Loading [MathJax]/jax/output/SVG/jax.js
Review Topical Sections

The C. elegans insulin-like peptides (ILPs)

  • Received: 31 July 2018 Accepted: 27 September 2018 Published: 11 October 2018
  • Insulin and insulin-like peptides (ILPs) are conserved in living organisms to modulate homeostasis by functioning as ligands. For understanding of molecular mechanisms regulated by the ligands, the nematode Caenorhabditis elegans is a good model since: 1) the C. elegans genome size is small with over 40% homology to the human genome, 2) numerous genetic methods are available, and 3) the worms are transparent throughout the life cycle, so that the secretion of peptide hormones can be followed at cellular level in living preparations by GFP-tagged peptides. In this review, we describe the general appearance of the insulin/insulin-like growth factor (IGF)-1 signaling (IIS), and then focus on physiological functions, secretion, and transcriptional regulation of the C. elegans ILPs.

    Citation: Yohei Matsunaga, Tsuyoshi Kawano. The C. elegans insulin-like peptides (ILPs)[J]. AIMS Biophysics, 2018, 5(4): 217-230. doi: 10.3934/biophy.2018.4.217

    Related Papers:

    [1] Okechukwu Okafor, Abimbola Popoola, Olawale Popoola, Samson Adeosun . Surface modification of carbon nanotubes and their nanocomposites for fuel cell applications: A review. AIMS Materials Science, 2024, 11(2): 369-414. doi: 10.3934/matersci.2024020
    [2] Christoph Nick, Helmut F. Schlaak, Christiane Thielemann . Simulation and Measurement of Neuroelectrodes Characteristics with Integrated High Aspect Ratio Nano Structures. AIMS Materials Science, 2015, 2(3): 189-202. doi: 10.3934/matersci.2015.3.189
    [3] Falko Böttger-Hiller, Klaus Nestler, Henning Zeidler, Gunther Glowa, Thomas Lampke . Plasma electrolytic polishing of metalized carbon fibers. AIMS Materials Science, 2016, 3(1): 260-269. doi: 10.3934/matersci.2016.1.260
    [4] Christian M Julien, Alain Mauger, Ashraf E Abdel-Ghany, Ahmed M Hashem, Karim Zaghib . Smart materials for energy storage in Li-ion batteries. AIMS Materials Science, 2016, 3(1): 137-148. doi: 10.3934/matersci.2016.1.137
    [5] Nagesh K. Tripathi . Porous carbon spheres: Recent developments and applications. AIMS Materials Science, 2018, 5(5): 1016-1052. doi: 10.3934/matersci.2018.5.1016
    [6] Claas Hüter, Shuo Fu, Martin Finsterbusch, Egbert Figgemeier, Luke Wells, Robert Spatschek . Electrode–electrolyte interface stability in solid state electrolyte systems: influence of coating thickness under varying residual stresses. AIMS Materials Science, 2017, 4(4): 867-877. doi: 10.3934/matersci.2017.4.867
    [7] Jamal Alnofiay, Ahmed Al-Shahrie, Elsayed Shalaan . Green synthesis of high-performance gallium oxide supercapacitor: A path to outstanding energy density. AIMS Materials Science, 2024, 11(6): 1065-1082. doi: 10.3934/matersci.2024051
    [8] Christoph Janiak . Inorganic materials synthesis in ionic liquids. AIMS Materials Science, 2014, 1(1): 41-44. doi: 10.3934/matersci.2014.1.41
    [9] Giovanna Di Pasquale, Salvatore Graziani, Chiara Gugliuzzo, Antonino Pollicino . Ionic polymer-metal composites (IPMCs) and ionic polymer-polymer composites (IP2Cs): Effects of electrode on mechanical, thermal and electromechanical behaviour. AIMS Materials Science, 2017, 4(5): 1062-1077. doi: 10.3934/matersci.2017.5.1062
    [10] Christian M. Julien, Alain Mauger . Functional behavior of AlF3 coatings for high-performance cathode materials for lithium-ion batteries. AIMS Materials Science, 2019, 6(3): 406-440. doi: 10.3934/matersci.2019.3.406
  • Insulin and insulin-like peptides (ILPs) are conserved in living organisms to modulate homeostasis by functioning as ligands. For understanding of molecular mechanisms regulated by the ligands, the nematode Caenorhabditis elegans is a good model since: 1) the C. elegans genome size is small with over 40% homology to the human genome, 2) numerous genetic methods are available, and 3) the worms are transparent throughout the life cycle, so that the secretion of peptide hormones can be followed at cellular level in living preparations by GFP-tagged peptides. In this review, we describe the general appearance of the insulin/insulin-like growth factor (IGF)-1 signaling (IIS), and then focus on physiological functions, secretion, and transcriptional regulation of the C. elegans ILPs.


    1. Introduction

    An increasing reliance on portable electronics has motivated the recent investigation of wearable energy storage systems. Viable energy storage solutions for wearable applications should be safe for the consumer, lightweight, physically flexible, and straightforward to manufacture. Use of a solid-state gel electrolyte may enable a fully printable device architecture that can satisfy all of these requirements [1]. Ionic liquid-based gels, or ionogels, offer an attractive way to realize a safe supercapacitor electrolyte due to the negligible vapor pressure of the ionic liquid, which renders it nonvolatile and nonflammable.

    Ionogels are composite materials that consist of an ionic liquid and a solid support matrix of organic, inorganic, or hybrid composition. The matrix can be formed by physical coagulation of a solid additive (e.g. carbon nanotubes, fumed silica, organic gelators), or through chemical reaction [2]. Electrolyte gels that employ a polymer-based matrix have widely been used to demonstrate flexible supercapacitor prototypes due to their physical integrity [3, 4]. It has recently been shown that ionogels formed in situ by UV-initiated free radical polymerization are extremely simple to fabricate, and possess desirable characteristics as solid electrolytes [5, 6]. However, few studies have explored the integration of UV-cured ionogel electrolytes with carbon electrodes due to the inherent difficulty of irradiating a thin film of gel precursor solution s and wiched between opaque carbon electrodes with UV light [7].

