The convergence of additive manufacturing (AM), sustainability, and innovation holds significant importance within the framework of Industry 4.0. This article examines the environmentally friendly and sustainable aspects of AM, more commonly referred to as 3D printing, a cutting-edge technology. It describes the fundamentals of AM in addition to its diverse materials, processes, and applications. This paper demonstrates how several 3D printing techniques can revolutionize sustainable production by examining their environmental impacts. The properties, applications, and challenges of sustainable materials, such as biodegradable polymers and recyclable plastics, are thoroughly examined. Additionally, the research explores the implications of 3D printing in domains including renewable energy component fabrication, water and wastewater treatment, and environmental monitoring. In addition, potential pitfalls and challenges associated with sustainable 3D printing are examined, underscoring the criticality of continuous research and advancement in this domain. To effectively align sustainability goals with functional performance requirements, it is imperative to address complexities within fused deposition modeling (FDM) printing processes, including suboptimal bonding and uneven fiber distribution, which can compromise the structural integrity and durability of biodegradable materials. Ongoing research and innovation are essential to overcome these challenges and enhance the viability of biodegradable FDM 3D printing materials for broader applications.
Citation: Muhammad Ali Saqib, Muhammad Sohail Abbas, Hiroyuki Tanaka. Sustainability and innovation in 3D printing: Outlook and trends[J]. Clean Technologies and Recycling, 2024, 4(1): 1-21. doi: 10.3934/ctr.2024001
The convergence of additive manufacturing (AM), sustainability, and innovation holds significant importance within the framework of Industry 4.0. This article examines the environmentally friendly and sustainable aspects of AM, more commonly referred to as 3D printing, a cutting-edge technology. It describes the fundamentals of AM in addition to its diverse materials, processes, and applications. This paper demonstrates how several 3D printing techniques can revolutionize sustainable production by examining their environmental impacts. The properties, applications, and challenges of sustainable materials, such as biodegradable polymers and recyclable plastics, are thoroughly examined. Additionally, the research explores the implications of 3D printing in domains including renewable energy component fabrication, water and wastewater treatment, and environmental monitoring. In addition, potential pitfalls and challenges associated with sustainable 3D printing are examined, underscoring the criticality of continuous research and advancement in this domain. To effectively align sustainability goals with functional performance requirements, it is imperative to address complexities within fused deposition modeling (FDM) printing processes, including suboptimal bonding and uneven fiber distribution, which can compromise the structural integrity and durability of biodegradable materials. Ongoing research and innovation are essential to overcome these challenges and enhance the viability of biodegradable FDM 3D printing materials for broader applications.
[1] | Ul Haq MI, Khuroo S, Raina A, et al. (2020) 3D printing for development of medical equipment amidst coronavirus (COVID-19) pandemic—review and advancements. Res Biomed Eng 38: 305–315. https://doi.org/10.1007/s42600-020-00098-0 doi: 10.1007/s42600-020-00098-0 |
[2] | Aziz R, Ul Haq MI, Raina A (2020) Effect of surface texturing on friction behaviour of 3D printed polylactic acid (PLA). Polym Test 85: 106434. https://doi.org/10.1016/j.polymertesting.2020.106434 doi: 10.1016/j.polymertesting.2020.106434 |
[3] | Chadha A, Ul Haq MI, Raina A, et al. (2019) Effect of fused deposition modelling process parameters on mechanical properties of 3D printed parts. World J Eng 6: 550–559. https://doi.org/10.1108/WJE-09-2018-0329 doi: 10.1108/WJE-09-2018-0329 |
[4] | Naveed N (2020) Investigate the effects of process parameters on material properties and microstructural changes of 3D-printed specimens using fused deposition modelling (FDM). Mater Technol 36: 317–330. https://doi.org/10.1080/10667857.2020.1758475 doi: 10.1080/10667857.2020.1758475 |
