021037
Planet Earth is simultaneously approaching a number of ecological and resource limits. The resulting uncertainties will heavily impact future energy choices, both the level of primary energy used globally and the shares of fossil, renewable and nuclear fuels in the energy mix. This paper reviews the possible futures for the various types of renewable energy. To be viable, all potential energy sources must be assessed on their energy return on energy invested (energy return). Given that renewable energy RE growth is considered important for sustainability reasons, renewable energy must be assessed on its ecologically sustainable or 'green' energy return, which includes the energy costs of ecosystem maintenance as input energy costs. The green energy return is accordingly much lower than the conventional value, so that ecologically sustainable renewable energy is unlikely to deliver anything near existing global energy use. The paper further argues that such constraints on renewable energy growth rates mean it cannot be a timely response to global climate change. The paper concludes that energy reductions will be essential, mainly in high energy use countries.
[1] | Lade SJ, Steffen W, de Vries W, et al. (2020) Human impacts on planetary boundaries amplified by Earth system interactions. Nature Sustain 3: 119-128. doi: 10.1038/s41893-019-0454-4 |
[2] | Steffen W, Richardson K, Rockström J, et al. (2015). Planetary boundaries: Guiding human development on a changing planet. Science 347: 1259855. doi: 10.1126/science.1259855 |
[3] | National Oceanic and Atmospheric Administration (NOAA) (2021) Trends in atmospheric carbon dioxide. Available from: https://www.esrl.noaa.gov/gmd/ccgg/trends/. |
[4] | Hoegh-Guldberg O, Jacob D, Taylor M, et al. (2019) The human imperative of stabilizing global climate change at 1.5 ℃. Science 365: 1263. |
[5] | Heinze C, Blenckner T, Martins H, et al. (2021) The quiet crossing of ocean tipping points. Pnas 118: e2008478118. |
[6] | Lenton TM, Rockström J, Gaffney O, et al. (2019) Climate tipping points—too risky to bet against. Nature 575: 592-595. doi: 10.1038/d41586-019-03595-0 |
[7] | Moriarty P, Honnery D (2021) The risk of catastrophic climate change: future energy implications. Futures 128: 102728. doi: 10.1016/j.futures.2021.102728 |
[8] | Ollerton J (2021) Protect the pollinators. New Sci 249: 23. |
[9] | Weiskopf SR, Rubenstein MA, Crozier LG, et al. (2020) Climate change effects on biodiversity, ecosystems, ecosystem services, and natural resource management in the United States. Sci Total Environ 733: 137782. doi: 10.1016/j.scitotenv.2020.137782 |
[10] | Swiss Re (2020) A fifth of countries worldwide at risk from ecosystem collapse as biodiversity declines, reveals pioneering Swiss Re index. Available from: https://www.swissre.com/media/news-releases/nr-20200923-biodiversity-and-ecosystemsservices.html. |
[11] | Modis T (2019) Forecasting energy needs with logistics. Technol Forecast Soc Change 139: 135-143. doi: 10.1016/j.techfore.2018.11.008 |
[12] | Marchetti C (2009) On energy systems historically and in the next centuries. Global Bioethics 22: 53-65. doi: 10.1080/11287462.2009.10800684 |
[13] | BP (2020) BP statistical review of world energy. London, BP. |
[14] | Smil V (2018) It'll be harder than we thought to get the carbon out. IEEE Spectrum 55: 72-75. doi: 10.1109/MSPEC.2018.8362233 |
[15] | Smil V (2020). Energy transitions: Fundamentals in six points. Papeles de Energia 8: 11-20. |
[16] | Hanna R, Abdulla A, Xu Y, et al. (2021) Emergency deployment of direct air capture as a response to the climate crisis. Nature Comm 12: 368. doi: 10.1038/s41467-020-20437-0 |