    Solid-state, flexible supercapacitor prototype assembly can be broadly classified into two categories: (1) a multi-step approach, whereby the surfaces of two distinct carbon electrodes are first coated with a gel electrolyte and subsequently s and wiched together [8, 9, 10, 11, 12], or (2) a one-step approach, whereby a gel electrolyte is formed in situ against two carbon electrodes that have already been arranged in their desired final geometry within the device [13, 14]. Although the multi-step process is feasible in a laboratory setting, a one-step process would provide a simpler approach to both scale-up and large-scale production. Furthermore, by eliminating the need to mechanically press two halves of the device together, one-step assembly greatly reduces the possibility of damaging the typically fragile high surface area carbon electrodes employed in supercapacitors. With several groups currently developing novel types of high surface area carbon-based electrodes [15, 16, 17, 18, 19], there is a critical need to underst and how ionogel electrolytes can be effectively combined with these structures in situ.

    The work described here examines the integration of an in situ UV-cured poly (ethylene glycol) diacrylate (PEGDA) -supported ionogel electrolyte [6] with several commercially available, high surface area carbon paper electrodes. In order to cure the gel electrolyte in situ adjacent to both carbon electrodes, a coplanar test bed architecture was employed. This approach served as a repeatable means of forming a thin UV-cured ionogel film in contact with different pairs of opaque carbon electrodes in a single step. In addition, a direct comparison of the electrical response of the ionogel electrolyte with that of the neat ionic liquid, 1-ethyl-3-methylimidazolium bis (trifluoromethylsulfonyl) imide (EMI TFSI), was performed in order to examine the hypothesis that the performance of a particular carbon electrode with neat EMI TFSI is directly correlated to its performance with the PEGDA-supported ionogel electrolyte.

    2. Materials and Method

    2.1. Coplanar Test Bed Assembly

    Ionogel-carbon paper electrode assemblies were fabricated with a coplanar electrode geometry on glass microscope slides. PTFE pipe thread tape was used to define a rectangular area of 60 mm2 (12 mm x 5 mm), inside which the active components of the device were located. A portion of each carbon paper was initially immersed in melted paraffin wax (McMaster Carr). After this treatment, the carbon paper was cut such that an uncoated carbon paper projected area of 25 mm2 (5 mm x 5 mm) was exposed directly adjacent to the edge of the paper treated by the paraffin wax. This area represents the active part of each electrode that was wetted by electrolyte. Two electrodes were cut out in this fashion and placed flat on the glass slide within the area bordered by the PTFE tape. A gap of 2 mm was maintained between the edges of the carbon paper electrodes for all assemblies. An electrolyte solution volume of 30 µL (either neat ionic liquid or the ionogel precursor solution, see below) was pipetted into the PTFE-bounded region containing the carbon electrodes from above. Electrical contact was made using nickel-plated steel micro-alligator clips that gripped the paraffin-treated portion of the carbon papers against the glass slide. Ionogel devices were assembled and tested in a nitrogen-filled glovebox (< 1 ppm oxygen and water vapor). Devices made with the neat ionic liquid were assembled and tested under ambient laboratory conditions.

    2.2. High Surface Area Carbon Papers and the Ionogel Electrolyte

    High surface area carbon papers were procured from three sources. Graphitized carbon fiber paper (CFP), manufactured by Engineered Fibers Technology, was obtained from an online materials supplier. Carbon aerogel paper (CAGP) was manufactured by and obtained from Marketech International. Carbon nanotube paper (CNTP) was manufactured by and obtained from Inorganic Specialists, Inc.; four different variations of this paper were examined (CNTP1, CNTP2, CNTP3, and CNTP4). The sheet resistances of all carbon papers were measured using a four-point probe instrument (Creative Design Engineering). The manufacturer-reported specific surface areas and the measured sheet resistance values of each carbon paper are summarized in Table 1.

    Table 1. Properties of high surface area carbon paper electrodes.
    Carbon Electrode Reported Specific Surface Area (m2 g-1) Measured Sheet Resistance (Ohm sq.-1) Binder Present?
    CFP 80 0.5 yes
    CAGP 600 1.3 no
    CNTP1 60 5.1 no
    CNTP2 180 5.0 no
    CNTP3 220 14.7 no
    CNTP4 400 3.4 no
     | Show Table
    DownLoad: CSV

    The solid ionogel electrolyte was fabricated following the method of Visentin and Panzer [6]. The ionic liquid, 1-ethyl-3-methylimidazolium bis (trifluoromethylsulfonyl) imide (EMI TFSI), was obtained from EMD Chemicals. The polymer scaffold precursor, polyethylene glycol diacrylate (PEGDA), and UV-initiator, 2-hydroxy-2-methylpropiophenone, were obtained from Sigma Aldrich. A polymer content of 16% wt. PEGDA was selected based on its ease of h and ling and flexible character [6]. After dispensing the ionogel precursor solution on top of the coplanar electrode assembly, UV irradiation for 3 min (from the top) was used to create the gel electrolyte. All chemicals used to create the ionogel electrolyte were stored and used in the nitrogen-filled glovebox.

    Cyclic voltammetry (CV) and electrical impedance spectroscopy (EIS) were performed using a potentiostat with a built-in frequency response analyzer (VersaSTAT 3, Princeton Applied Research). CV was conducted at a voltage sweep rate of 1 mV s-1 within a window of -1.5 V to +1.5 V (vs. open circuit); at least three cycles were recorded to ensure repeatability between successive voltage sweeps. For each EIS measurement, the frequency was logarithmically swept from 10 kHz to 1 mHz. The RMS amplitude of the AC signal employed was 10 mV (DC offset of 0 V vs. open circuit).

    3. Results and Discussion

    3.1. Carbon Paper Electrodes

    Scanning electron microscopy (SEM) was used to examine the microstructure of the various carbon papers employed in this study. Figure 1 shows representative SEM images obtained for the carbon fiber paper (CFP), carbon aerogel paper (CAGP), and carbon nanotube paper #3 (CNTP3); it should be noted that the four CNTP papers (CNTP1-4) all appeared visually similar when viewed under 5000 x magnification.

    Figure 1. SEM images of the three main carbon paper types employed: (a) carbon fiber paper (CFP); (b) carbon aerogel paper (CAGP); (c) carbon nanotube paper #3 (CNTP3), which is representative of all four CNTP materials used in this study. Insets to (b) and (c) show the pore structures of these papers at higher magnification..

