Citation: Stine Espelien, Jafar Safarian. Effect of acid leaching conditions on impurity removal from silicon doped by magnesium[J]. AIMS Energy, 2017, 5(4): 636-651. doi: 10.3934/energy.2017.4.636
[1] | Safarian J, Tranell G, Tangstad M (2012) Processes for upgrading metallurgical grade silicon to solar grade silicon. Energy Procedia 20: 88–97. doi: 10.1016/j.egypro.2012.03.011 |
[2] | Safarian J, Tranell G (2016) Silicon purification through magnesium addition and acid leaching, In: 32nd European Photovoltaic Solar Energy Conference and Exhibition, 1011–1014. |
[3] | Wu JJ, Long LY, Ma WH, et al. (2014) Boron removal in purifying metallurgical grade silicon by CaO-SiO2 slag refining. TransNonferrous Met Soc China 24: 1231–1236. doi: 10.1016/S1003-6326(14)63183-6 |
[4] | Jakobsson LK (2013) Distribution of boron between silicon and CaO-SiO2, MgO-SiO2, CaO-MgO-SiO2 and CaO-Al2O3-SiO2 slags at 1600 °C. Mat Sci Eng 2013: 326. |
[5] | Safarian J, Tranell G, Tangstad M (2013) Thermodynamic and kinetic behavior of B and Na through the contact of B-doped silicon with Na2O-SiO2 slags. High Temp Mater Proc 44: 571–583. |
[6] | Safarian J, Tranell G, Tangstad M (2015) Boron removal from silicon by CaO-Na2O-SiO2 ternary slag. Metall Mater Trans E 2: 109–118. |
[7] | Safarian J, Tangstad M (2012) Kinetics and mechanism of phosphorus removal from silicon in vacuum induction refining. Metall Mater Trans B 31: 73–81. |
[8] | Safarian J, Tangstad M (2012) Vacuum refining of molten silicon. Metall Mater Trans B 43: 1427–1445. doi: 10.1007/s11663-012-9728-1 |
[9] | Safarian J, Tang K, Hildal K, et al. (2014) Boron removal from silicon by humidified gases. Metall Mater Trans B 1: 41–47. |
[10] | Safarian J, Tang K, Olsen JE, et al. (2014) Mechanisms and kinetics of boron removal from silicon by humidified hydrogen. Metall Mater Trans B 47: 1–17. |
[11] | Esfahani S (2010) Solvent refining of metallurgical grade silicon using iron. Master thesis of applied science at University of Toronto. Available from: https://tspace.library.utoronto.ca/bitstream/1807/25570/3/Shaghayegh_Esfahani_201011_MASc_thesis.pdf. |
[12] | Mohanty BC, Galgali RK (1987) Solvent refining of metallurgical grade silicon. Sol Energ Mat 16: 289–296. doi: 10.1016/0165-1633(87)90077-3 |
[13] | Dietl J (1983) Hydrometallurgical purification of metallurgical grade silicon. Solar Cells 10: 145–154. doi: 10.1016/0379-6787(83)90015-7 |
[14] | Santos IC, Gonçalves AP, Santos CS, et al. (1990) Purification of metallurgical grade silicon by acid leaching. Hydrometallurgy 23: 237–246. doi: 10.1016/0304-386X(90)90007-O |
[15] | He F, Zheng S, Chen C (2012) The effect of calcium oxide addition on the removal of metal impurities from metallurgical-grade silicon by acid leaching. Metall Mater Trans B 43: 1011–1018. doi: 10.1007/s11663-012-9681-z |
[16] | Espelien S, Tranell G, Safarian J (2017) Effect of magnesium addition on removal of impurities from silicon by hydrometallurgical treatment. Energy Technology 2017, Carbon Dioxide Management and Other Technologies, Springer International Publishing, 355–365. |
[17] | Shimpo T, Yoshikawa T, Morita K (2004) Thermodynamic study of the effect of calcium on removal of phosphorus from molten silicon by acid leaching treatment. Metall Mater Trans B 35: 277–284. doi: 10.1007/s11663-004-0029-1 |
[18] | Yu ZL, Ma WH, Dai YN, et al. (2007) Removal of Iron and aluminium impurities from metallurgical grade-silicon with hydrometallurgical route. Trans Nonferrous Met Soc China 17: 1030–1033. |
[19] | Jian Z, Li T, Ma X, et al. (2009) Optimization of the acid leaching process by using ultrasonic field for metallurgical grade silicon. J Semiconductors 30: 22–27. |
[20] | Juneja JM, Mukherjee TK (1986) A study of the purification of metallurgical grade silicon. Hydrometallurgy 16: 69–75. doi: 10.1016/0304-386X(86)90052-6 |
[21] | Inoue G, Yoshikawa T, Morita K (2003) Effect of calcium on thermodynamic properties of boron in molten silicon. High Temp Mat Proc 22: 221–226. |