[17] | Hansen K, Breyer C, Lund H (2019) Status and perspectives on 100% renewable energy systems. Energy 175: 471-480. doi: 10.1016/j.energy.2019.03.092 |
[18] | Staples MD, Malina R, Barrett SRH (2017) The limits of bioenergy for mitigating global life-cycle greenhouse gas emissions from fossil fuels. Nature Energy 2: 16202. doi: 10.1038/nenergy.2016.202 |
[19] | Rogelj J, Popp A, Calvin KV, et al. (2018) Scenarios towards limiting global mean temperature increase below 1.5 ℃. Nature Clim Change 8: 325-332. |
[20] | International Energy Agency (IEA) (2020) Key world energy statistics 2020. Paris, IEA/OECD. |
[21] | Moriarty P, Honnery D (2020) New approaches for ecological and social sustainability in a post-pandemic world. World 1: 191-204. doi: 10.3390/world1030014 |
[22] | Lu D (2021) Guarding the guardians. New Sci 249: 41-45. |
[23] | Harjanne A, Korhonen JM (2019) Abandoning the concept of renewable energy. Energy Pol 127: 330-340. doi: 10.1016/j.enpol.2018.12.029 |
[24] | Moriarty P, Honnery D (2018) Energy policy and economics under climate change. AIMS Energy 6: 272-290. doi: 10.3934/energy.2018.2.272 |
[25] | BP (2020) BP Energy outlook 2020. London, BP. |
[26] | Energy Information Administration (EIA) (2019) International Energy Outlook 2019. Available from: https://www.eia.gov/outlooks/ieo/. |
[27] | International Energy Agency (IEA) (2020) World Energy Model; IEA: Paris. Available from: https://www.iea.org/reports/world-energy-model. |
[28] | ExxonMobil (2019) Outlook for energy: A view to 2040; ExxonMobil: Irving, TX, USA. |
[29] | Organization of the Petroleum Exporting Countries (OPEC). 2020 OPEC World Oil Outlook. 2020. Available from: http://www.opec.org. |
[30] | DNV GL (2020) Energy Transition Outlook 2020: Executive Summary. DNV GL, Hevik, Norway. |
[31] | International Energy Agency (IEA) (2020) Renewables 2020: Analysis and forecast to 2025. Available from: https://webstore.iea.org/download/direct/4234. |
[32] | International Renewable Energy Agency (IRENA) Renewable Capacity Statistics 2020; IRENA: Abu Dhabi, UAE, 2020. |
[33] | REN21 (2020) Renewables 2020: Global status report. Available from: https://www.ren21.net/wp-content/uploads/2019/05/gsr_2020_full_report_en.pdf. |
[34] | Moriarty P, Honnery D (2019) Energy accounting for a renewable energy future. Energies 12: 4280. doi: 10.3390/en12224280 |
[35] | Intergovernmental Panel on Climate Change (IPCC) (2018) Global warming of 1.5 ℃: summary for policymakers. Switzerland, IPCC (ISBN 978-92-9169-151-7). |
[36] | Oei P-Y, Burandt T, Hainsch K, et al. (2020) Lessons from modeling 100% renewable scenarios using GENeSYS-MOD. Energy J 9: 103-120. |
[37] | Haefele W (1979) Global perspectives and options for long-range energy strategies. Energy 4: 745-760. doi: 10.1016/0360-5442(79)90008-2 |
[38] | Moriarty P, Honnery D (2020) Feasibility of a 100% global renewable energy system. Energies 13: 5543. doi: 10.3390/en13215543 |
[39] | Moreau V, Dos Reis PC, Vuille F (2019) Enough metals? Resource constraints to supply a fully renewable energy system. Resources 8: 29. doi: 10.3390/resources8010029 |
[40] | Capellán-Pérez I, de Castro C, González LJM (2019) Dynamic energy return on energy investment (EROI) and material requirements in scenarios of global transition to renewable energies. Energy Strategy Rev 26: 100399. doi: 10.1016/j.esr.2019.100399 |
[41] | Toro N, Robles P, Jeldres RI (2020) Seabed mineral resources, an alternative for the future of renewable energy: A critical review. Ore Geology Rev 126: 103699. doi: 10.1016/j.oregeorev.2020.103699 |
