Citation: Qiao Yi Chen, Max Costa, Hong Sun. Structure and function of histone acetyltransferase MOF[J]. AIMS Biophysics, 2015, 2(4): 555-569. doi: 10.3934/biophy.2015.4.555
[1] | Felsenfeld G, Groudine M (2003) Controlling the double helix. Nature 421: 448-453. doi: 10.1038/nature01411 |
[2] | Jenuwein T, Allis CD (2001) Translating the histone code. Science 293: 1074-1080. doi: 10.1126/science.1063127 |
[3] | Shogren-Knaak M, Ishii H, Sun JM, et al. (2006) Histone H4-K16 acetylation controls chromatin structure and protein interactions. Science 311: 844-847. doi: 10.1126/science.1124000 |
[4] | Avvakumov N, Cote J (2007) Functions of myst family histone acetyltransferases and their link to disease. Subcell Biochem 41: 295-317. |
[5] | Rea S, Xouri G, Akhtar A (2007) Males absent on the first (MOF): from flies to humans. Oncogene 26: 5385-5394. doi: 10.1038/sj.onc.1210607 |
[6] | Mendjan S, Taipale M, Kind J, et al. (2006) Nuclear pore components are involved in the transcriptional regulation of dosage compensation in Drosophila. Mol Cell 21: 811-823. doi: 10.1016/j.molcel.2006.02.007 |
[7] | Mellert HS, McMahon SB (2009) hMOF, a KAT(8) with many lives. Mol Cell 36: 174-175. doi: 10.1016/j.molcel.2009.10.005 |
[8] | Hilfiker A, Hilfiker-Kleiner D, Pannuti A, et al. (1997) mof, a putative acetyl transferase gene related to the Tip60 and MOZ human genes and to the SAS genes of yeast, is required for dosage compensation in Drosophila. EMBO J 16: 2054-2060. doi: 10.1093/emboj/16.8.2054 |
[9] | Akhtar A, Becker PB (2000) Activation of transcription through histone H4 acetylation by MOF, an acetyltransferase essential for dosage compensation in Drosophila. Mol Cell 5: 367-375. doi: 10.1016/S1097-2765(00)80431-1 |
[10] | McElroy KA, Kang H, Kuroda MI (2014) Are we there yet? Initial targeting of the Male-Specific Lethal and Polycomb group chromatin complexes in Drosophila. Open Biol 4: 140006. |
[11] | Bone JR, Lavender J, Richman R, et al. (1994) Acetylated histone H4 on the male X chromosome is associated with dosage compensation in Drosophila. Genes Dev 8: 96-104. doi: 10.1101/gad.8.1.96 |
[12] | Neal KC, Pannuti A, Smith ER, et al. (2000) A new human member of the MYST family of histone acetyl transferases with high sequence similarity to Drosophila MOF. Biochim Biophys Acta 1490: 170-174. doi: 10.1016/S0167-4781(99)00211-0 |
[13] | Keller CI, Akhtar A (2015) The MSL complex: juggling RNA-protein interactions for dosage compensation and beyond. Curr Opin Genet Dev 31: 1-11. doi: 10.1016/j.gde.2015.03.007 |
[14] | Brockdorff N, Turner BM (2015) Dosage compensation in mammals. Cold Spring Harb Perspect Biol 7: a019406. doi: 10.1101/cshperspect.a019406 |
[15] | Gupta A, Guerin-Peyrou TG, Sharma GG, et al. (2008) The mammalian ortholog of Drosophila MOF that acetylates histone H4 lysine 16 is essential for embryogenesis and oncogenesis. Mol Cell Biol 28: 397-409. doi: 10.1128/MCB.01045-07 |
[16] | Thomas T, Dixon MP, Kueh AJ, et al. (2008) Mof (MYST1 or KAT8) is essential for progression of embryonic development past the blastocyst stage and required for normal chromatin architecture. Mol Cell Biol 28: 5093-5105. doi: 10.1128/MCB.02202-07 |
[17] | Utley RT, Cote J (2003) The MYST family of histone acetyltransferases. Curr Top Microbiol Immunol 274: 203-236. |
[18] | Thomas T, Voss AK (2014) The Diverse Biological Roles of MYST Histone Acetyltransferase Family Proteins. Cell Cycle 6: 696-704. |
[19] | Kadlec J, Hallacli E, Lipp M, et al. (2011) Structural basis for MOF and MSL3 recruitment into the dosage compensation complex by MSL1. Nat Struct Mol Biol 18: 142-149. doi: 10.1038/nsmb.1960 |
