Citation: Bertrand R. Caré, Pierre-Emmanuel Emeriau, Ruggero Cortini, Jean-Marc Victor. Chromatin epigenomic domain folding: size matters[J]. AIMS Biophysics, 2015, 2(4): 517-530. doi: 10.3934/biophy.2015.4.517
[1] | Zentner GE, Henikoff S (2013) Regulation of nucleosome dynamics by histone modifications. Nat Struct Mol Biol 20: 259-266. doi: 10.1038/nsmb.2470 |
[2] | Ho JWK, Jung YL, Liu T, et al. (2014) Comparative analysis of metazoan chromatin organization. Nature 512: 449-452. doi: 10.1038/nature13415 |
[3] | Amin V, Harris RA, Onuchic V, et al. (2015) Epigenomic footprints across 111 reference epigenomes reveal tissue-specific epigenetic regulation of lincRNAs. Nat Commun 6: 6370. doi: 10.1038/ncomms7370 |
[4] | Roadmap Epigenomics Consortium, Kundaje A, Meuleman W, Ernst J, et al. (2015) Integrative analysis of 111 reference human epigenomes. Nature 518: 317-330. Available from: http://www.nature.com/nature/journal/v518/n7539/abs/nature14248.html. doi: 10.1038/nature14248 |
[5] | Cantone I, Fisher AG (2013) Epigenetic programming and reprogramming during development. Nat Struct Mol Biol 20: 282-289. doi: 10.1038/nsmb.2489 |
[6] | Zhu J, Adli M, Zou JY, et al. (2013) Genome-wide chromatin state transitions associated with developmental and environmental cues. Cell 152: 642-654. doi: 10.1016/j.cell.2012.12.033 |
[7] | Chen T, Dent SYR (2014) Chromatin modifiers and remodellers: regulators of cellular differentiation. Nat Rev Genet 15: 93-106. |
[8] | Lieberman-Aiden E, van Berkum NL, Williams L, et al. (2009) Comprehensive mapping of longrange interactions reveals folding principles of the human genome. Science (New York NY) 326: 289-293. doi: 10.1126/science.1181369 |
[9] | Rao SSP, Huntley MH, Durand NC, et al. (2014) A 3d map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 159: 1665-1680. doi: 10.1016/j.cell.2014.11.021 |
[10] | Dixon JR, Selvaraj S, Yue F, et al. (2012) Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485:376-380. doi: 10.1038/nature11082 |
[11] | Sexton T, Yaffe E, Kenigsberg E, et al. (2012) Three-dimensional folding and functional organization principles of the drosophila genome. Cell 148: 458-472. doi: 10.1016/j.cell.2012.01.010 |
[12] | Nora EP, Lajoie BR, Schulz EG, et al. (2012) Spatial partitioning of the regulatory landscape of the x-inactivation centre. Nature 485: 381-385. doi: 10.1038/nature11049 |
[13] | Palstra RJ, Tolhuis B, Splinter E, et al. (2003) The beta-globin nuclear compartment in development and erythroid differentiation. Nat Genet 35: 190-194. doi: 10.1038/ng1244 |
[14] | Zhang Y, Wong CH, Birnbaum RY, et al. (2013) Chromatin connectivity maps reveal dynamic promoter-enhancer long-range associations. Nature 504: 306-310. doi: 10.1038/nature12716 |
[15] | Le Dily F, BaùD, Pohl A, et al. (2014) Distinct structural transitions of chromatin topological domains correlate with coordinated hormone-induced gene regulation. Genes Dev 28: 2151-2162. doi: 10.1101/gad.241422.114 |
[16] | Li G, Ruan X, Auerbach RK, et al. (2012) Extensive promoter-centered chromatin interactions provide a topological basis for transcription regulation. Cell 148: 84-98. Available from: http: //www.cell.com/article/S0092867411015170/abstract. doi: 10.1016/j.cell.2011.12.014 |
[17] | Filion GJ, van Bemmel JG, Braunschweig U, et al. (2010) Systematic protein location mapping reveals five principal chromatin types in drosophila cells. Cell 143: 212-224. doi: 10.1016/j.cell.2010.09.009 |
[18] | Ernst J, Kheradpour P, Mikkelsen TS, et al. (2011) Mapping and analysis of chromatin state dynamics in nine human cell types. Nature 473: 43-49. doi: 10.1038/nature09906 |
[19] | Boulé JB, Mozziconacci J, Lavelle C (2015) The polymorphisms of the chromatin fiber. J Phys Condens Matter 27: 033101. Available from: http://iopscience.iop.org/0953-8984/27/3/033101. doi: 10.1088/0953-8984/27/3/033101 |
[20] | Barbieri M, Fraser J, Lavitas LM, et al. (2013) A polymer model explains the complexity of largescale chromatin folding. Nucleus Austin Tex 4: 267-273. |
[21] | Nicodemi M, Pombo A (2014) Models of chromosome structure. Curr Opin Cell Biol 28: 90-95. doi: 10.1016/j.ceb.2014.04.004 |
[22] | Giorgetti L, Galupa R, Nora EP, et al. (2014) Predictive polymer modeling reveals coupled fluctuations in chromosome conformation and transcription. Cell 157: 950-963. doi: 10.1016/j.cell.2014.03.025 |
[23] | Jost D, Carrivain P, Cavalli G, et al. (2014) Modeling epigenome folding: formation and dynamics of topologically associated chromatin domains. Nucleic Acids Res 42: 9553-9561. doi: 10.1093/nar/gku698 |
[24] | Caré BR, Carrivain P, Forné T, et al. (2014) Finite-size conformational transitions: A unifying concept underlying chromosome dynamics. Commun Theor Phys 62: 607. Available from: http://iopscience.iop.org/0253-6102/62/4/18. doi: 10.1088/0253-6102/62/4/18 |
[25] | Gennes PG (1979) Scaling Concepts in Polymer Physics, Cornell University Press, Ithaca, NY. |
[26] | Imbert JB, Lesne A, Victor JM (1997) Distribution of the order parameter of the coil-globule transition. Phys Rev E 56: 5630-5647. Available from: http://link.aps.org/doi/10.1103/PhysRevE.56.5630. doi: 10.1103/PhysRevE.56.5630 |
[27] | Ponmurugan M, Narasimhan SL, Krishna PSR, et al. (2007) Coil-globule transition of a single short polymer chain: an exact enumeration study. J Chem Phys 126: 144906. doi: 10.1063/1.2719195 |
[28] | Baumg C, Srtner A (1980) Statics and dynamics of the freely jointed polymer chain with lennardb jones interaction. J Chem Phys 72: 871-879. Available from: http://scitation.aip.org/content/aip/journal/jcp/72/2/10.1063/1.439242. doi: 10.1063/1.439242 |
[29] | Hsu HP (2014) Monte carlo simulations of lattice models for single polymer systems. J Chem Phys 141: 164903. Available from: http://scitation.aip.org/content/aip/journal/jcp/141/16/10.1063/1.4899258. doi: 10.1063/1.4899258 |
[30] | Yoshikawa K, Matsuzawa Y (1995) Discrete phase transition of giant DNA dynamics of globule formation from a single molecular chain. Physica D: Nonlinear Phenomena 84: 220-227. Available from: http://www.sciencedirect.com/science/article/pii/0167278995000205. doi: 10.1016/0167-2789(95)00020-5 |
[31] | Caré BR (2013) Cgmdode : Coarse-grained macromolecular dynamics with open dynamics engine. Available from: https://bitbucket.org/bcare/cgmdode-hg. |
[32] | Bussi G, Parrinello M (2008) Stochastic thermostats: comparison of local and global schemes. Comput Phys Commun 179: 26-29. Available from: http://www.sciencedirect.com/ science/article/pii/S0010465508000106. doi: 10.1016/j.cpc.2008.01.006 |
[33] | Carrivain P, Barbi M, Victor JM (2014) In silico single-molecule manipulation of DNA with rigid body dynamics, PLoS Comput Biol 10: e1003456. http://www.ncbi.nlm.nih.gov/pmc/ articles/PMC3930497/. |
[34] | Cortini R, Caré BR, Victor JM, et al. (2015) Theory and simulations of toroidal and rod-like structures in single-molecule DNA condensation. J Chem Phys 142: 105102. Available from: http://scitation.aip.org/content/aip/journal/jcp/142/10/10.1063/1.4914513. doi: 10.1063/1.4914513 |
[35] | Maeshima K, Imai R, Tamura S, et al. (2014) Chromatin as dynamic 10-nm fibers. Chromosoma 123: (2014), 225-237. |
[36] | Fierz B (2014) Synthetic chromatin approaches to probe the writing and erasing of histone modifications. Chem Med Chem 9: 495-504. doi: 10.1002/cmdc.201300487 |
[37] | Dodd IB, Sneppen K (2011) Barriers and silencers: a theoretical toolkit for control and containment of nucleosome-based epigenetic states. J Mol Biol 414: 624-637. doi: 10.1016/j.jmb.2011.10.027 |
[38] | Dayarian A, Sengupta AM (2013) Titration and hysteresis in epigenetic chromatin silencing. Phys Biol 10: 036005. doi: 10.1088/1478-3975/10/3/036005 |
[39] | Nagano T, Lubling Y, Stevens TJ, et al. (2013) Single-cell hi-c reveals cell-to-cell variability in chromosome structure. Nature 502: 59-64. Available from: http://www.nature.com/nature/journal/v502/n7469/full/nature12593.html. doi: 10.1038/nature12593 |