[5] | Naveed N (2021) Investigating the Material Properties and Microstructural Changes of Fused Filament Fabricated PLA and Tough-PLA Parts. Polym 13: 1487. https://doi.org/10.3390/polym13091487 doi: 10.3390/polym13091487 |
[6] | Ashrafi N, Duarte JP, Nazarian S, et al. (2018) Evaluating the relationship between deposition and layer quality in large-scale additive manufacturing of concrete. Virtual Phys Prototyping 14: 135–140. https://doi.org/10.1080/17452759.2018.1532800 doi: 10.1080/17452759.2018.1532800 |
[7] | Kumar MB, Sathiya P (2021) Methods and materials for additive manufacturing: A critical review on advancements and challenges. Thin-Walled Struct 159: 107228. https://www.sciencedirect.com/science/article/pii/S0263823120311009 |
[8] | Rouf S, Raina A, Ul Haq MI, et al. (2022) 3D printed parts and mechanical properties: influencing parameters, sustainability aspects, global market scenario, challenges and applications. Adv Ind Eng Polym 5: 143–158. https://doi.org/10.1016/j.aiepr.2022.02.001 doi: 10.1016/j.aiepr.2022.02.001 |
[9] | Ul Haq MI, Raina A, Ghazali MJ, et al. (2021) Potential of 3D printing technologies in developing applications of polymeric nanocomposites, In: Jena H, Katiyar JK, Patnaik A, Tribology of Polymer and Polymer Composites for Industry 4.0, 193–210. https://doi.org/10.1007/978-981-16-3903-6_10 |
[10] | Clarissa WHY, Chia CH, Zakaria S, et al. (2022) Recent advancement in 3-D printing: nanocomposites with added functionality. Prog Addit Manuf 7: 325–350. https://doi.org/10.1007/s40964-021-00232-z doi: 10.1007/s40964-021-00232-z |
[11] | Birosz MT, Andó M, Jeganmohan S (2021) Finite element method modeling of additive manufactured compressor wheel. J Inst Eng (India): Ser D 102: 79–85. https://doi.org/10.1007/s40033-021-00251-8 doi: 10.1007/s40033-021-00251-8 |
[12] | Andó M, Birosz M, Jeganmohan S (2021) Surface bonding of additive manufactured parts from multi-colored PLA materials. Measurement 169: 108583. https://doi.org/10.1016/j.measurement.2020.108583 doi: 10.1016/j.measurement.2020.108583 |
[13] | Saini JS, Dowling L, Kennedy J, et al. (2020) Investigations of the mechanical properties on different print orientations in SLA 3D printed resin. Proc Inst Mech Eng Part C 234: 2279–2293. https://doi.org/10.1177/0954406220904106 doi: 10.1177/0954406220904106 |
[14] | Węgrzyn N (2022) The use of additive manufacturing for production of commercial airplane power plants components: A review. Saf Def 8: 2. Available from: https://sd-magazine.eu/index.php/sd/article/view/185. |
[15] | Wohlers T, Gornet T, Mostow N, et al. (2016) History of additive manufacturing. Wohlers Rep 2016–2022, 1–38. Available from: https://papers.ssrn.com/sol3/papers.cfm?abstract_id = 4474824. |
[16] | Bourell DL (2016) Perspectives on additive manufacturing. Annu Rev Mater Res 46: 1–18. https://doi.org/10.1146/annurev-matsci-070115-031606 doi: 10.1146/annurev-matsci-070115-031606 |
[17] | Chiarini A, Belvedere V, Grando A (2020) Industry 4.0 strategies and technological developments. an exploratory research from Italian manufacturing companies. Prod Plann Control 31: 1385–1398. https://doi.org/10.1080/09537287.2019.1710304 doi: 10.1080/09537287.2019.1710304 |
[18] | Wu P, Wang J, Wang XY (2016) A critical review of the use of 3-D printing in the construction industry. Autom Constr 68: 21–31. https://doi.org/10.1016/j.autcon.2016.04.005 doi: 10.1016/j.autcon.2016.04.005 |
[19] | Ryan MJ, Eyers DR, Potter AT, et al. (2017) 3D printing the future: scenarios for supply chains reviewed. Int J Phys Distrib Logist Manage 47: 992–1014. https://doi.org/10.1108/IJPDLM-12-2016-0359 doi: 10.1108/IJPDLM-12-2016-0359 |
[20] | Marchi B, Zanoni S (2017) Supply chain management for improved energy efficiency: Review and opportunities. Energies 10: 1618. https://doi.org/10.3390/en10101618 doi: 10.3390/en10101618 |
[21] | Ford S, Despeisse M (2016) Additive manufacturing and sustainability: an exploratory study of the advantages and challenges. J Cleaner Prod 137: 1573–1587. Available from: https://www.sciencedirect.com/science/article/pii/S0959652616304395. |
[22] | Mehrpouya M, Dehghanghadikolaei A, Fotovvati B, et al. (2019) The potential of additive manufacturing in the smart factory industrial 4.0: A review. Appl Sci 9: 3865. https://doi.org/10.3390/app9183865 doi: 10.3390/app9183865 |
[23] | Majeed A, Zhang YF, Ren S, et al. (2021) A big data-driven framework for sustainable and smart additive manufacturing. Rob Comput Integr Manuf 67: 102026. https://doi.org/10.1016/j.rcim.2020.102026 doi: 10.1016/j.rcim.2020.102026 |