    CFP is a porous carbon paper that is typically used for laboratory scale fuel cell development. It consists of a graphitized network of resin-bonded carbon fibers, and , as seen in Figure 1a, CFP exhibits the largest apparent pore size among all of the papers utilized in this study. It is important to note that the CFP material was the only electrode studied that contained a binder for physical support (Figure 1a).

    According to its manufacturer (Marketech International, Inc.), the CAGP material is prepared by a sol-gel method from a resorcinol-formaldehyde precursor, which, post-reaction, is carbonized to create a carbon foam with high porosity and surface area. To create a robust paper electrode, the CAGP also contains carbon fibers for mechanical support (Figure 1b). Inside the micron-scale cracks present on the surface of the CAGP electrodes, the nanoporous carbon foam structure is visible (pore size of approximately 80 nm, see inset to Figure 1b), which gives the CAGP material its very high reported specific surface area of 600 m2 g-1.

    Four types of carbon nanotube paper were obtained from Inorganic Specialists, Inc. (CNTP1-4). All of the CNTP materials consist of 100% carbon nanotubes/fibers, with no binder present (Figure 1c). Such papers are fabricated by dispersing carbon nanotubes/fibers in water, thenfiltering the suspension through a porous support membrane to produce a carbon filter cake [20]. Due to the absence of any binder material, the CNTP electrodes were the most fragile to h and le. Variation in the reported specific surface areas of the four CNTP materials utilized in this study was likely achieved by the manufacturer incorporating carbon nanotubes of different diameters and /or lengths, as evidenced by SEM imaging at high magnification (inset to Figure 1c).

    3.2. Cyclic voltammetry

    Figure 2 displays the CV curves obtained for coplanar test beds fabricated with the six different types of carbon paper electrodes examined and the ionogel electrolyte; current values are normalized by the total mass of two electrodes. Each curve exhibits an approximately rectangular shape, indicating that capacitive behavior was observed for all of the carbon papers. If it is assumed to be independent of voltage, the capacitance of each device can be calculated directly from the current values measured during the CV sweeps via:

    C=1dVdt

    Figure 2. Cyclic voltammograms of test beds containing different carbon paper electrodes with 16 wt% PEGDA ionogel electrolyte (third cycle shown in each case). A scan rate of 1 mV s-1 was used.

    The positive current value measured at 0 V on the CV graph was used to calculate the capacitance of each device (the absolute values of the negative currents were nearly identical to the positive current values). Gravimetric capacitances for each electrode type integrated with the ionogel electrolyte are summarized in Table 2. The capacitance values can be approximately correlated with the reported surface areas of the carbon papers (shown in Table 1), with one notable exception; namely, the capacitance of the CFP device (0.02 F g-1) was nearly two orders of magnitude lower than was observed for the other electrode papers. Although its reported specific surface area was relatively low (80 m2 g-1), the CFP material exhibited significantly lower capacitance compared to the CNTP1 material, which claimed a similar specific surface area of 60 m2 g-1. This discrepancy is likely due to the presence of the binder in CFP (Figure 1a), which reduces either the wettability of the electrode by the ionogel precursor solution, and /or the effective (conductive) electrode surface area.

    3.3. Electrical Impedance Spectroscopy

    Figure 3 displays Bode plots of the phase angle of impedance (φ) obtained for each carbon paper type, together with the neat EMI TFSI ionic liquid (Figure 3a) or the ionogel electrolyte (Figure 3b). The frequency at which the phase angle reaches -45° (f0) is termed the “switching frequency, ” where a device transitions from exhibiting primarily resistive to primarily capacitive behavior. Comparison of the neat EMI TFSI and ionogel electrolytes shown in Figure 3 reveals that the neat EMI TFSI devices uniformly exhibited switching frequencies approximately five times faster than their ionogel counterparts. This difference is due to the presence of the cross-linked PEGDA scaffold in the ionogel, which impedes the polarization response of the ions [6]. The switching frequency for CFP with the ionogel electrolyte (f0 = 6.3 Hz) was observed to be approximately three orders of magnitude larger than for the other carbon papers examined (f0 varies between 2-10 mHz), as seen in Figure 3b. It should be pointed out that these values are lower than those typically reported for supercapacitor prototypes, due to the coplanar electrode architecture employed here. However, a comparison of the EIS behavior of the various carbon paper electrodes for a given electrolyte (either neat ionic liquid or the ionogel) can illuminate differences in the relative performance of each carbon structure. The comparatively fast switching frequency observed for CFP with both electrolyte types is attributed to the large, open pore structure defined by the carbon fibers of this material (Figure 1a), which facilitates ready access to the EMI and TFSI ions for rapid double layer formation and rearrangement. However, the low effective surface area of the CFP material that enables a fast polarization response also leads to the lowest observed capacitance (Figure 2).

    Figure 3. Bode plots of the phase angle of impedance for test beds containing: (a) neat EMI TFSI electrolyte; (b) 16 wt% PEGDA ionogel electrolyte.





    The magnitude of impedance (|Z|) versus frequency data measured using the neat ionic liquid and ionogel electrolyte test beds are shown in Figure 4. While it is noted that the equivalent series resistance (ESR) values obtained here are much larger than those of typical supercapacitor devices (due to the coplanar structure of the test bed), relative comparisons among the carbon papers are highly informative. The CAGP and CFP materials exhibited lower ESR values (taken to be equal to |Z| at f = 10 kHz) compared to the other electrode materials with both neat EMI TFSI (Figure 4a) as well as with the ionogel electrolyte (Figure 4b), as summarized in Table 2. This result was expected since these two electrode materials possessed the lowest measured sheet resistances (Table 1). However, a different trend is observed within the group of CNTP materials upon comparing their behavior with the neat ionic liquid versus the ionogel electrolyte. The order of carbon nanotube paper sheet resistances, from highest to lowest, is: CNTP3 > CNTP1 ≈ CNTP2 > CNTP4 (Table 1). This trend is mirrored in the ordering of device ESR values when EMI TFSI is used as an electrolyte (Figure 4a), but is not the case when the ionogel electrolyte is employed (Figure 4b). As seen in Table 2, the ESR value of the CNTP3 device with the ionogel electrolyte (9.74 kw) is, in fact, lower than those for both the CNTP1 and CNPT2 devices (11.7 kw and 10.2 kw respectively). Furthermore, CNTP4, which exhibited the lowest measured sheet resistance among the four carbon nanotube-based papers and demonstrated a low ESR value when paired with the neat ionic liquid (0.615 kw), displayed an unexpectedly large relative increase in ESR when integrated with the solid ionogel electrolyte (6.98 kw). As shown in Table 2, the relative increase in ESR between the ionogel and the neat EMI TFSI responses ranged from 3.9x (for CNTP3) to as large as 11.3x (for CNTP4).