[42] | Nkulu CBL, Casas L, Haufroid V, et al. (2018) Sustainability of artisanal mining of cobalt in DR Congo. Nature Sustain 1: 495-504. doi: 10.1038/s41893-018-0139-4 |
[43] | Parente CET, Lino AS, Carvalho GO, et al. (2021) First year after the Brumadinho tailings' dam collapse: Spatial and seasonal variation of trace elements in sediments, fishes and macrophytes from the Paraopeba River, Brazil. Environ Res 193: 110526. doi: 10.1016/j.envres.2020.110526 |
[44] | Rodríguez F, Moraga C, Castillo J, et al. (2020) Submarine tailings in Chile—A Review. Metals 11: 780. doi: 10.3390/met11050780 |
[45] | Rehbein JA, Watson JEM, Lane JL, et al. (2020) Renewable energy development threatens many globally important biodiversity areas. Glob Change Biol 26: 3040-3051. doi: 10.1111/gcb.15067 |
[46] | Serrano D, Margalida A, Pérez-García JM, et al. (2020) Renewables in Spain threaten biodiversity. Science 370: 1282. doi: 10.1126/science.abf6509 |
[47] | Sovacool BK, Kim J, Yang M (2021) The hidden costs of energy and mobility: A global meta-analysis and research synthesis of electricity and transport externalities. Energy Res Soc Sci 72: 101885. doi: 10.1016/j.erss.2020.101885 |
[48] | Moriarty P, Honnery D (2016) Can renewable energy power the future? Energy Policy 93: 3-7. |
[49] | Moriarty, P, Honnery D (2019) Ecosystem maintenance energy and the need for a green EROI. Energy Policy 131: 229-234. doi: 10.1016/j.enpol.2019.05.006 |
[50] | Basosi R, Bonciani R, Frosali D, et al. (2020) Life Cycle Analysis of a geothermal power plant: Comparison of the environmental performance with other renewable energy systems. Sustainability 12: 2786. doi: 10.3390/su12072786 |
[51] | Dupont E, Germain M, Jeanmart H (2021) Estimate of the Societal Energy Return on Investment (EROI). Biophys Econ Sustain 6: 2. doi: 10.1007/s41247-021-00084-9 |
[52] | Pyakurel M, Nawandar K, Ramadesigan V, et al. (2021) Capacity expansion of power plants using dynamic energy analysis. Clean Technol Environ Policy 23: 669-683. doi: 10.1007/s10098-020-01995-9 |
[53] | Moriarty P, Honnery D (2012) What is the global potential for renewable energy? Renew Sustain Energy Rev 16: 244-252. |
[54] | Zhou Y, Hejazi M, Smith S, et al. (2015) A comprehensive view of global potential for hydro-generated electricity. Energy Environ Sci 8: 2622-2633. doi: 10.1039/C5EE00888C |
[55] | Hoes OAC, Meijer LJJ, van der Ent RJ, et al. (2017) Systematic high-resolution assessment of global hydropower potential. PLoS ONE 12: e0171844. doi: 10.1371/journal.pone.0171844 |
[56] | Zarf C, Berlekamp J, He F, et al. (2019) Future large hydropower dams impact global freshwater megafauna. Sci Rep 9: 18531. doi: 10.1038/s41598-019-54980-8 |
[57] | Williams JM (2020) The hydropower myth. Environ Sci Pollut Res 27: 12882-12888. doi: 10.1007/s11356-019-04657-6 |
[58] | Jaramillo F, Destouni G (2015) Comment on "Planetary boundaries: Guiding human development on a changing planet". Science 348: 1217. doi: 10.1126/science.aaa9629 |
[59] | Wohlfahrt G, Tomelleri E, Hammerle A (2021) The albedo-climate penalty of hydropower reservoirs. Nature Energy 6: 372-377. doi: 10.1038/s41560-021-00784-y |
[60] | Nie Y, Pritchard HD, Liu Q, et al. (2021) Glacial change and hydrological implications in the Himalaya and Karakoram. Nature Rev: Earth Environ 2: 91-106. doi: 10.1038/s43017-020-00124-w |
[61] | International Hydro Association (IHA) (2019) Hydro status report 2019. Available from: https://www.hydropower.org/publications/2019-hydropower-status-report-powerpoint. |