[24] | May G, Psarommatis F (2023) Maximizing energy efficiency in additive manufacturing: A review and framework for future research. Energies 16: 4179. https://doi.org/10.3390/en16104179 doi: 10.3390/en16104179 |
[25] | Hegab H, Khanna N, Monib N, et al. (2023) Design for sustainable additive manufacturing: A review. Sustainable Mater Technol 35: e00576. Available from: https://www.sciencedirect.com/science/article/pii/S2214993723000118. |
[26] | Ingarao G, Priarone PC, Deng YL, et al. (2018) Environmental modelling of aluminium based components manufacturing routes: additive manufacturing versus machining versus forming. J Cleaner Prod 176: 261–275. https://doi.org/10.1016/j.jclepro.2017.12.115 doi: 10.1016/j.jclepro.2017.12.115 |
[27] | Kishawy HA, Hegab H, Saad E (2018) Design for sustainable manufacturing: approach, implementation, and assessment. Sustainability 10: 3604. https://doi.org/10.3390/su10103604 doi: 10.3390/su10103604 |
[28] | Giudice F, Barbagallo R, Fargione G (2021) A design for additive manufacturing approach based on process energy efficiency: electron beam melted components. J Cleaner Prod 290: 125185. https://doi.org/10.1016/j.jclepro.2020.125185 doi: 10.1016/j.jclepro.2020.125185 |
[29] | DeBoer B, Nguyen N, Diba F, et al. (2021) Additive, subtractive, and formative manufacturing of metal components: a life cycle assessment comparison. Int J Adv Manuf Technol 115: 413–432. Available from: https://link.springer.com/article/10.1007/s00170-021-07173-5. |
[30] | Yoris-Nobile AI, Lizasoain-Arteagab E, Slebi-Acevedo CJ, et al. (2022) Life cycle assessment (LCA) and multi-criteria decision-making (MCDM) analysis to determine the performance of 3D printed cement mortars and geopolymers. J Sustainable Cem-Based Mater 12: 609–626. https://doi.org/10.1080/21650373.2022.2099479 doi: 10.1080/21650373.2022.2099479 |
[31] | Jayawardane H, Davies IJ, Leadbeater G, et al. (2021) 'Techno-eco-efficiency' performance of 3D printed impellers: an application of life cycle assessment. Int J Sustainable Manuf 5: 44–80. https://doi.org/10.1504/IJSM.2021.116871 doi: 10.1504/IJSM.2021.116871 |
[32] | Kreiger M, Pearce JM (2013) Environmental life cycle analysis of distributed three-dimensional printing and conventional manufacturing of polymer products. ACS Sustainable Chem Eng 1: 1511–1519. Available from: https://pubs.acs.org/doi/abs/10.1021/sc400093k. |
[33] | Gopal M, Lemu HG (2023) Sustainable additive manufacturing and environmental implications: Literature review. Sustainability 15: 504. https://doi.org/10.3390/su15010504 doi: 10.3390/su15010504 |
[34] | Peng T, Kellens K, Tang RZ, et al. (2018) Sustainability of additive manufacturing: An overview on its energy demand and environmental impact. Addit Manuf 21: 694–704. Available from: https://www.sciencedirect.com/science/article/pii/S2214860417302646. |
[35] | Mecheter A, Tarlochan F, Kucukvar M (2023) A review of conventional versus additive manufacturing for metals: life-cycle environmental and economic analysis. Sustainability 15: 12299. https://doi.org/10.3390/su151612299 doi: 10.3390/su151612299 |
[36] | Tinoco MP, Mendonç a É M, Fernandez LIC, et al. (2022) Life cycle assessment (LCA) and environmental sustainability of cementitious materials for 3D concrete printing: A systematic literature review. J Build Eng 52: 104456. https://doi.org/10.1016/j.jobe.2022.104456 doi: 10.1016/j.jobe.2022.104456 |
[37] | Shuaib M, Haleem A, Kumar S, et al. (2021) Impact of 3D printing on the environment: A literature-based study. Sustainable Oper Comput 2: 57–63. https://doi.org/10.1016/j.susoc.2021.04.001 doi: 10.1016/j.susoc.2021.04.001 |
[38] | Kokare S, Oliveira JP, Godina R (2023) Life cycle assessment of additive manufacturing processes: A review. J Manuf Syst 68: 536–559. Available from: https://www.sciencedirect.com/science/article/pii/S027861252300081X. |
[39] | Mehrpouya M, Vosooghnia A, Dehghanghadikolaei A, et al. (2021) The benefits of additive manufacturing for sustainable design and production. Sustainable Manuf 29–59. https://doi.org/10.1016/B978-0-12-818115-7.00009-2 |
[40] | Javaid M, Haleem A, Singh RP, et al. (2021) Role of additive manufacturing applications towards environmental sustainability. Adv Ind Eng Polym Res 4: 312–322. Available from: https://www.sciencedirect.com/science/article/pii/S254250482100049X. |
[41] | Woodward DG (1997) Life cycle costing—theory, information acquisition and application. Int J Proj Manage 15: 335–344. Available from: https://www.sciencedirect.com/science/article/pii/S0263786396000890. |