    Figure 4. Magnitude of impedance, |Z|, for test beds containing: (a) neat EMI TFSI electrolyte; (b) 16 wt% PEGDA ionogel electrolyte.
    Table 2. Performance of test bed devices with 16 wt% PEGDA ionogel.
    Carbon Electrode Specific Capacitance (F gelectrodes-1) Equiv. Series Resistance (kw) ESRionogel/ESREMI TFSI (-)
    CFP 0.02 3.88 6.1
    CAGP 2.33 2.25 4.3
    CNTP1 0.97 11.7 9.8
    CNTP2 1.63 10.2 7.0
    CNTP3 1.30 9.74 3.9
    CNTP4 1.87 6.98 11.3
     | Show Table
    DownLoad: CSV

    Since identical electrolyte solutions and fabrication conditions were employed for each carbon paper electrode test bed, one may attribute differences in performance of the various electrode materials when changing from the ionic liquid to the ionogel electrolyte to differences in wettability and /or interfacial compatibility. More specifically, the formation of the cross-linked PEGDA scaffold inside the ionic liquid during UV-curing of the ionogel precursor solution may lead to adsorption of the polymer on the carbon electrode surface, causing an increased carbon/electrolyte interfacial resistance. This possibility is expected to depend strongly on the detailed nature of the pore structure and surface chemical functionalization of each carbon paper, and is worthy of further investigation. Alternatively, differing degrees of pore mouth blockage among the various carbon papers by the cross-linked PEGDA scaffold may also lead to unexpected relative changes in ESR when switching from the neat ionic liquid to an ionogel electrolyte. Given that the two-electrode double layer capacitance of both the neat EMI TFSI as well as the ionogel electrolyte is approximately 5 mF cm-2 for planar electrodes [6], it is clear that the ionogel precursor solution did not fully penetrate the porous structure of any of these carbon papers during the test bed fabrication procedure (as demonstrated by the low gravimetric capacitance values measured by CV, Table 2). In addition, the high ESR values observed for these devices may also have limited the gravimetric capacitance values achieved. A modified test bed fabrication protocol wherein the iono gel precursor solution is actively drawn into the porous carbon papers (i.e. by vacuum filling) is currently being developed in order to increase the gravimetric capacitance values and to clarify the issue of seeming unpredictable relative ESR changes when transitioning from an ionic liquid to an ionogel electrolyte.

    4. Conclusion

    In order to begin integrating UV-cured solid ionogel electrolytes, a promising class of emergent materials for supercapacitors, with high surface area carbon paper electrodes in situ, an underst and ing of the relative compatibility of the ionogel with different carbon electrode materials is required. The coplanar test bed geometry utilized here represents one schema by which this integration might be achieved, and it also provides a straightforward way to compare the electrical response of an ionogel electrolyte with its neat ionic liquid analog. Furthermore, initial results using this test bed have revealed anomalous trends in the relative increase of device equivalent series resistance observed for the use of a 16 wt% PEGDA ionogel compared to the neat ionic liquid that highlight the need to better underst and the wetting and interfacial surface behavior at the electrode/electrolyte interface. These findings can help guide future efforts regarding the in situ integration of ionogel electrolytes with porous carbon electrodes for wearable energy storage applications.

    Acknowledgments

    The authors wish to acknowledge Adam Visentin and Ariel Horowitz for useful discussions, Dr. Anna Osherov for collecting the SEM images, and Changqiong Zhu for measuring the carbon paper sheet resistances. SEM images and sheet resistance values were obtained at the Center for Nanoscale Systems (CNS), a member of the National Nanotechnology Infrastructure Network (NNIN), which is supported by the National Science Foundation under NSF award no. ECS-0335765. CNS is part of Harvard University. The authors gratefully acknowledge financial support from the Science, Mathematics and Research for Transformation scholarship, the US Army Natick Soldier Research, Development and Engineering Center, and the National Science Foundation (award no. ECCS-1201935).

    Conflict of interest

    All authors declare no conflicts of interest in this paper.