[62] | Briones-Hidrovo A, Uche J, Martínez-Gracia A (2020) Determining the net environmental performance of hydropower: A new methodological approach by combining life cycle and ecosystem services assessment. Sci Total Environ 712: 136369. doi: 10.1016/j.scitotenv.2019.136369 |
[63] | Moriarty P, Honnery D (2017) Assessing the climate mitigation potential of biomass. AIMS Energy 5: 20-38. doi: 10.3934/energy.2017.1.20 |
[64] | United Nations (UN) (2019) Probabilistic projections (2019). Available from: https://population.un.org/wpp/Download/Probabilistic/Population/. |
[65] | Stenzel F, Greve P, Lucht W, et al. (2021) Irrigation of biomass plantations may globally increase water stress more than climate change. Nature Comm 12: 512. doi: 10.1038/s41467-021-21640-3 |
[66] | Sterman JD, Siegel L, Rooney-Varga JN (2018) Does replacing coal with wood lower CO2 emissions? Dynamic lifecycle analysis of wood bioenergy. Environ Res Lett 13: 015007. doi: 10.1088/1748-9326/aaa512 |
[67] | Huttrer GW (2020) Geothermal power generation in the world 2015-2020 update report. Proc World Geotherm Congress, Reykjavik, Iceland, April 26-May 2. |
[68] | Aghahosseini A, Breyer C (2020) From hot rock to useful energy: A global estimate of enhanced geothermal systems potential. Appl Energy 279: 115769. doi: 10.1016/j.apenergy.2020.115769 |
[69] | van der Zwaan B, Dalla Longa F (2019) Integrated assessment projections for global geothermal energy use. Geotherm 82: 203-211. doi: 10.1016/j.geothermics.2019.06.008 |
[70] | Chen S, Zhang Q, Andrews-Speed P, et al. (2020) Quantitative assessment of the environmental risks of geothermal energy: A review. J Environ Mgt 276: 111287. doi: 10.1016/j.jenvman.2020.111287 |
[71] | Soltani M, Kashkooli FM, Souri M, et al. (2021) Environmental, economic, and social impacts of geothermal energy systems. Renew Sustain Energy Rev 140: 110750. doi: 10.1016/j.rser.2021.110750 |
[72] | Fridriksson T, Merino AM, Orucu AY, et al. (2017) Greenhouse gas emissions from geothermal power production. Proc 42nd Workshop on Geothermal Reservoir Eng Stanford University February 13-15, SGP-TR-212. |
[73] | Lund JW, Toth AN (2021) Direct utilization of geothermal energy 2020 worldwide review. Geotherm: 101915. |
[74] | Melikoglu M (2018) Current status and future of ocean energy sources: A global review. Ocean Eng 148: 563-573. doi: 10.1016/j.oceaneng.2017.11.045 |
[75] | Chowdhury MS, ·Rahman KS, Selvanathan V, et al. (2020) Current trends and prospects of tidal energy technology. Environ, Dev Sustain 23: 8179-8194. doi: 10.1007/s10668-020-01013-4 |
[76] | Van Haren H (2018) The pull of the tide. New Sci 23: 24-25. |
[77] | Blazquez J, Fuentes-Bracamontes R, Bollino CA, et al. (2018) The renewable energy policy paradox. Renew Sustain Energy Rev 82: 1-5. doi: 10.1016/j.rser.2017.09.002 |
[78] | Jäger-Waldau A (2020) Snapshot of photovoltaics—February 2020. Energies 13: 930. doi: 10.3390/en13040930 |
[79] | De Castro C, Capellán-Pérez I (2018) Concentrated solar power: Actual performance and foreseeable future in high penetration scenarios of renewable energies. Biophys Econ Resour Qual 3: 14. doi: 10.1007/s41247-018-0043-6 |
[80] | Tawalbeh M, Al-Othman A, Kafiah F, et al. (2021) Environmental impacts of solar photovoltaic systems: A critical review of recent progress and future outlook. Sci Total Environ 759: 143528. doi: 10.1016/j.scitotenv.2020.143528 |
[81] | Dhar AM, Naeth MA, Jennings PD, et al. (2020) Perspectives on environmental impacts and a land reclamation strategy for solar and wind energy systems. Sci Total Environ 718: 134602. doi: 10.1016/j.scitotenv.2019.134602 |