[42] | Camacho DD, Clayton P, O'Brien WJ, et al. (2018) Applications of additive manufacturing in the construction industry—A forward-looking review. Autom Constr 89: 110–119. Available from: https://www.sciencedirect.com/science/article/pii/S0926580517307847. |
[43] | Sepasgozar SME, Shi A, Yang LM, et al. (2020) Additive manufacturing applications for industry 4.0: A systematic critical review. Buildings 10: 231. https://doi.org/10.3390/buildings10120231 doi: 10.3390/buildings10120231 |
[44] | Paolini A, Kollmannsberger S, Rank E (2019) Additive manufacturing in construction: A review on processes, applications, and digital planning methods. Addit Manuf 30: 100894. https://doi.org/10.1016/j.addma.2019.100894 doi: 10.1016/j.addma.2019.100894 |
[45] | Valino AD, Dizon JRC, Espera Jr AH, et al. (2019) Advances in 3D printing of thermoplastic polymer composites and nanocomposites. Prog Polym Sci 98: 101162. https://doi.org/10.1016/j.progpolymsci.2019.101162 doi: 10.1016/j.progpolymsci.2019.101162 |
[46] | Lee JY, An J, Chua CK (2017) Fundamentals and applications of 3D printing for novel materials. Appl Mater Today 7: 120–133. https://doi.org/10.1016/j.apmt.2017.02.004 doi: 10.1016/j.apmt.2017.02.004 |
[47] | Prabhakar MM, Saravanan AK, Lenin AH, et al. (2021) A short review on 3D printing methods, process parameters and materials. Mater Today: Proc 45: 6108–6114. Available from: https://www.sciencedirect.com/science/article/pii/S2214785320378317. |
[48] | Picard M, Mohanty AK, Misra M (2020) Recent advances in additive manufacturing of engineering thermoplastics: challenges and opportunities. RSC Adv 10: 36058–36089. Available from: https://pubs.rsc.org/en/content/articlehtml/2020/ra/d0ra04857g. |
[49] | Blok LG, Longana ML, Yu H, et al. (2018) An investigation into 3D printing of fibre reinforced thermoplastic composites. Addit Manuf 22: 176–186. https://doi.org/10.1016/j.addma.2018.04.039 doi: 10.1016/j.addma.2018.04.039 |
[50] | Singh S, Ramakrishna S, Berto F (2019) 3D Printing of polymer composites: A short review. Mater Des Process Commun 2: e97. https://doi.org/10.1002/mdp2.97 |
[51] | Fred Fischer, Stratasys, Inc. Thermoplastics: the best choice for 3D printing. WHITE PAPER. Available from: https://www.smg3d.co.uk/files/ssys-wp-thermoplastics-09-11_ashx.pdf. |
[52] | Ramya A, Vanapalli SI (2016) 3D printing technologies in various applications. Int J Mech Eng Technol 7: 396–409. Available from: https://www.robolab.in/wp-content/uploads/2017/12/IJMET_07_03_036.pdf. |
[53] | Martinez DW, Espino MT, Cascolan HM, et al. (2022) A comprehensive review on the application of 3D printing in the aerospace industry. Key Eng Mater 913: 27–34. https://doi.org/10.4028/p-94a9zb doi: 10.4028/p-94a9zb |
[54] | Jagadeesh P, Rangappa SM, Siengchin S, et al. (2022) Sustainable recycling technologies for thermoplastic polymers and their composites: A review of the state of the art. Polym Compos 43: 5831–5862. https://doi.org/10.1002/pc.27000 doi: 10.1002/pc.27000 |
[55] | Sethi B (2016) Methods of recycling. Recycl Polym: Methods, Charact Appl, 55–114. https://doi.org/10.1002/9783527689002.ch3 |
[56] | Dogu O, Pelucchi M, Vijver RV, et al. (2021) The chemistry of chemical recycling of solid plastic waste via pyrolysis and gasification: state-of-the-art, challenges, and future directions. Prog Energy Combust 84: 100901. https://doi.org/10.1016/j.pecs.2020.100901 doi: 10.1016/j.pecs.2020.100901 |
[57] | Jubinville D, Esmizadeh E, Saikrishnan S, et al. (2020) A comprehensive review of global production and recycling methods of polyolefin (PO) based products and their post-recycling applications. Sustainable Mater Technol 25: e00188. https://doi.org/10.1016/j.susmat.2020.e00188 |
[58] | Zhang F, Zhao YT, Wang DD, et al. (2021) Current technologies for plastic waste treatment: A review. J Cleaner Prod 282: 124523. Available from: https://www.sciencedirect.com/science/article/pii/S0959652620345674. |
[59] | Markandeya N, Joshi AN, Chavan NN, et al. (2023) Plastic recycling: challenges, opportunities, and future aspects. Adv Mater Recycled Waste, 317–356. Available from: https://www.sciencedirect.com/science/article/pii/B9780323856041000147. |
[60] | Kumar M, Bolan S, Padhye LP, et al. (2023) Retrieving back plastic wastes for conversion to value added petrochemicals: Opportunities, challenges and outlooks. Appl Energy 345: 121307. https://doi.org/10.1016/j.apenergy.2023.121307 doi: 10.1016/j.apenergy.2023.121307 |