    [1] Banting FG, Best CH, Collip JB, et al. (1922) Pancreatic extracts in the treatment of diabetes mellitus. Can Med Assoc J 12: 141–146.
    [2] Ryle AP, Sanger F, Smith LF, et al. (1955) The disulphide bonds of insulin. Biochem J 60: 541–556. doi: 10.1042/bj0600541
    [3] Dodson E, Harding MM, Hodgkin DC, et al. (1966) The crystal structure of insulin. 3. Evidence for a 2-fold axis in rhombohedral zinc insulin. J Mol Biol 16: 227–241.
    [4] Mckern NM, Lawrence MC, Streltsov VA, et al. (2006) Structure of the insulin receptor ectodomain reveals a folded-over conformation. Nature 443: 218–221. doi: 10.1038/nature05106
    [5] Haeusler RA, Mcgraw TE, Accili D (2018) Biochemical and cellular properties of insulin receptor signalling. Nat Rev Mol Cell Biol 19: 31–44.
    [6] Vajdos FF, Ultsch M, Schaffer ML, et al. (2001) Crystal structure of humun insulin-like growth factor-1: Detergent binding inhibits binding protein interactions. Biochemistry 40: 11022–11029. doi: 10.1021/bi0109111
    [7] Hakuno F, Takahashi SI (2018) IGF1 receptor signaling pathways. J Mol Endocrinol 61: T69–T86. doi: 10.1530/JME-17-0311
    [8] Fernandez AM, Torres-Aleman I (2012) The many faces of insulin-like peptide signaling in the brain. Nat Rev Neurosci 13: 225–239.
    [9] Christie AE, Roncalli V, Lenz PH (2016) Diversity of insulin-like peptide signaling system proteins in Calanus finmarchicus (Crustacea; Copepoda)-possible contributors to seasonal pre-adult diapause. Gen Comp Endocrinol 236: 157–173. doi: 10.1016/j.ygcen.2016.07.016
    [10] Lee Y, An SWA, Artan M, et al. (2015) Genes and pathways that influence longevity in Caenorhabditis elegans, In: Aging Mechanisms Mori N., Mook-Jung I, eds, 123–169.
    [11] Giannakou ME, Partridge L (2007) Role of insulin-like signalling in Drosophila lifespan. Trends Biochem Sci 32: 180–188. doi: 10.1016/j.tibs.2007.02.007
    [12] Fontana L, Partridge L, Longo VD (2010) Extending healthy life span-from yeast to humans. Science 328: 321–326. doi: 10.1126/science.1172539
    [13] Kenyon CJ (2010) The genetics of ageing. Nature 464: 504–512. doi: 10.1038/nature08980
    [14] Nassel DR, Kubrak OI, Liu Y, et al. (2013) Factors that regulate insulin producing cells and their output in Drosophila. Front Physiol 4: 252.
    [15] Grönke S, Partridge L, (2010) The functions of insulin-like peptides in insects, In: Clemmons D, Robinson I, Christen Y, eds., IGFs: Local repair and survival factors throughout life span, Research and Perspectives in Endocrine Interactions, Springer, Berlin, Heidelberg, 105–124.
    [16] Zhang H, Liu J, Li CR, et al. (2009) Deletion of Drosophila insulin-like peptides causes growth defects and metabolic abnormalities. Proc Natl Acad Sci U S A 106: 19617–19622. doi: 10.1073/pnas.0905083106
    [17] Colombani J, Andersen DS, Leopold P (2012) Secreted peptide Dilp8 coordinates Drosophila tissue growth with developmental timing. Science 336: 582–585. doi: 10.1126/science.1216689
    [18] Abreu DAFD, Caballero A, Fardel P, et al. (2014) An insulin-to-insulin regulatory network orchestrates phenotypic specificity in development and physiology. PLoS Genet 10: e1004225. doi: 10.1371/journal.pgen.1004225
    [19] Brenner S (1974) The genetics of Caenorhabditis elegans. Genetics 77: 91–94.
    [20] Consortium CES (1998) Genome sequence of the nematode C. elegans: A platform for investigating biology. Science 282: 2012–2018.
    [21] Fire A, Xu S, Montgomery MK, et al. (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391: 806–811. doi: 10.1038/35888
    [22] Zwaal RR, Broeks A, van Meurs J, et al. (1993) Target-selected gene inactivation in Caenorhabditis elegans by using a frozen transposon insertion mutant bank. Proc Natl Acad Sci U S A 90: 7431–7435. doi: 10.1073/pnas.90.16.7431
    [23] Klass MR (1983) A method for the isolation of longevity mutants in the nematode Caenorhabditis elegans and initial results. Mech Ageing Dev 22: 279–286. doi: 10.1016/0047-6374(83)90082-9
    [24] Friedman DB, Johnson TE (1988) A mutation in the age-1 gene in Caenorhabditis elegans lengthens life and reduces hermaphrodite fertility. Genetics 118: 75–86.
    [25] Friedman DB, Johnson TE (1988) Three mutants that extend both mean and maximum life span of the nematode, Caenorhabditis elegans, define the age-1 gene. J Gerontol Biol Sci 43: 102–109. doi: 10.1093/geronj/43.4.B102
    [26] Johnson TE (1990) Increased life-span of age-1 mutants in Caenorhabditis elegans and lower Gompertz rate of aging. Science 249: 908–912. doi: 10.1126/science.2392681
    [27] Kenyon C, Chang J, Gensch E, et al. (1993) A C. elegans mutant that lives twice as long as wild type. Nature 366: 461–464.
    [28] Kimura KD, Tissenbaum HA, Liu Y, et al. (1997) daf-2, an insulin receptor-like gene that regulates longevity and diapause in Caenorhabditis elegans. Science 277: 942–946. doi: 10.1126/science.277.5328.942
    [29] Murakami S, Johnson TE (1996) A genetic pathway conferring life extension and resistance to UV stress in Caenorhabditis elegans. Genetics 143: 1207–1218.
    [30] Cassada RC, Russell RL (1975) The dauerlarva, a post-embryonic developmental variant of the nematode Caenorhabditis elegans. Dev Biol 46: 326–342. doi: 10.1016/0012-1606(75)90109-8
    [31] Riddle DL, Swanson MM, Albert PS (1981) Interacting genes in nematode dauer larva formation. Nature 290: 668–671. doi: 10.1038/290668a0
    [32] Vowels JJ, Thomas JH (1992) Genetic analysis of chemosensory control of dauer formation in Caenorhabditis elegans. Genetics 130: 105–123.
    [33] Gottlieb S, Ruvkun G (1994) daf-2, daf-16 and daf-23: Genetically interacting genes controlling Dauer formation in Caenorhabditis elegans. Genetics 137: 107–120.
    [34] Ogg S, Ruvkun G (1998) The C. elegans PTEN homolog, DAF-18, acts in the insulin receptor-like metabolic signaling pathway. Mol Cell 2: 887–893.
    [35] Gil EB, Malone LE, Liu LX, et al. (1999) Regulation of the insulin-like developmental pathway of Caenorhabditis elegans by a homolog of the PTEN tumor suppressor gene. Proc Natl Acad Sci U S A 96: 2925–2930. doi: 10.1073/pnas.96.6.2925
    [36] Mihaylova VT, Borland CZ, Manjarrez L, et al. (1999) The PTEN tumor suppressor homolog in Caenorhabditis elegans regulates longevity and dauer formation in an insulin receptor-like signaling pathway. Proc Natl Acad Sci U S A 96: 7427–7432. doi: 10.1073/pnas.96.13.7427
    [37] Rouault JP, Kuwabara PE, Sinilnikova OM, et al. (1999) Regulation of dauer larva development in Caenorhabditis elegans by daf-18, a homologue of the tumour suppressor PTEN. Curr Biol 9: 329–332. doi: 10.1016/S0960-9822(99)80143-2