[20] | Akhtar A, Becker PB (2001) The histone H4 acetyltransferase MOF uses a C2HC zinc finger for substrate recognition. EMBO Rep 2: 113-118. doi: 10.1093/embo-reports/kve022 |
[21] | Nielsen PR, Nietlispach D, Buscaino A, et al. (2005) Structure of the chromo barrel domain from the MOF acetyltransferase. J Biol Chem 280: 32326-32331. doi: 10.1074/jbc.M501347200 |
[22] | Conrad T, Cavalli FM, Holz H, et al. (2012) The MOF chromobarrel domain controls genome-wide H4K16 acetylation and spreading of the MSL complex. Dev Cell 22: 610-624. doi: 10.1016/j.devcel.2011.12.016 |
[23] | Smith ER, Allis CD, Lucchesi JC (2001) Linking global histone acetylation to the transcription enhancement of X-chromosomal genes in Drosophila males. J Biol Chem 276: 31483-31486. doi: 10.1074/jbc.C100351200 |
[24] | Smith ER, Cayrou C, Huang R, et al. (2005) A human protein complex homologous to the Drosophila MSL complex is responsible for the majority of histone H4 acetylation at lysine 16. Mol Cell Biol 25: 9175-9188. doi: 10.1128/MCB.25.21.9175-9188.2005 |
[25] | Taipale M, Rea S, Richter K, et al. (2005) hMOF histone acetyltransferase is required for histone H4 lysine 16 acetylation in mammalian cells. Mol Cell Biol 25: 6798-6810. doi: 10.1128/MCB.25.15.6798-6810.2005 |
[26] | Li X, Corsa CA, Pan PW, et al. (2010) MOF and H4 K16 acetylation play important roles in DNA damage repair by modulating recruitment of DNA damage repair protein Mdc1. Mol Cell Biol 30: 5335-5347. doi: 10.1128/MCB.00350-10 |
[27] | Buscaino A, Kocher T, Kind JH, et al. (2003) MOF-regulated acetylation of MSL-3 in the Drosophila dosage compensation complex. Mol Cell 11: 1265-1277. doi: 10.1016/S1097-2765(03)00140-0 |
[28] | Zhou Y, Schmitz KM, Mayer C, et al. (2009) Reversible acetylation of the chromatin remodelling complex NoRC is required for non-coding RNA-dependent silencing. Nat Cell Biol 11: 1010-1016. doi: 10.1038/ncb1914 |
[29] | Bueno-Perez R, Martin-Calvo A, Gomez-Alvarez P, et al. (2014) Enantioselective adsorption of ibuprofen and lysine in metal-organic frameworks. Chem Commun (Camb) 50: 10849-10852. doi: 10.1039/C4CC03745F |
[30] | Levine AJ (1997) p53, the cellular gatekeeper for growth and division. Cell 88: 323-331. doi: 10.1016/S0092-8674(00)81871-1 |
[31] | Sykes SM, Mellert HS, Holbert MA, et al. (2006) Acetylation of the p53 DNA-binding domain regulates apoptosis induction. Mol Cell 24: 841-851. doi: 10.1016/j.molcel.2006.11.026 |
[32] | Sykes SM, Stanek TJ, Frank A, et al. (2009) Acetylation of the DNA binding domain regulates transcription-independent apoptosis by p53. J Biol Chem 284: 20197-20205. doi: 10.1074/jbc.M109.026096 |
[33] | Chen Z, Ye X, Tang N, et al. (2014) The histone acetylranseferase hMOF acetylates Nrf2 and regulates anti-drug responses in human non-small cell lung cancer. Br J Pharmacol 171: 3196-3211. doi: 10.1111/bph.12661 |
[34] | Kaspar JW, Niture SK, Jaiswal AK (2009) Nrf2:INrf2 (Keap1) signaling in oxidative stress. Free Radic Biol Med 47: 1304-1309. doi: 10.1016/j.freeradbiomed.2009.07.035 |
[35] | Morales V, Straub T, Neumann MF, et al. (2004) Functional integration of the histone acetyltransferase MOF into the dosage compensation complex. EMBO J 23: 2258-2268. doi: 10.1038/sj.emboj.7600235 |
[36] | Rea S, Akhtar A (2006) MSL proteins and the regulation of gene expression. Curr Top Microbiol Immunol 310: 117-140. |
[37] | Cai Y, Jin J, Swanson SK, et al. (2010) Subunit composition and substrate specificity of a MOF-containing histone acetyltransferase distinct from the male-specific lethal (MSL) complex. J Biol Chem 285: 4268-4272. doi: 10.1074/jbc.C109.087981 |
[38] | Raja SJ, Charapitsa I, Conrad T, et al. (2010) The nonspecific lethal complex is a transcriptional regulator in Drosophila. Mol Cell 38: 827-841. doi: 10.1016/j.molcel.2010.05.021 |
