Citation: Velislava N Lyubenova, Maya N Ignatova. On-line estimation of physiological states for monitoring and control of bioprocesses[J]. AIMS Bioengineering, 2017, 4(1): 93-112. doi: 10.3934/bioeng.2017.1.93
[1] | Fredriksson J (2001) Probing control of glucose feeding in cultivation of Saccharomyces cerevisiae, Master Thesis, Department of Automatic Control, Lund University, Sweden. |
[2] | Ignatova M, Patarinska T, Lubenova, et al. (2003) Adaptive stabilization of ethanol production during the continuous fermentation of Saccharomyces cerevisiae. Proc Contr Theor Appl 150: 666–672. doi: 10.1049/ip-cta:20030872 |
[3] | Jana S, Deb J (2005) Strategies for efficient production of heterologous proteins in Escherichia coli..Appl Microbiol Biot 67: 289–298. doi: 10.1007/s00253-004-1814-0 |
[4] | Koh B, Nakashimada U, Pfeiffer M, et al. (1992) Comparison of acetate inhibition on growth of host and recombinant E. coli K12 strains. Biotechnol.Lett 14: 1115–1118. |
[5] | Li Y, Chen J, Mao Y, et al. (1998) Effect of additives and fed-batch culture strategies on the production of glutathione by recombinant Escherichia coli. Process Biochem 33: 709–714. |
[6] | Lubenova V, Rocha I, Ferreira E (2003) Estimation of multiple biomass growth rates and biomass concentration in a class of bioprocesses. Bioproc Biosyst Eng 25: 395–406. doi: 10.1007/s00449-003-0325-1 |
[7] | Lyubenova V, Ignatova M, Zlateva P (2003) Adaptive control of protein production during fed-batch fermentation of E. coli..Proc Int Conf Automatic Inform 1: 179–182. |
[8] | Lyubenova V, Rocha I, Ferreira E (2003) Estimation of biomass concentration and multiple specific growth rates of fed-batch fermentation of recombinant E. coli. Proc Int Conf Automatic Inform 1: 211–214. |
[9] | Altintas M, Kirdar B, Önsan I, et al. (2002) Cybernetic modelling of growth and ethanol production in a recombinant Saccharomyces cerevisiae strain secreting a bifunctional fusion protein. Process Biochem 37: 1439–1445. |
[10] | Phisalaphong M, Srirattana N, Tanthapanichakoon W (2006) Mathematical modeling to investigate temperature effect on kinetic parameters of ethanol fermentation. Biochem Eng J 28: 36–43. |
[11] | Ülguen K, Saygili B, Önsan Z, et al. (2002) Bioconversion of starch into ethanol by a recombinant Saccharomyces cerevisiae strain YPG-AB. Process Biochem 37: 1157–1168. doi: 10.1016/S0032-9592(01)00333-8 |
[12] | Wang F, Su T, Jang H (2001) Hybrid differential evolution for problems of kinetic parameter estimation and dynamic optimization of an ethanol fermentation process. Ind Eng Chem Res 40: 2876–2885. |
[13] | Garsia M, Fernandes C, Banga J, et al. (2005) State reconstruction in spatially distributed bio-process system using reduced order models: application to the gluconic acid production. IEEE Conf Decis Contr, 6256–6261. |
[14] | Ignatova M, Lyubenova V, Fernandes C, et al. (2005) Model for control of gluconic acid fermentation by Aspergillus niger and its application for observers design. Agr Food Sci Proc Tehnol 2: 182–189. |
[15] | Ignatova M, Lyubenova V, García M, et al. (2006) Аdaptive linearizing control of gluconic acid fermentation by Аspergillus niger. Proc Int Conf.Automatic Informat 1: 81–84. |
[16] | Ignatova M, Lyubenova V, Garcia M, et al. (2008) Indirect adaptive linearizing control of a class of bioprocesses-Estimator tuning procedure. J Process Contr 18: 27–35. doi: 10.1016/j.jprocont.2007.06.001 |
[17] | Patnaik P (2005) Perspectives in the modeling and optimization of PHB production by pure and mixed cultures. Crit Rev Biotechnol 25: 153–171. doi: 10.1080/07388550500301438 |
[18] | Mazouni D, Ignatova M, Harmand J (2004) A simple mass balance model for biological sequencing batch reactors used for carbon and nitrogen removal. IFAC, 283–288. |
[19] | Simeonov I, Lyubenova V, Queinnec I, et al. (2001) Modelling, parameter and state estimation of the methane fermentation of organic wastes with addition of acetate. Proc Int Conf Automatic Informat, 41–44. |
[20] | Dias J, Serafim L, Lemos P, et al. (2005) Mathematical modeling of a mixed culture cultivation process for the production of polyhydroxybutyrate. Biotechnol Bioeng 92: 209–222. doi: 10.1002/bit.20598 |
[21] | Ganduri V, Ghost S, Patnaik P (2005) Mixing control as a device to increase PHB production in batch fermentations with co-cultures of L. delbrueckii and R. eutropa. Process Biochem 40: 257–264. doi: 10.1016/j.procbio.2004.01.012 |
[22] | Khanna S, Srivastava A (2005) A simple structured mathematical model for polymer (PHB) production. Biotechnol Progress 21: 830–838. |
[23] | Lyubenova V, Ignatova M, Novak M, et al. (2006) Model for control of fed-batch process for poly-b-hydroxybutyrate (PHB) production by mixed culture of L. delbrulckii and R. eutropha. Proc Int Sci Conf Food Sci Tech Technol, 99–104. |
[24] | Lyubenova V, Ignatova M, Novak M, et al (2007) Reaction rates estimators of fed-batch process for poly-b-hydroxybutyrate (PHB) production by mixed culture. Biotechnol Bio Eng 21: 113–116. |
[25] | Tohyama M, Patarinska T, Qiang Z, et al (2002) Modeling of mixed culture and periodic control for PHB production. Biochem Eng J 10: 157–173. doi: 10.1016/S1369-703X(01)00184-X |
[26] | Kroumov A, Módenes A, De Araujo T M (2006) Development of new unstructured model for simultaneous saccharification and fermentation of starch to ethanol by recombinant strain. Biochem Eng J 28: 243–255. doi: 10.1016/j.bej.2005.11.008 |
[27] | Ochoa S, Yoo A, Repke J, et al. (2007). Modeling and parameter identification of the simultaneous saccharification-fermentation process for ethanol production. Biotechnol Prog 23: 1454–1462. doi: 10.1021/bp0702119 |
[28] | Bastin G, Dochain D (1990) On-line estimation and adaptive control of bioreactors. Amsterdam, Oxford, New York, Tokyo, Elsevier, 378. |
[29] | Tohyama M, Patarinska T, Qiang Z, et al. (2002) Modeling of mixed culture and periodic control for PHB production. Bioch Eng J 10: 157–173. doi: 10.1016/S1369-703X(01)00184-X |