    [38] Baugh LR, Sternberg PW (2006) DAF-16/FOXO regulates transcription of cki-1/Cip/Kip and repression of lin-4 during C. elegans L1 arrest. Curr Biol 16: 780–785.
    [39] Lithgow GJ, White TM, Hinerfeld DA, et al. (1994) Thermotolerance of a long-lived mutant of Caenorhabditis elegans. J Gerontol 49: 270–276.
    [40] Lithgow GJ, White TM, Melov S, et al. (1995) Thermotolerance and extended life-span conferred by single-gene mutations and induced by thermal stress. Proc Natl Acad Sci U S A 92: 7540–7544. doi: 10.1073/pnas.92.16.7540
    [41] Babar P, Adamson C, Walker GA, et al. (1999) PI3-kinase inhibition induces dauer formation, thermotolerance and longevity in C. elegans. Neurobiol Aging 20: 513–519. doi: 10.1016/S0197-4580(99)00094-9
    [42] Walker GA, Walker DW, Lithgow GJ (1998) Genes that determine both thermotolerance and rate of aging in Caenorhabditis elegans. Ann N Y Acad Sci 851: 444–449. doi: 10.1111/j.1749-6632.1998.tb09022.x
    [43] Walker GA, White TM, McColl G, et al. (2001) Heat shock protein accumulation is upregulated in a long-lived mutant of Caenorhabditis elegans. J Gerontol A Biol Sci Med Sci 56: B281–B287. doi: 10.1093/gerona/56.7.B281
    [44] Hsu AL, Murphy CT, Kenyon C (2003) Regulation of aging and age-related disease by DAF-16 and heat-shock factor. Science 300: 1142–1145. doi: 10.1126/science.1083701
    [45] Honda Y, Honda S (1999) The daf-2 gene network for longevity regulates oxidative stress resistance and Mn-superoxide dismutase gene expression in Caenorhabditis elegans. FASEB J 13: 1385–1393. doi: 10.1096/fasebj.13.11.1385
    [46] Honda Y, Honda S (2002) Oxidative stress and life span determination in the nematode Caenorhabditis elegans. Ann N Y Acad Sci 959: 466–474. doi: 10.1111/j.1749-6632.2002.tb02117.x
    [47] Scott BA, Avidan MS, Crowder CM (2002) Regulation of hypoxic death in C. elegans by the insulin/IGF receptor homolog DAF-2. Science 296: 2388–2391.
    [48] Lamitina ST, Strange K (2005) Transcriptional targets of DAF-16 insulin signaling pathway protect C. elegans from extreme hypertonic stress. Am J Physiol -Cell Ph 288: C467–C474.
    [49] Barsyte D, Lovejoy DA, Lithgow GJ (2001) Longevity and heavy metal resistance in daf-2 and age-1 long-lived mutants of Caenorhabditis elegans. FASEB J 15: 627–634. doi: 10.1096/fj.99-0966com
    [50] Morley JF, Morimoto RI (2004) Regulation of longevity in Caenorhabditis elegans by heat shock factor and molecular chaperones. Mol Biol Cell 15: 657–664. doi: 10.1091/mbc.e03-07-0532
    [51] Cohen E, Bieschke J, Perciavalle RM, et al. (2006) Opposing activities protect against age-onset proteotoxicity. Science 313: 1604–1610. doi: 10.1126/science.1124646
    [52] Keowkase R, Aboukhatwa M, Luo Y (2010) Fluoxetine protects against amyloid-beta toxicity, in part via daf-16 mediated cell signaling pathway, in Caenorhabditis elegans. Neuropharmacology 59: 358–365. doi: 10.1016/j.neuropharm.2010.04.008
    [53] Ching TT, Chiang WC, Chen CS, et al. (2011) Celecoxib extends C. elegans lifespan via inhibition of insulin-like signaling but not cyclooxygenase-2 activity. Aging Cell 10: 506–519.
    [54] Teixeira-Castro A, Ailion M, Jalles A, et al. (2011) Neuron-specific proteotoxicity of mutant ataxin-3 in C. elegans: Rescue by the DAF-16 and HSF-1 pathways. Hum Mol Genet 20: 2996–3009.
    [55] Zhang T, Hwang HY, Hao H, et al. (2012) Caenorhabditis elegans RNA-processing protein TDP-1 regulates protein homeostasis and life span. J Biol Chem 287: 8371–8382. doi: 10.1074/jbc.M111.311977
    [56] Nagasawa H, Kataoka H, Isogai A, et al. (1984) Amino-terminal amino acid sequence of the silkworm prothoracicotropic hormone: Homology with insulin. Science 226: 1344–1345. doi: 10.1126/science.226.4680.1344
    [57] Smit AB, Vreugdenhil E, Ebberink RH, et al. (1988) Growth-controlling molluscan neurons produce the precursor of an insulin-related peptide. Nature 331: 535–538. doi: 10.1038/331535a0
    [58] Lagueux M, Lwoff L, Meister M, et al. (1990) cDNAs from neurosecretory cells of brains of Locusta migratoria (Insecta, Orthoptera) encoding a novel member of the superfamily of insulins. Eur J Biochem 187: 249–254. doi: 10.1111/j.1432-1033.1990.tb15302.x
    [59] Chandler JC, Aizen J, Elizur A, et al. (2015) Discovery of a novel insulin-like peptide and insulin binding proteins in the Eastern rock lobster Sagmariasus verreauxi. Gen Comp Endocr 215: 76–87. doi: 10.1016/j.ygcen.2014.08.018
    [60] Duret L, Guex N, Peitsch MC, et al. (1998) New insulin-like proteins with atypical disulfide bond pattern characterized in Caenorhabditis elegans by comparative sequence analysis and homology modeling. Genome Res 8: 348–353. doi: 10.1101/gr.8.4.348
    [61] Pierce SB, Costa M, Wisotzkey R, et al. (2001) Regulation of DAF-2 receptor signaling by human insulin and ins-1, a member of the unusually large and diverse C. elegans insulin gene family. Genes Dev 15: 672–686.
    [62] Li W, Kennedy SG, Ruvkun G (2003) daf-28 encodes a C. elegans insulin superfamily member that is regulated by environmental cues and acts in the DAF-2 signaling pathway. Genes Dev 17: 844–858.
    [63] Husson SJ, Mertens I, Janssen T, et al. (2007) Neuropeptidergic signaling in the nematode Caenorhabditis elegans. Prog Neurobiol 82: 33–55. doi: 10.1016/j.pneurobio.2007.01.006
    [64] Kawano T, Ito Y, Ishiguro M, et al. (2000) Molecular cloning and characterization of a new insulin/IGF-like peptide of the nematode Caenorhabditis elegans. Biochem Biophys Res Commun 273: 431–436. doi: 10.1006/bbrc.2000.2971
    [65] Matsunaga Y, Gengyo-Ando K, Mitani S, et al. (2012) Physiological function, expression pattern, and transcriptional regulation of a Caenorhabditis elegans insulin-like peptide, INS-18. Biochem Biophys Res Commun 423: 478–483. doi: 10.1016/j.bbrc.2012.05.145
    [66] Wang X, Wang X, Wang D, et al. (2010) [Expression changes of age-related genes in different aging stages of Caenorhabiditis elegans and the regulating effects of Chuanxiong extract]. China J Chin Mater Med 35: 1599–1602.
    [67] Kawano T, Nagatomo R, Kimura Y, et al. (2006) Disruption of ins-11, a Caenorhabditis elegans insulin-like gene, and phenotypic analyses of the gene-disrupted animal. Biosci Biotechnol Biochem 70: 3084–3087. doi: 10.1271/bbb.60472
    [68] Morris JZ, Tissenbaum HA, Ruvkun G (1996) A phosphatidylinositol-3-OH kinase family member regulating longevity and diapause in Caenorhabditis elegans. Nature 382: 536–539. doi: 10.1038/382536a0
    [69] Paradis S, Ailion M, Toker A, et al. (1999) A PDK1 homolog is necessary and sufficient to transduce AGE-1 PI3 kinase signals that regulate diapause in Caenorhabditis elegans. Genes Dev 13: 1438–1452. doi: 10.1101/gad.13.11.1438
