Citation: Daniel Pelaez, John H. Michel, Herman S. Cheung. Growth on elastic silicone substrate elicits a partial myogenic response in periodontal ligament derived stem cells[J]. AIMS Bioengineering, 2016, 3(4): 515-527. doi: 10.3934/bioeng.2016.4.515
[1] | Shimizu N, Yamamoto K, Obi S, et al. (2008) Cyclic strain induces mouse embryonic stem cell differentiation into vascular smooth muscle cells by activating PDGF receptor beta. J Appl Physio 104: 766–772. doi: 10.1152/japplphysiol.00870.2007 |
[2] | Gwak SJ, Bhang SH, Kim IK, et al. (2008) The effect of cyclic strain on embryonic stem cell-derived cardiomyocytes. Biomaterials 29: 844–856. doi: 10.1016/j.biomaterials.2007.10.050 |
[3] | Hwang YS, Cho J, Tay F, et al. (2009) The use of murine embryonic stem cells, alginate encapsulation, and rotary microgravity bioreactor in bone tissue engineering. Biomaterials 30: 499–507. doi: 10.1016/j.biomaterials.2008.07.028 |
[4] | Pelaez D, Huang CYC, Cheung HS (2009) Cyclic compression maintains viability and induces chondrogenesis of human mesenchymal stem cells in fibrin gel scaffolds. Stem Cells Dev 18: 93–102. doi: 10.1089/scd.2008.0030 |
[5] | Park JS, Huang NF, Kurpinski KT, et al. (2007) Mechanobiology of mesenchymal stem cells and their use in cardiovascular repair. Front Biosci 12: 5098–5116. doi: 10.2741/2551 |
[6] | Kurpinski K, Chu J, Hashi C, et al. (2006) Anisotropic mechanosensing by mesenchymal stem cells. Proc Natl Acad Sci USA 103: 16095–16100. doi: 10.1073/pnas.0604182103 |
[7] | Schmelter M, Ateghang B, Helmig S, et al. (2006) Embryonic stem cells utilize reactive oxygen species as transducers of mechanical strain-induced cardiovascular differentiation. FASEB J 20: 1182–1184. doi: 10.1096/fj.05-4723fje |
[8] | Evans ND, Minelli C, Gentleman E, et al. (2009) Substrate stiffness affects early differentiation events in embryonic stem cells. Eur Cell Mater 18: 1–14. |
[9] | Colley H, McArthur SL, Stolzing A, et al. (2012) Culture on fibrin matrices maintains the colony-forming capacity and osteoblastic differentiation of mesenchymal stem cells. Biomed Mater 7: 45015. doi: 10.1088/1748-6041/7/4/045015 |
[10] | Li S, Huang NF, Hsu S (2005) Mechanotransduction in endothelial cell migration. J Cell Biochem 96: 1110–1126. doi: 10.1002/jcb.20614 |
[11] | Rosenbluth MJ, Crow A, Shaevitz JW, et al. (2008) Slow stress propagation in adherent cells. Biophys J 95: 6052–6059. doi: 10.1529/biophysj.108.139139 |
[12] | Follonier L, Schaub S, Meister JJ, et al. (2008) Myofibroblast communication is controlled by intercellular mechanical coupling. J Cell Sci 121: 3305–3316. doi: 10.1242/jcs.024521 |
[13] | Invernici G, Cristini S, Madeddu P, et al. (2008) Human adult skeletal muscle stem cells differentiate into cardiomyocyte phenotype in vitro. Exp Cell Res 314: 366–376. doi: 10.1016/j.yexcr.2007.08.006 |
[14] | Jacot JG, McCulloch AD, Omens JH (2008) Substrate stiffness affects the functional maturation of neonatal rat ventricular myocytes. Biophys J 95: 3479–3487. doi: 10.1529/biophysj.107.124545 |
[15] | Engler AJ, Carag-Krieger C, Johnson CP, et al. (2008) Embryonic cardiomyocytes beat best on a matrix with heart-like elasticity: scar-like rigidity inhibits beating. J Cell Sci 121: 3794–3802. doi: 10.1242/jcs.029678 |
[16] | Ren K, Crouzier T, Roy C, et al. (2008) Polyelectrolyte multilayer films of controlled stiffness modulate myoblast cells differentiation. Adv Funct Mater 18: 1378–1389. doi: 10.1002/adfm.200701297 |
[17] | Winer JP, Janmey PA, McCormick ME, et al. (2009) Bone marrow-derived human mesenchymal stem cells become quiescent on soft substrates but remain responsive to chemical or mechanical stimuli. Tissue Eng Part A 15: 147–154. |
[18] | Solon J, Levental I, Sengupta K, et al. (2007) Fibroblast adaptation and stiffness matching to soft elastic substrates. Biophys J 93: 4453–4461. doi: 10.1529/biophysj.106.101386 |
[19] | Paszek MJ, Boettiger D, Weaver VM, et al. (2009) Integrin Clustering Is Driven by Mechanical Resistance from the Glycocalyx and the Substrate PLoS Comput Biol 5: e1000604. |
[20] | Pelham RJ, Wang YL (1998) Cell locomotion and focal adhesions are regulated by the mechanical properties of the substrate. Biol Bull 194: 348–350. doi: 10.2307/1543109 |
[21] | Huang CYC, Pelaez D, Dominguez-Bendala J, et al. (2009) Plasticity of stem cells derived from adult periodontal ligament. Regen Med 4: 809–821. doi: 10.2217/rme.09.55 |
[22] | Hiesinger W, Brukman MJ, McCormick RC, et al. (2012) Myocardial tissue elastic properties determined by atomic force microscopy after stromal cell-derived factor 1α angiogenic therapy for acute myocardial infarction in a murine model. J Thorac Cardiovasc Surg 143: 962–966. doi: 10.1016/j.jtcvs.2011.12.028 |
[23] | Gilbert PM, Havenstrite KL, Magnusson KEG, et al. (2010) Substrate elasticity regulates skeletal muscle stem cell self-renewal in culture. Science 329: 1078–1081. doi: 10.1126/science.1191035 |
[24] | Avallone E, Baumeister III T, Sadegh A, (2007) N.A., In: N.A., Marks’ Standard Handbook for Mechanical Engineers, 11 Eds., McGraw-Hill Education. |
[25] | Material properties specification sheet: Bioflex membrane, 2006. |
[26] | Katzengold R, Shoham N, Benayahu D, et al. (2015) Simulating single cell experiments in mechanical testing of adipocytes. Biomech Model Mechanobiol 14: 537–547. doi: 10.1007/s10237-014-0620-6 |
[27] | Rowlands AS, George PA, Cooper-White JJ (2008) Directing osteogenic and myogenic differentiation of MSCs: interplay of stiffness and adhesive ligand presentation. Am J Physiol Cell Physiol 295: C1037–C1044. doi: 10.1152/ajpcell.67.2008 |
[28] | Georges PC, Janmey PA (2005) Cell type-specific response to growth on soft materials. J Appl Physiol 98: 1547–1553. doi: 10.1152/japplphysiol.01121.2004 |