[61] | Kazemi M, Kabir SF, Fini EH (2021) State of the art in recycling waste thermoplastics and thermosets and their applications in construction. Resour Conserv Recycl 174: 105776. https://doi.org/10.1016/j.resconrec.2021.105776 doi: 10.1016/j.resconrec.2021.105776 |
[62] | Cheng FM, Li HD, Jiang W, et al. (2006) Properties of compatibilized nylon 6/ABS polymer blends. J Macromol Sci, Part B: Phys 45: 557–561. https://doi.org/10.1080/00222340600770095 doi: 10.1080/00222340600770095 |
[63] | Lay M, Thajudin NLN, Hamid ZAA, et al. (2019) Comparison of physical and mechanical properties of PLA, ABS and nylon 6 fabricated using fused deposition modeling and injection molding. Composites Part B 176: 107341. https://doi.org/10.1016/j.compositesb.2019.107341 doi: 10.1016/j.compositesb.2019.107341 |
[64] | Al-Mazrouei N, Al-Marzouqi AH, Ahmed W (2022) Characterization and sustainability potential of recycling 3D-printed nylon composite wastes. Sustainability 14: 10458. https://doi.org/10.3390/su141710458 doi: 10.3390/su141710458 |
[65] | Kuram E, Ozcelik B, Yilmaz F (2015) The effects of recycling process on thermal, chemical, rheological, and mechanical properties of PC/ABS binary and PA6/PC/ABS ternary blends. J Elastomers Plast 48: 164–181. https://doi.org/10.1177/0095244315576239 doi: 10.1177/0095244315576239 |
[66] | Farina I, Singh N, Colangelo F, et al. (2019) High-performance nylon-6 sustainable filaments for additive manufacturing. Materials 12: 3955. https://doi.org/10.3390/ma12233955 doi: 10.3390/ma12233955 |
[67] | Gomes TE, Cadete MS, Dias-de-Oliveira J, et al. (2022) Controlling the properties of parts 3D printed from recycled thermoplastics: A review of current practices. Polym Degrad Stab 196: 109850. https://doi.org/10.1016/j.polymdegradstab.2022.109850 doi: 10.1016/j.polymdegradstab.2022.109850 |
[68] | Andrady AL, Barnes PW, Bornman JF, et al. (2022) Oxidation and fragmentation of plastics in a changing environment; from UV-radiation to biological degradation. Sci Total Environ 851: 158022. https://doi.org/10.1016/j.scitotenv.2022.158022 doi: 10.1016/j.scitotenv.2022.158022 |
[69] | Dilkes-Hoffman LS, Pratt S, Lant PA, et al. (2019) The role of biodegradable plastic in solving plastic solid waste accumulation. Plast Energy, 469–505. https://doi.org/10.1016/B978-0-12-813140-4.00019-4 |
[70] | Cano-Vicent A, Tambuwala MM, Hassan SS, et al. (2021) Fused deposition modelling: current status, methodology, applications and future prospects. Addit Manuf 47: 102378. Available from: https://www.sciencedirect.com/science/article/pii/S2214860421005327. |
[71] | Gregory DA, Fricker ATR, Mitrev P, et al. (2023) Additive manufacturing of polyhydroxyalkanoate-based blends using fused deposition modelling for the development of biomedical devices. J Funct Biomater 14: 40. https://doi.org/10.3390/jfb14010040 doi: 10.3390/jfb14010040 |
[72] | Vaes D, Puyvelde PV (2021) Semi-crystalline feedstock for filament-based 3D printing of polymers. Prog Polym Sci 118: 101411. https://doi.org/10.1016/j.progpolymsci.2021.101411 doi: 10.1016/j.progpolymsci.2021.101411 |
[73] | Bakır AA, Atik R, Ö zerinç S (2021) Mechanical properties of thermoplastic parts produced by fused deposition modeling: A review. Rapid Prototyping J 27: 537–561. https://doi.org/10.1108/RPJ-03-2020-0061 doi: 10.1108/RPJ-03-2020-0061 |
[74] | Fico D, Rizzo D, Casciaro R, et al. (2022) A review of polymer-based materials for fused filament fabrication (FFF): Focus on sustainability and recycled materials. Polymers 14: 465. https://doi.org/10.3390/polym14030465 doi: 10.3390/polym14030465 |
[75] | Squires AD, Lewis RA (2018) Feasibility and characterization of common and exotic filaments for use in 3D printed terahertz devices. J Infrared Millimeter Terahertz Waves 39: 614–635. https://doi.org/10.1007/s10762-018-0498-y doi: 10.1007/s10762-018-0498-y |
[76] | Atakok G, Kam M, Koc HB (2022) A review of mechanical and thermal properties of products printed with recycled filaments for use in 3D printers. Surf Rev Lett 29: 2230002. https://doi.org/10.1142/S0218625X22300027 doi: 10.1142/S0218625X22300027 |
[77] | Gilding DK, Reed AM (1979) Biodegradable polymers for use in surgery—poly (ethylene oxide) poly (ethylene terephthalate) (PEO/PET) copolymers: 1. Polymer 20: 1454–1458. https://doi.org/10.1016/0032-3861(79)90008-9 doi: 10.1016/0032-3861(79)90008-9 |
[78] | Alshehrei F (2017) Biodegradation of synthetic and natural plastic by microorganisms. J Appl Environ Microbiol 5: 8–19. Available from: https://pubs.sciepub.com/jaem/5/1/2/. |
[79] | Sharma M, Sharma P, Sharma A, et al. (2015) Microbial degradation of plastic-A brief review. CIBTech J Microbiol 4: 85–89. Available from: https://www.cibtech.org/J-Microbiology/PUBLICATIONS/2015/Vol-4-No-1/13-CJM-MARCH-013-SUBHASH-MICROBIAL.pdf. |
[80] | Zeenat, Elahi A, Bukhari DA, et al. (2021) Plastics degradation by microbes: a sustainable approach. J King Saud Univ Sci 33: 101538. Available from: https://www.sciencedirect.com/science/article/pii/S1018364721001993. |
[81] | Bhagia S, Bornani K, Agrawal R, et al. (2021) Critical review of FDM 3D printing of PLA biocomposites filled with biomass resources, characterization, biodegradability, upcycling and opportunities for biorefineries. Appl Mater Today 24: 101078. https://doi.org/10.1016/j.apmt.2021.101078 doi: 10.1016/j.apmt.2021.101078 |
[82] | Hassan M, Mohanty AK, Misra M (2024) 3D printing in upcycling plastic and biomass waste to sustainable polymer blends and composites: A review. Mater Des 237: 112558. https://doi.org/10.1016/j.matdes.2023.112558 doi: 10.1016/j.matdes.2023.112558 |
[83] | Anwajler B, Zdybel E, Tomaszewska-Ciosk E (2023) Innovative polymer composites with natural fillers produced by additive manufacturing (3D Printing)—A literature review. Polymers 15: 3534. https://doi.org/10.3390/polym15173534 doi: 10.3390/polym15173534 |
[84] | Rett JP, Traore YL, Ho EA (2021) Sustainable materials for fused deposition modeling 3D printing applications. Adv Eng Mater 23: 2001472. https://doi.org/10.1002/adem.202001472 doi: 10.1002/adem.202001472 |
[85] | Ji AQ (2023) Utilization of biomass and industrial waste on 3D printing. Available from: https://experts.esf.edu/view/pdfCoverPage?instCode = 01SUNY_ESF & filePid = 1368217480004826 & download = true. |
[86] | Zhao HY, Jia Y, Chen GX, et al. (2023) Research status and progress of biomass-based 3D printing materials. Innovative Technol Print Packag 991: 608–615. https://doi.org/10.1007/978-981-19-9024-3_79 doi: 10.1007/978-981-19-9024-3_79 |
[87] | Zander NE, Park JH, Boelter ZR, et al. (2019) Recycled cellulose polypropylene composite feedstocks for material extrusion additive manufacturing. ACS Omega 4: 13879–13888. https://doi.org/10.1021/acsomega.9b01564 doi: 10.1021/acsomega.9b01564 |
[88] | Kuhnt T, Camarero-Espinosa S (2021) Additive manufacturing of nanocellulose based scaffolds for tissue engineering: Beyond a reinforcement filler. Carbohydr Polym 252: 117159. https://doi.org/10.1016/j.carbpol.2020.117159 doi: 10.1016/j.carbpol.2020.117159 |
[89] | Pereira C, Pereira AM, Freire C, et al. (2020) Nanoengineered textiles: from advanced functional nanomaterials to groundbreaking high-performance clothing. Handbook of Functionalized Nanomaterials for Industrial Applications, 611–714. https://doi.org/10.1016/B978-0-12-816787-8.00021-1 |
[90] | Henke K, Treml S (2013) Wood based bulk material in 3D printing processes for applications in construction. Eur J Wood Prod 71: 139–141. https://doi.org/10.1007/s00107-012-0658-z doi: 10.1007/s00107-012-0658-z |
[91] | Kariz M, Sernek M, Kuzman MK (2015) Use of wood powder and adhesive as a mixture for 3D printing. Eur J Wood Prod 74: 123–126. https://doi.org/10.1007/s00107-015-0987-9 doi: 10.1007/s00107-015-0987-9 |
[92] | Kromoser B, Reichenbach S, Hellmayr R, et al. (2022) Circular economy in wood construction—Additive manufacturing of fully recyclable walls made from renewables: proof of concept and preliminary data. Constr Build Mater 344: 128219. https://doi.org/10.1016/j.conbuildmat.2022.128219 doi: 10.1016/j.conbuildmat.2022.128219 |
[93] | Nadagouda MN, Ginn M, Rastogi V (2020) A review of 3D printing techniques for environmental applications. Curr Opin Chem Eng 28: 173–178. https://doi.org/10.1016/j.coche.2020.08.002 doi: 10.1016/j.coche.2020.08.002 |
[94] | Khosravani MR, Reinicke T (2020) On the environmental impacts of 3D printing technology. Appl Mater Today 20: 100689. https://doi.org/10.1016/j.apmt.2020.100689 doi: 10.1016/j.apmt.2020.100689 |
[95] | Gao CJ, Wolff S, Wang S (2021) Eco-friendly additive manufacturing of metals: Energy efficiency and life cycle analysis. J Manuf Syst 60: 459–472. Available from: https://www.sciencedirect.com/science/article/pii/S0278612521001357. |
[96] | Peng T (2016) Analysis of energy utilization in 3D printing processes. Proc CIRP 40: 62–67. Available from: https://www.sciencedirect.com/science/article/pii/S2212827116000706. |
[97] | Kanyilmaz A, Demir AG, Chierici M, et al. (2022) Role of metal 3D printing to increase quality and resource-efficiency in the construction sector. Addit Manuf 50: 102541. https://doi.org/10.1016/j.addma.2021.102541 doi: 10.1016/j.addma.2021.102541 |
[98] | Abdalla H, Fattah KP, Abdallah M, et al. (2021) Environmental footprint and economics of a full-scale 3D-printed house. Sustainability 13: 11978. https://doi.org/10.3390/su132111978 doi: 10.3390/su132111978 |
[99] | Kamran M, Saxena A (2016) A comprehensive study on 3D printing technology. MIT Int J Mech Eng 6: 63–69. Available from: https://www.researchgate.net/publication/310961474_A_Comprehensive_Study_on_3D_Printing_Technology. |
[100] | Weng YW, Li MY, Ruan SQ, et al. (2020) Comparative economic, environmental and productivity assessment of a concrete bathroom unit fabricated through 3D printing and a precast approach. J Cleaner Prod 261: 121245. https://doi.org/10.1016/j.jclepro.2020.121245 doi: 10.1016/j.jclepro.2020.121245 |
[101] | Maffia S, Chiappini F, Maggiani G, et al. (2023) Enhancing productivity and efficiency in conventional laser metal deposition process for Inconel 718—Part Ⅱ: advancing the process performance. Int J Adv Manuf Technol 129: 279–298. https://doi.org/10.1007/s00170-023-12197-0. doi: 10.1007/s00170-023-12197-0 |
[102] | Nguyen D, Murialdo M, Hornbostel K, et al. (2019) 3D Printed polymer composites for CO2 capture. Ind Eng Chem Res 58: 22015–22020. https://doi.org/10.1021/acs.iecr.9b04375 doi: 10.1021/acs.iecr.9b04375 |
[103] | Thakkar H, Eastman S, Hajari A, et al. (2016) 3D-printed zeolite monoliths for CO2 removal from enclosed environments. ACS Appl Mater Interface 8: 27753–27761. https://doi.org/10.1021/acsami.6b09647 doi: 10.1021/acsami.6b09647 |
[104] | Ligon SC, Liska R, Stampfl J, et al. (2017) Polymers for 3D printing and customized additive manufacturing. Chem Rev 117: 10212–10290. https://doi.org/10.1021/acs.chemrev.7b00074 doi: 10.1021/acs.chemrev.7b00074 |
[105] | Soliman A, AlAmoodi N, Karanikolos GN, et al. (2020) A review on new 3-D printed materials' geometries for catalysis and adsorption: paradigms from reforming reactions and CO2 capture. Nanomaterials 10: 2198. https://doi.org/10.3390/nano10112198 doi: 10.3390/nano10112198 |
[106] | Sola A (2022) Materials requirements in fused filament fabrication: A framework for the design of next-generation 3D printable thermoplastics and composites. Macromol Mater Eng 307: 2200197. https://doi.org/10.1002/mame.202200197 doi: 10.1002/mame.202200197 |
[107] | Nazir MH, Al-Marzouqi AH, Ahmed W, et al. (2023) The potential of adopting natural fibers reinforcements for fused deposition modeling: Characterization and implications. Heliyon 9: e15023. Available from: https://www.cell.com/heliyon/pdf/S2405-8440(23)02230-2.pdf. |
[108] | Salamone F, Danza L, Meroni I, et al. (2017) A low-cost environmental monitoring system: How to prevent systematic errors in the design phase through the combined use of additive manufacturing and thermographic techniques. Sensors 17: 828. https://doi.org/10.3390/s17040828 doi: 10.3390/s17040828 |
[109] | Zhao L, Yao YJ, Huang S, et al. (2023) Design and implementation of a low-cost and multi-parameter indoor air quality detector based on IoT. Int J Comput Appl T 72: 296–307. https://doi.org/10.1504/IJCAT.2023.133879 doi: 10.1504/IJCAT.2023.133879 |
[110] | Aizlewood C, Dimitroulopoulou C (2006) The HOPE project: The UK experience. Indoor Built Environ 15: 393–409. https://doi.org/10.1177/1420326X06069578 doi: 10.1177/1420326X06069578 |
[111] | Wang Y, Mackenzie FV, Ingenhut B, et al. (2018) AP4. 1-miniaturized 3D printed particulate matter sensor for personal monitoring. 17th International Meeting on Chemical Sensors. https://doi.org/10.5162/IMCS2018/AP4.1 |
[112] | Xu X, Xiao SN, Willy HJ, et al. (2020) 3D-printed grids with polymeric photocatalytic system as flexible air filter. Appl Catal B 262: 118307. https://doi.org/10.1016/j.apcatb.2019.118307 doi: 10.1016/j.apcatb.2019.118307 |
[113] | Kumar AR, Arya S, Levy A, et al. (2020) Scale and numerical modeling to determine operating points of a non-clogging vortecone filter in mining operation. Prog Scale Model Int J 1, Article 7. Available from: https://uknowledge.uky.edu/psmij/vol1/iss1/7/. |
[114] | Aghaei A, Firouzjaei MD, Karami P, et al. (2022) The implications of 3D-printed membranes for water and wastewater treatment and resource recovery. Can J Chem Eng 100: 2309–2321. https://doi.org/10.1002/cjce.24488 doi: 10.1002/cjce.24488 |
[115] | Tijing LD, Dizon JRC, Ibrahim I, et al. (2020) 3D printing for membrane separation, desalination and water treatment. Appl Mater Today 18: 100486. Available from: https://www.sciencedirect.com/science/article/pii/S2352940719306055. |
[116] | Ye YY, Du Y, Hu TY, et al. (2021) 3D printing of integrated ceramic membranes by the DLP method. Ind Eng Chem Res 60: 9368–9377. https://doi.org/10.1021/acs.iecr.1c02224 doi: 10.1021/acs.iecr.1c02224 |
[117] | Kotz F, Helmer D, Rapp BE (2020) Emerging technologies and materials for high-resolution 3D printing of microfluidic chips. Microfluidics in Biotechnology 37–66. https://doi.org/10.1007/10_2020_141 |
[118] | Jonhson W, Xu X, Bian K, et al. (2022) 3D-printed hierarchical ceramic architectures for ultrafast emulsion treatment and simultaneous oil-water filtration. ACS Mater Lett 4: 740–750. https://doi.org/10.1021/acsmaterialslett.2c00147 doi: 10.1021/acsmaterialslett.2c00147 |
[119] | Jin Z, Mei H, Liu H, et al. (2022) High-strength, superhydrophilic/underwater superoleophobic multifunctional ceramics for high efficiency oil-water separation and water purification. Mater Today Nano 18: 100199. Available from: https://www.sciencedirect.com/science/article/pii/S258884202200027X. |
[120] | Sreedhar N, Kumar M, Al Jitan S, et al. (2022) 3D printed photocatalytic feed spacers functionalized with β-FeOOH nanorods inducing pollutant degradation and membrane cleaning capabilities in water treatment. Appl Catal B 300: 120318. https://doi.org/10.1016/j.apcatb.2021.120318 doi: 10.1016/j.apcatb.2021.120318 |
[121] | Sreelekshmy BR, Rajappan AJ, Basheer R, et al. (2020) Tuning of surface characteristics of anodes for efficient and sustained power generation in microbial fuel cells. ACS Appl Bio Mater 3: 6224–6236. https://doi.org/10.1021/acsabm.0c00753 doi: 10.1021/acsabm.0c00753 |
[122] | Cai T, Meng LJ, Chen G, et al. (2020) Application of advanced anodes in microbial fuel cells for power generation: A review. Chemosphere 248: 125985. Available from: https://www.sciencedirect.com/science/article/pii/S0045653520301776. |
[123] | Mishra S, Ghosh S, Singh T (2020) Progress in materials development for flexible perovskite solar cells and future prospects. ChemSusChem 14: 512–538. https://doi.org/10.1002/cssc.202002095 doi: 10.1002/cssc.202002095 |
[124] | Liu CH, Xiao CY, Xie CC, et al. (2021) Flexible organic solar cells: materials, large-area fabrication techniques and potential applications. Nano Energy 89: 106399. https://doi.org/10.1016/j.nanoen.2021.106399 doi: 10.1016/j.nanoen.2021.106399 |
[125] | Tian YX, Wang XQ, Li J, et al. (2022) Rapid manufacturing of turbine blades based on reverse engineering and 3D printing technology. Proceedings of 2022 Chinese Intelligent Systems Conference, 540–553. https://doi.org/10.1007/978-981-19-6203-5_53 |
[126] | Rahimizadeh A, Kalman J, Fayazbakhsh K, et al. (2021) Mechanical and thermal study of 3D printing composite filaments from wind turbine waste. Polym Compos 42: 2305–2316. https://doi.org/10.1002/pc.25978 doi: 10.1002/pc.25978 |
[127] | Dzogbewu TC, Beer DJ (2023) Additive manufacturing of selected ecofriendly energy devices. Virtual Phys Prototyp 18: e2150230. https://doi.org/10.1080/17452759.2023.2276245 |
[128] | Browne MP, Redondo E, Pumera M (2020) 3D printing for electrochemical energy applications. Chem Rev 120: 2783–2810. https://doi.org/10.1021/acs.chemrev.9b00783 doi: 10.1021/acs.chemrev.9b00783 |
[129] | Wang H, Xiong BD, Zhang ZT, et al. (2023) Small wind turbines and their potential for internet of things applications. iScience 26: 107674. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10497799/. |
[130] | Kantaros A, Soulis E, Petrescu FIT, et al. (2023) Advanced composite materials utilized in FDM/FFF 3D printing manufacturing processes: the case of filled filaments. Materials 16: 6210. https://doi.org/10.3390/ma16186210 doi: 10.3390/ma16186210 |
[131] | Al-Maharma AY, Patil SP, Markert B (2020) Effects of porosity on the mechanical properties of additively manufactured components: A critical review. Mater Res Express 7: 122001. https://doi.org/10.1088/2053-1591/abcc5d doi: 10.1088/2053-1591/abcc5d |
[132] | Okolie O, Kumar A, Edwards C, et al. (2023) Bio-based sustainable polymers and materials: From processing to biodegradation. J Compos Sci 7: 213. https://doi.org/10.3390/jcs7060213 doi: 10.3390/jcs7060213 |