[39] | Rattner BP, Meller VH (2004) Drosophila male-specific lethal 2 protein controls sex-specific expression of the roX genes. Genetics 166: 1825-1832. doi: 10.1534/genetics.166.4.1825 |
[40] | Feller C, Prestel M, Hartmann H, et al. (2012) The MOF-containing NSL complex associates globally with housekeeping genes, but activates only a defined subset. Nucleic Acids Res 40: 1509-1522. doi: 10.1093/nar/gkr869 |
[41] | Lam KC, Muhlpfordt F, Vaquerizas JM, et al. (2012) The NSL complex regulates housekeeping genes in Drosophila. PLoS Genet 8: e1002736. doi: 10.1371/journal.pgen.1002736 |
[42] | Ravens S, Fournier M, Ye T, et al. (2014) Mof-associated complexes have overlapping and unique roles in regulating pluripotency in embryonic stem cells and during differentiation. Elife 3. |
[43] | Chelmicki T, Dundar F, Turley MJ, et al. (2014) MOF-associated complexes ensure stem cell identity and Xist repression. Elife 3: e02024. |
[44] | Sun B, Guo S, Tang Q, et al. (2011) Regulation of the histone acetyltransferase activity of hMOF via autoacetylation of Lys274. Cell Res 21: 1262-1266. doi: 10.1038/cr.2011.105 |
[45] | Lu L, Li L, Lv X, et al. (2011) Modulations of hMOF autoacetylation by SIRT1 regulate hMOF recruitment and activities on the chromatin. Cell Res 21: 1182-1195. doi: 10.1038/cr.2011.71 |
[46] | Wang J, Chen J (2010) SIRT1 regulates autoacetylation and histone acetyltransferase activity of TIP60. J Biol Chem 285: 11458-11464. doi: 10.1074/jbc.M109.087585 |
[47] | Yuan H, Rossetto D, Mellert H, et al. (2012) MYST protein acetyltransferase activity requires active site lysine autoacetylation. EMBO J 31: 58-70. doi: 10.1038/emboj.2011.382 |
[48] | Gupta A, Hunt CR, Hegde ML, et al. (2014) MOF phosphorylation by ATM regulates 53BP1-mediated double-strand break repair pathway choice. Cell Rep 8: 177-189. doi: 10.1016/j.celrep.2014.05.044 |
[49] | Shiloh Y, Ziv Y (2013) The ATM protein kinase: regulating the cellular response to genotoxic stress, and more. Nat Rev Mol Cell Biol 14: 197-210. doi: 10.1038/nrm3546 |
[50] | Bakkenist CJ, Kastan MB (2003) DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature 421: 499-506. doi: 10.1038/nature01368 |
[51] | Gupta A, Sharma GG, Young CS, et al. (2005) Involvement of human MOF in ATM function. Mol Cell Biol 25: 5292-5305. doi: 10.1128/MCB.25.12.5292-5305.2005 |
[52] | Kumar R, Hunt CR, Gupta A, et al. (2011) Purkinje cell-specific males absent on the first (mMof) gene deletion results in an ataxia-telangiectasia-like neurological phenotype and backward walking in mice. Proc Natl Acad Sci U S A 108: 3636-3641. doi: 10.1073/pnas.1016524108 |
[53] | Sulli G, Di Micco R, d'Adda di Fagagna F (2012) Crosstalk between chromatin state and DNA damage response in cellular senescence and cancer. Nat Rev Cancer 12: 709-720. doi: 10.1038/nrc3344 |
[54] | Sharma GG, So S, Gupta A, et al. (2010) MOF and histone H4 acetylation at lysine 16 are critical for DNA damage response and double-strand break repair. Mol Cell Biol 30: 3582-3595. doi: 10.1128/MCB.01476-09 |
[55] | Branzei D, Foiani M (2008) Regulation of DNA repair throughout the cell cycle. Nat Rev Mol Cell Biol 9: 297-308. doi: 10.1038/nrm2351 |
[56] | Panier S, Boulton SJ (2014) Double-strand break repair: 53BP1 comes into focus. Nat Rev Mol Cell Biol 15: 7-18. |
[57] | Gupta A, Hunt CR, Pandita RK, et al. (2013) T-cell-specific deletion of Mof blocks their differentiation and results in genomic instability in mice. Mutagenesis 28: 263-270. doi: 10.1093/mutage/ges080 |
[58] | Fullgrabe J, Lynch-Day MA, Heldring N, et al. (2013) The histone H4 lysine 16 acetyltransferase hMOF regulates the outcome of autophagy. Nature 500: 468-471. doi: 10.1038/nature12313 |
[59] | Levine B, Kroemer G (2008) Autophagy in the pathogenesis of disease. Cell 132: 27-42. doi: 10.1016/j.cell.2007.12.018 |
[60] | Mizushima N, Levine B, Cuervo AM, et al. (2008) Autophagy fights disease through cellular self-digestion. Nature 451: 1069-1075. doi: 10.1038/nature06639 |
[61] | Fullgrabe J, Klionsky DJ, Joseph B (2013) Histone post-translational modifications regulate autophagy flux and outcome. Autophagy 9: 1621-1623. doi: 10.4161/auto.25803 |
[62] | Marino G, Niso-Santano M, Baehrecke EH, et al. (2014) Self-consumption: the interplay of autophagy and apoptosis. Nat Rev Mol Cell Biol 15: 81-94. doi: 10.1038/nrm3735 |
[63] | Wang Z, Zang C, Cui K, et al. (2009) Genome-wide mapping of HATs and HDACs reveals distinct functions in active and inactive genes. Cell 138: 1019-1031. doi: 10.1016/j.cell.2009.06.049 |
[64] | Li X, Li L, Pandey R, et al. (2012) The histone acetyltransferase MOF is a key regulator of the embryonic stem cell core transcriptional network. Cell Stem Cell 11: 163-178. doi: 10.1016/j.stem.2012.04.023 |
[65] | Liu Y, Long Y, Xing Z, et al. (2015) C-Jun recruits the NSL complex to regulate its target gene expression by modulating H4K16 acetylation and promoting the release of the repressive NuRD complex. Oncotarget 6: 14497-14506. doi: 10.18632/oncotarget.3988 |
[66] | Taylor GC, Eskeland R, Hekimoglu-Balkan B, et al. (2013) H4K16 acetylation marks active genes and enhancers of embryonic stem cells, but does not alter chromatin compaction. Genome Res 23: 2053-2065. doi: 10.1101/gr.155028.113 |
[67] | Fraga MF, Ballestar E, Villar-Garea A, et al. (2005) Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer. Nat Genet 37: 391-400. doi: 10.1038/ng1531 |
[68] | Pfister S, Rea S, Taipale M, et al. (2008) The histone acetyltransferase hMOF is frequently downregulated in primary breast carcinoma and medulloblastoma and constitutes a biomarker for clinical outcome in medulloblastoma. Int J Cancer 122: 1207-1213. |
[69] | Kapoor-Vazirani P, Kagey JD, Vertino PM (2011) SUV420H2-mediated H4K20 trimethylation enforces RNA polymerase II promoter-proximal pausing by blocking hMOF-dependent H4K16 acetylation. Mol Cell Biol 31: 1594-1609. |
[70] | Cao L, Zhu L, Yang J, et al. (2014) Correlation of low expression of hMOF with clinicopathological features of colorectal carcinoma, gastric cancer and renal cell carcinoma. Int J Oncol 44: 1207-1214. |
[71] | Wang Y, Zhang R, Wu D, et al. (2013) Epigenetic change in kidney tumor: downregulation of histone acetyltransferase MYST1 in human renal cell carcinoma. J Exp Clin Cancer Res 32: 8. doi: 10.1186/1756-9966-32-8 |
[72] | Zhu L, Yang J, Zhao L, et al. (2015) Expression of hMOF, but not HDAC4, is responsible for the global histone H4K16 acetylation in gastric carcinoma. Int J Oncol 46: 2535-2545. |
[73] | Cai M, Hu Z, Liu J, et al. (2015) Expression of hMOF in different ovarian tissues and its effects on ovarian cancer prognosis. Oncol Rep 33: 685-692. |
[74] | Liu N, Zhang R, Zhao X, et al. (2013) A potential diagnostic marker for ovarian cancer: Involvement of the histone acetyltransferase, human males absent on the first. Oncol Lett 6: 393-400. |
[75] | Zhang J, Liu H, Pan H, et al. (2014) The histone acetyltransferase hMOF suppresses hepatocellular carcinoma growth. Biochem Biophys Res Commun 452: 575-580. |
[76] | Song JS CS, Lee JY, Kim DK, Kim YH, Jang SJ (2011) The Histone Acetyltransferase hMOF is Overexpressed in Non-small Cell Lung Carcinoma. J Pathol Transl Med 45: 386-396. |
[77] | Zhao L, Wang DL, Liu Y, et al. (2013) Histone acetyltransferase hMOF promotes S phase entry and tumorigenesis in lung cancer. Cell Signal 25: 1689-1698. doi: 10.1016/j.cellsig.2013.04.006 |