    [70] Paradis S, Ruvkun G (1998) Caenorhabditis elegans Akt/PKB transduces insulin receptor-like signals from AGE-1 PI3 kinase to the DAF-16 transcription factor. Genes Dev 12: 2488–2498. doi: 10.1101/gad.12.16.2488
    [71] Ogg S, Paradis S, Gottlieb S, et al. (1997) The Fork head transcription factor DAF-16 transduces insulin-like metabolic and longevity signals in C. elegans. Nature 389: 994–999. doi: 10.1038/40194
    [72] Henderson ST, Johnson TE (2001) daf-16 integrates developmental and environmental inputs to mediate aging in the nematode Caenorhabditis elegans. Curr Biol 11: 1975–1980. doi: 10.1016/S0960-9822(01)00594-2
    [73] Lee RY, Hench J, Ruvkun G (2001) Regulation of C. elegans DAF-16 and its human ortholog FKHRL1 by the daf-2 insulin-like signaling pathway. Curr Biol 11: 1950–1957.
    [74] Malone EA, Inoue T, Thomas JH (1996) Genetic analysis of the roles of daf-28 and age-1 in regulating Caenorhabditis elegans dauer formation. Genetics 143: 1193–1205.
    [75] Murphy CT, Mccarroll SA, Bargmann CI, et al. (2003) Genes that act downstream of DAF-16 to influence the lifespan of Caenorhabditis elegans. Nature 424: 277–283. doi: 10.1038/nature01789
    [76] Matsunaga Y, Nakajima K, Gengyo-Ando K, et al. (2012) A Caenorhabditis elegans insulin-like peptide, INS-17: Its physiological function and expression pattern. Biosci Biotechnol Biochem 76: 2168–2172. doi: 10.1271/bbb.120540
    [77] Matsunaga Y, Matsukawa T, Iwasaki T, et al. (2018) Comparison of physiological functions of antagonistic insulin-like peptides, INS-23 and INS-18, in Caenorhabditis elegans. Biosci Biotechnol Biochem 82: 90–96. doi: 10.1080/09168451.2017.1415749
    [78] Cornils A, Gloeck M, Chen Z, et al. (2011) Specific insulin-like peptides encode sensory information to regulate distinct developmental processes. Development 138: 1183–1193. doi: 10.1242/dev.060905
    [79] Murphy CT, Lee SJ, Kenyon C (2007) Tissue entrainment by feedback regulation of insulin gene expression in the endoderm of Caenorhabditis elegans. Proc Natl Acad Sci U S A 104: 19046–19050. doi: 10.1073/pnas.0709613104
    [80] Tomioka M, Adachi T, Suzuki H, et al. (2006) The insulin/PI 3-kinase pathway regulates salt chemotaxis learning in Caenorhabditis elegans. Neuron 51: 613–625. doi: 10.1016/j.neuron.2006.07.024
    [81] Kodama E, Kuhara A, Mohri-Shiomi A, et al. (2006) Insulin-like signaling and the neural circuit for integrative behavior in C. elegans. Genes Dev 20: 2955–2960. doi: 10.1101/gad.1479906
    [82] Lin CH, Tomioka M, Pereira S, et al. (2010) Insulin signaling plays a dual role in Caenorhabditis elegans memory acquisition and memory retrieval. J Neurosci 30: 8001–8011. doi: 10.1523/JNEUROSCI.4636-09.2010
    [83] Chen Z, Hendricks M, Cornils A, et al. (2013) Two insulin-like peptides antagonistically regulate aversive olfactory learning in C. elegans. Neuron 77: 572–585. doi: 10.1016/j.neuron.2012.11.025
    [84] Michaelson D, Korta DZ, Capua Y, et al. (2010) Insulin signaling promotes germline proliferation in C. elegans. Development 137: 671–680.
    [85] Ritter AD, Shen Y, Fuxman BJ, et al. (2013) Complex expression dynamics and robustness in C. elegans insulin networks. Genome Res 23: 954–965.
    [86] Matsunaga Y, Iwasaki T, Kawano T (2017) Diverse insulin-like peptides in Caenorhabditis elegans. Int Biol Rev , 1.
    [87] Hua QX, Nakagawa SH, Wilken J, et al. (2003) A divergent INS protein in Caenorhabditis elegans structurally resembles human insulin and activates the human insulin receptor. Genes Dev 17: 826–831. doi: 10.1101/gad.1058003
    [88] Kao G, Nordenson C, Still M, et al. (2007) ASNA-1 positively regulates insulin secretion in C. elegans and mammalian cells. Cell 128: 577–587. doi: 10.1016/j.cell.2006.12.031
    [89] Matsunaga Y, Honda Y, Honda S, et al. (2016) Diapause is associated with a change in the polarity of secretion of insulin-like peptides. Nat Commun 7: 10573. doi: 10.1038/ncomms10573
    [90] Clark ME, Kelner GS, Turbeville LA, et al. (2000) ADAMTS9, a novel member of the ADAM-TS/ metallospondin gene family. Genomics 67: 343–350. doi: 10.1006/geno.2000.6246
    [91] Somerville RP, Longpre JM, Jungers KA, et al. (2003) Characterization of ADAMTS-9 and ADAMTS-20 as a distinct ADAMTS subfamily related to Caenorhabditis elegans GON-1. J Biol Chem 278: 9503–9513. doi: 10.1074/jbc.M211009200
    [92] Yoshina S, Mitani S (2015) Loss of C. elegans GON-1, an ADAMTS9 Homolog, Decreases Secretion Resulting in Altered Lifespan and Dauer Formation. PLoS One 10: e0133966.
    [93] Suckale J, Solimena M (2010) The insulin secretory granule as a signaling hub. Trends Endocrin Met 21: 599–609. doi: 10.1016/j.tem.2010.06.003
    [94] Drucker DJ, Philippe J, Mojsov S, et al. (1987) Glucagon-like peptide I stimulates insulin gene expression and increases cyclic AMP levels in a rat islet cell line. Proc Natl Acad Sci U S A 84: 3434–3438. doi: 10.1073/pnas.84.10.3434
    [95] Fehmann HC, Habener JF (1992) Galanin inhibits proinsulin gene expression stimulated by the insulinotropic hormone glucagon-like peptide-I (7-37) in mouse insulinoma beta TC-1 cells. Endocrinology 130: 2890–2896. doi: 10.1210/endo.130.5.1374016
    [96] Koranyi L, James DE, Kraegen EW, et al. (1992) Feedback inhibition of insulin gene expression by insulin. J Clin Invest 89: 432–436. doi: 10.1172/JCI115602
    [97] Shaw WM, Luo S, Landis J, et al. (2007) The C. elegans TGF-beta Dauer pathway regulates longevity via insulin signaling. Curr Biol 17: 1635–1645.
    [98] Hung WL, Wang Y, Chitturi J, et al. (2014) A Caenorhabditis elegans developmental decision requires insulin signaling-mediated neuron-intestine communication. Development 141: 1767–1779. doi: 10.1242/dev.103846
    [99] Liu T, Zimmerman KK, Patterson GI (2004) Regulation of signaling genes by TGFbeta during entry into dauer diapause in C. elegans. BMC Dev Biol 4: 11. doi: 10.1186/1471-213X-4-11
    [100] Narasimhan SD, Yen K, Bansal A, et al. (2011) PDP-1 links the TGF-beta and IIS pathways to regulate longevity, development, and metabolism. PLoS Genet 7: e1001377. doi: 10.1371/journal.pgen.1001377
    [101] Dlakic M (2002) A new family of putative insulin receptor-like proteins in C. elegans. Curr Biol 12: R155–R157. doi: 10.1016/S0960-9822(02)00729-7
    [102] Tomioka M, Naito Y, Kuroyanagi H, et al. (2016) Splicing factors control C. elegans behavioural learning in a single neuron by producing DAF-2c receptor. Nat Commun 7: 11645.
    [103] Bulger DA, Fukushige T, Yun S, et al. (2017) Caenorhabditis elegans DAF-2 as a model for human insulin receptoropathies. G3 Genesgenetics 7: 257–268. doi: 10.1534/g3.116.037184
  • This article has been cited by:

