Citation: Bennet Brockhagen, Jan Lukas Storck, Timo Grothe, Robin Böttjer, Andrea Ehrmann. Improved growth and harvesting of microalgae Chlorella vulgaris on textile fabrics as 2.5D substrates[J]. AIMS Bioengineering, 2021, 8(1): 16-24. doi: 10.3934/bioeng.2021003
[1] | González-Fernández C, Sialve B, Bernet N, et al. (2012) Impact of microalgae characteristics on their conversion to biofuel. Part I: focus on cultivation and biofuel production. Biofuels Bioprod Biorefin 6: 105-113. doi: 10.1002/bbb.338 |
[2] | Fradique M, Batista AP, Nunes MC, et al. (2010) Incorporation of Chlorella vulgaris and Spirulina maxima biomass in pasta products. Part 1: preparation and evaluation. J Sci Food Agric 90: 1656-1664. doi: 10.1002/jsfa.3999 |
[3] | Becker W (2004) Microalgae in human and animal nutrition. Handbook of Microalgal Culture: Biotechnology and Applied Phycology Oxford: Blackwell, 312-351. |
[4] | Borowitzka MA (1999) Commercial production of microalgae: ponds, tanks, tubes and fermenters. J Biotechnol 70: 313-321. doi: 10.1016/S0168-1656(99)00083-8 |
[5] | Pulz O, Scheibenbogen K (1998) Photobioreactors: design and performance with respect to light energy input. Bioprocess and Algae Reactor Technology, Apoptosis Heidelberg: Springer, 123-151. doi: 10.1007/BFb0102298 |
[6] | Chaumont D (1993) Biotechnology of algal biomass production: a review of systems for outdoor mass culture. J Appl Phycol 5: 593-604. doi: 10.1007/BF02184638 |
[7] | Day JG, Gong YC, Hu Q (2017) Microzooplanktonic grazers—A potentially devastating threat to the commercial success of microalgal mass culture. Algal Res 27: 356-365. doi: 10.1016/j.algal.2017.08.024 |
[8] | Iwamoto H (2004) Industrial production of microalgal cell-mass and secondary products—major industrial species: Chlorella. Handbook of Microalgal Culture: Biotechnology and Applied Phycology Oxford: Blackwell, 253-263. |
[9] | Pulz O, Gross W (2004) Valuable products from biotechnology of microalgae. Appl Microbiol Biotechnol 65: 635-648. doi: 10.1007/s00253-004-1647-x |
[10] | Lee YK (2001) Microalgal mass culture systems and methods: Their limitation and potential. J Appl Phycol 13: 307-315. doi: 10.1023/A:1017560006941 |
[11] | Souza Queiroz J, Barbosa CMV, da Rocha MC, et al. (2012) Chlorella vulgaris treatment ameliorates the suppressive effects of single and repeated stressors on hematopoiesis. Brain Behav Immun 29: 39-50. doi: 10.1016/j.bbi.2012.12.001 |
[12] | Morris HJ, Carillo OV, Almarales Á, et al. (2009) Protein hydrolysates from the alga Chlorella vulgaris 87/1 with potentialities in immunonutrition. Biotechnol Appl 26: 162-165. |
[13] | Justo GZ, Silva MR, Queiroz ML (2001) Effects of the green algae Chlorella vulgaris on the response of the host hematopoietic system to intraperitoneal ehrlich ascites tumor transplantation in mice. Immunopharmacol Immunotoxicol 23: 119-132. doi: 10.1081/IPH-100102573 |
[14] | Morimoto T, Nagatsu A, Murakami N, et al. (1995) Anti-tumour-promoting glyceroglycolipids from the green alga Chlorella vulgaris. Phytochemistry 40: 1433-1437. doi: 10.1016/0031-9422(95)00458-J |
[15] | Sano T, Tanaka Y (1987) Effect of dried, powdered Chlorella vulgaris on experimental atherosclerosis and alimentary hypercholesterolemia in cholesterol-fed rabbits. Artery 14: 76-84. |
[16] | Borowitzka MA (2013) High-value products from microalgae—their development and commercialisation. J Appl Phycol 25: 743-756. doi: 10.1007/s10811-013-9983-9 |
[17] | Ozkan A, Kinney K, Katz L, et al. (2012) Reduction of water and energy requirement of algae cultivation using an algae biofilm photobioreactor. Bioresour Technol 114: 542-548. doi: 10.1016/j.biortech.2012.03.055 |
[18] | Johnson MB, Wen Z (2010) Development of an attached microalgal growth system for biofuel production. Appl Microbiol Biotechnol 85: 525-534. doi: 10.1007/s00253-009-2133-2 |
[19] | Sekar R, Venugopalan V, Satpathy K, et al. (2004) Laboratory studies on adhesion of microalgae to hard substrates. Hydrobiologia 512: 109-116. doi: 10.1023/B:HYDR.0000020315.40349.38 |
[20] | Ozkan A, Berberoglu H (2013) Adhesion of algal cells to surfaces. Biofouling 29: 469-482. doi: 10.1080/08927014.2013.782397 |
[21] | Gao F, Yang Z-H, Li C, et al. (2015) A novel algal biofilm membrane photobioreactor for attached microalgae growth and nutrients removal from secondary effluent. Bioresour Technol 179: 8-12. doi: 10.1016/j.biortech.2014.11.108 |
[22] | Melo M, Fernandes S, Caetano N, et al. (2018) Chlorella vulgaris (SAG 211-12) biofilm formation capacity and proposal of a rotating flat plate photobioreactor for more sustainable biomass production. J Appl Phycol 30: 887-899. doi: 10.1007/s10811-017-1290-4 |
[23] | Shen Y, Yang T, Zhu W, et al. (2017) Wastewater treatment and biofuel production through attached culture of Chlorella vulgaris in a porous substratum biofilm reactor. J Appl Phycol 29: 833-841. doi: 10.1007/s10811-016-0981-6 |
[24] | Shen Y, Zhu W, Chen C, et al. (2016) Biofilm formation in attached microalgal reactors. Bioproc Biosyst Eng 39: 1281-1288. doi: 10.1007/s00449-016-1606-9 |
[25] | Großerhode C, Wehlage D, Grothe D, et al. (2017) Investigation of microalgae growth on electrospun nanofiber mats. AIMS Bioengineering 4: 376-385. doi: 10.3934/bioeng.2017.3.376 |
[26] | Böttjer R, Storck JL, Vahle D, et al. (2019) Influence of textile and environmental parameters on plant growth on vertically mounted knitted fabrics. Tekstilec 62: 200-207. doi: 10.14502/Tekstilec2019.62.200-207 |
[27] | Storck JL, Böttjer R, Vahle D, et al. (2019) Seed germination and seedling growth on knitted fabrics as new substrates for hydroponic systems. Horticulturae 5: 73. doi: 10.3390/horticulturae5040073 |
[28] | Gorman DS, Levine RP (1965) Cytochrome f and plastocyanin: their sequence in the photosynthetic electron transport chain of Chlamydomonas reinhardi. Proc Natl Acad Sci USA 54: 1665-1669. doi: 10.1073/pnas.54.6.1665 |
[29] | Latala A, Nędzi M, Stepnowski P (2009) Acute toxicity assessment of perfluorinated carboxylic acids towards the Baltic microalgae. Environment Toxicol Pharmacol 28: 167-171. doi: 10.1016/j.etap.2009.03.010 |
[30] | Jacobi A, Steinweg C, Sastre RR, et al. (2012) Advanced photobioreactor LED illumination system: Scale-down approach to study microalgal growth kinetics. Eng Life Sci 12: 621-630. doi: 10.1002/elsc.201200004 |
[31] | Sebök S, Brockhagen B, Storck JL, et al. (2020) Growth of marine macroalgae Ectocarpus sp. on various textile substrates. doi: 10.1080/09593330.2020.1829086 |
[32] | Atta M, Idris A, Bukhari A, et al. (2013) Intensity of blue LED light: A potential stimulus for biomass and lipid content in fresh water microalgae Chlorella vulgaris. Bioresour Technol 148: 373-378. doi: 10.1016/j.biortech.2013.08.162 |
[33] | Bhola V, Desikan R, Santosh SH, et al. (2011) Effects of parameters affecting biomass yield and thermal behaviour of Chlorella vulgaris. J Biosci Bioeng 111: 377-382. doi: 10.1016/j.jbiosc.2010.11.006 |
[34] | Sasi D, Mitra P, Vigueras A, et al. (2011) Growth kinetics and lipid production using Chlorella vulgaris in a circulating loop photobioreactor. J Chem Technol Biotechnol 86: 875-880. doi: 10.1002/jctb.2603 |
[35] | Zhang Q, Yu ZG, Jin SP, et al. (2019) Lignocellulosic residue as bio-carrier for algal biofilm growth: Effects of carrier physicochemical proprieties and toxicity on algal biomass production and composition. Bioresour Technol 293: 122091. doi: 10.1016/j.biortech.2019.122091 |