[82] | Chanchangi YN, Ghosh A, Sundaram S, et al. (2019) Dust and PV Performance in Nigeria: A review. Energy Strat Rev 26: 100399. doi: 10.1016/j.esr.2019.100399 |
[83] | Benasla M, Hess D, Allaouia T, et al. (2019) The transition towards a sustainable energy system in Europe: What role can North Africa's solar resources play? Energy Strategy Rev 24: 1-13. |
[84] | Grágeda M, Escudero M, Alavia W, et al. (2016) Review and multi-criteria assessment of solar energy projects in Chile. Renew Sustain Energy Rev 59: 583-596. doi: 10.1016/j.rser.2015.12.149 |
[85] | Nazir MS, Ali N, Bilal M, et al. (2020) Potential environmental impacts of wind energy development: A global perspective. Curr Opin Environ Sci Health 13: 85-90. doi: 10.1016/j.coesh.2020.01.002 |
[86] | Lakhanpal S (2019) Contesting renewable energy in the global south: A case-study of local opposition to a wind power project in the Western Ghats of India. Environ Dev 30: 51-60. doi: 10.1016/j.envdev.2019.02.002 |
[87] | Voigt CC, Straka TM, Fritze M (2019) Producing wind energy at the cost of biodiversity: A stakeholder view on a green-green dilemma. J Renew Sustain Energy 11: 063303. doi: 10.1063/1.5118784 |
[88] | Dorrell J, Lee K (2020) The cost of wind: Negative economic effects of global wind energy development. Energies 13: 3667. doi: 10.3390/en13143667 |
[89] | Smallwood KS, Bell DA (2020) Effects of wind turbine curtailment on bird and bat fatalities. J Wildlife Mgt 84: 685-696. doi: 10.1002/jwmg.21844 |
[90] | Abbasi SA, Tabassum-Abbasi, Abbasi T (2016) Impact of wind-energy generation on climate: A rising spectre. Renew Sustain Energy Rev 59: 1591-1598. doi: 10.1016/j.rser.2015.12.262 |
[91] | Miller LM, Keith DW (2018) Climatic impacts of wind power. Joule 2: 1-15. doi: 10.1016/j.joule.2018.09.009 |
[92] | Miller L (2020) The warmth of wind power. Phys Today 73: 58-59. doi: 10.1063/PT.3.4639 |
[93] | Veers P, Dykes K, Lantz E, et al. (2019) Grand challenges in the science of wind energy. Science 366: eaau2027. |
[94] | Popkin G (2019) The forest question. Nature 565: 280-282. doi: 10.1038/d41586-019-00122-z |
[95] | Anderegg WRL, Trugman AT, Badgley G, et al. (2020) Climate-driven risks to the climate mitigation potential of forests. Science 368: 1327. |
[96] | Kramer D (2020) Negative carbon dioxide emissions. Phys Today 73: 44-51. |
[97] | Ng WY, Low CX, Putra ZA, et al. (2020) Ranking negative emissions technologies under uncertainty. Heliyon 6: e05730. |
[98] | Zarnetske PL, Gurevitch J, Franklin J, et al. (2021) Potential ecological impacts of climate intervention by reflecting sunlight to cool Earth. PNAS 118: e1921854118. |
[99] | Trisos CH, Amatulli G, Gurevitch J, et al. (2018) Potentially dangerous consequences for biodiversity of solar geoengineering implementation and termination. Nature Ecol Evol 2: 475-482. doi: 10.1038/s41559-017-0431-0 |
[100] | Schneider T, Kaul CM, Pressel KG (2020) Solar geoengineering may not prevent strong warming from direct effects of CO2 on stratocumulus cloud cover. PNAS 117: 30179-30185. doi: 10.1073/pnas.2003730117 |
[101] | Papadimitriou L, Holman IP, Dunford R, et al. (2020) Trade-offs are unavoidable in multi-objective adaptation even in a post-Paris Agreement world. Sci Total Environ 696: 134027. doi: 10.1016/j.scitotenv.2019.134027 |
[102] | Williams CA, Gu H, Jiao T (2021) Climate impacts of U.S. forest loss span net warming to net cooling. Sci Adv 7: eaax8859. |
[103] | Tong D, Zhang Q, Zheng Y, et al. (2019) Committed emissions from existing energy infrastructure jeopardize 1.5 ℃ climate target. Nature 572: 373-377. |