    1. Stephanie Flores Zopf, Michael Manser, Screen-printed Military Textiles for Wearable Energy Storage, 2016, 11, 1558-9250, 155892501601100, 10.1177/155892501601100303
    2. M. Aulice Scibioh, B. Viswanathan, 2020, 9780128198582, 35, 10.1016/B978-0-12-819858-2.00003-2
    3. Rajib Paul, Ajit K. Roy, Liming Dai, 2021, 9780128191170, 143, 10.1016/B978-0-12-819117-0.00001-2
    4. Nerea Gil-González, T. Akyazi, E. Castaño, F. Benito-Lopez, Maria C. Morant-Miñana, Elucidating the role of the ionic liquid in the actuation behavior of thermo-responsive ionogels, 2018, 260, 09254005, 380, 10.1016/j.snb.2017.12.153
    5. Xuli Chen, Rajib Paul, Liming Dai, Carbon-based supercapacitors for efficient energy storage, 2017, 4, 2095-5138, 453, 10.1093/nsr/nwx009
    6. Minh-Hai Tran, Hae Kyung Jeong, Ternary carbon composite films for supercapacitor applications, 2017, 684, 00092614, 1, 10.1016/j.cplett.2017.06.025
    7. Shaun Whitley, Dowon Bae, Perspective—Insights into Solar-Rechargeable Redox Flow Cell Design: A Practical Perspective for Lab-Scale Experiments, 2021, 168, 0013-4651, 120517, 10.1149/1945-7111/ac3ab3
    8. Asim Ali Yaqoob, Mohamad Nasir Mohamad Ibrahim, Khalid Umar, Tabassum Parveen, Akil Ahmad, David Lokhat, Siti Hamidah Mohd Setapar, A glimpse into the microbial fuel cells for wastewater treatment with energy generation, 2021, 214, 19443986, 379, 10.5004/dwt.2021.26737
    9. Swetha Vasudevan Kanakkottu, Babak Rezaei, Stephan Sylvest Keller, Metal-free on-chip microsupercapacitor with high-aspect-ratio 3D interdigitated pyrolytic carbon microelectrodes derived from additive manufacturing, 2025, 641, 03787753, 236816, 10.1016/j.jpowsour.2025.236816
  • Reader Comments
  • © 2018 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(7499) PDF downloads(2200) Cited by(8)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog