Citation: Hadi Nazem-Bokaee, Ryan S. Senger. ToMI-FBA: A genome-scale metabolic flux based algorithm to select optimum hosts and media formulations for expressing pathways of interest[J]. AIMS Bioengineering, 2015, 2(4): 335-374. doi: 10.3934/bioeng.2015.4.335
[1] | Hanai T, Atsumi S, Liao JC (2007) Engineered synthetic pathway for isopropanol production in Escherichia coli. Appl Environ Microbiol 73: 7814-7818. |
[2] | Atsumi S, Cann AF, Connor MR, et al. (2008) Metabolic engineering of Escherichia coli for 1-butanol production. Metabolic Eng 10: 305-311. doi: 10.1016/j.ymben.2007.08.003 |
[3] | Connor MR, Liao JC (2008) Engineering of an Escherichia coli strain for the production of 3-methyl-1-butanol. Appl Environ Microbiol 74: 5769-5775. doi: 10.1128/AEM.00468-08 |
[4] | McKenna R, Nielsen DR (2011) Styrene biosynthesis from glucose by engineered E. coli. Metabolic Eng 13: 544-554. doi: 10.1016/j.ymben.2011.06.005 |
[5] | McKenna R, Pugh S, Thompson B, et al. (2013) Microbial production of the aromatic building-blocks (S)-styrene oxide and (R)-1,2-phenylethanediol from renewable resources. Biotechnol J 8: 1465-1475. |
[6] | Moon TS, Dueber JE, Shiue E, et al. (2010) Use of modular, synthetic scaffolds for improved production of glucaric acid in engineered E. coli. Metabolic Eng 12: 298-305. doi: 10.1016/j.ymben.2010.01.003 |
[7] | Tseng HC, Martin CH, Nielsen DR, et al. (2009) Metabolic engineering of Escherichia coli for enhanced production of (R)- and (S)-3-hydroxybutyrate. Appl Environ Microbiol 75: 3137-3145. doi: 10.1128/AEM.02667-08 |
[8] | Ajikumar PK, Xiao WH, Tyo KE, et al. (2010) Isoprenoid pathway optimization for Taxol precursor overproduction in Escherichia coli. Science 330: 70-74. doi: 10.1126/science.1191652 |
[9] | Engels B, Dahm P, Jennewein S (2008) Metabolic engineering of taxadiene biosynthesis in yeast as a first step towards Taxol (Paclitaxel) production. Metabolic Eng 10: 201-206. doi: 10.1016/j.ymben.2008.03.001 |
[10] | Scaife MA, Burja AM, Wright PC (2009) Characterization of cyanobacterial beta-carotene ketolase and hydroxylase genes in Escherichia coli, and their application for astaxanthin biosynthesis. Biotechnol Bioeng 103: 944-955. doi: 10.1002/bit.22330 |
[11] | Lemuth K, Steuer K, Albermann C (2011) Engineering of a plasmid-free Escherichia coli strain for improved in vivo biosynthesis of astaxanthin. Microb Cell Fact10: 29. |
[12] | Tsuruta H, Paddon CJ, Eng D, et al. (2009) High-level production of amorpha-4,11-diene, a precursor of the antimalarial agent artemisinin, in Escherichia coli. PloS One 4: e4489. doi: 10.1371/journal.pone.0004489 |
[13] | Becker J, Wittmann C (2012) Bio-based production of chemicals, materials and fuels -Corynebacterium glutamicum as versatile cell factory. Curr Opin Biotechnol 23: 631-640. |
[14] | Lindberg P, Park S, Melis A (2010) Engineering a platform for photosynthetic isoprene production in cyanobacteria, using Synechocystis as the model organism. Metabolic Eng 12: 70-79. doi: 10.1016/j.ymben.2009.10.001 |
[15] | Hatzimanikatis V, Li C, Ionita JA, et al. (2005) Exploring the diversity of complex metabolic networks. Bioinformatics 21: 1603-1609. doi: 10.1093/bioinformatics/bti213 |
[16] | Finley SD, Broadbelt LJ, Hatzimanikatis V (2009) Computational framework for predictive biodegradation. Biotechnol Bioeng 104: 1086-1097. doi: 10.1002/bit.22489 |
[17] | Henry CS, Broadbelt LJ, Hatzimanikatis V (2010) Discovery and analysis of novel metabolic pathways for the biosynthesis of industrial chemicals: 3-hydroxypropanoate. Biotechnol Bioeng 106: 462-473. |
[18] | Fisher AK, Freedman BG, Bevan DR, et al. (2014) A review of metabolic and enzymatic engineering strategies for designing and optimizing performance of microbial cell factories. Comput Struct Biotechnol J 11: 91-99. doi: 10.1016/j.csbj.2014.08.010 |
[19] | Lee SK, Chou H, Ham TS, et al. (2008) Metabolic engineering of microorganisms for biofuels production: from bugs to synthetic biology to fuels. Curr Opin Biotechnol 19: 556-563. |
[20] | McEwen JT, Atsumi S (2012) Alternative biofuel production in non-natural hosts. Curr Opin Biotechnol 23: 744-750. |
[21] | Jang YS, Park JM, Choi S, et al. (2012) Engineering of microorganisms for the production of biofuels and perspectives based on systems metabolic engineering approaches. Biotechnol Adv 30: 989-1000. doi: 10.1016/j.biotechadv.2011.08.015 |
[22] | Atsumi S, Hanai T, Liao JC (2008) Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature 451: 86-89. doi: 10.1038/nature06450 |
[23] | Atsumi S, Higashide W, Liao JC (2009) Direct photosynthetic recycling of carbon dioxide to isobutyraldehyde. Nat Biotechnol 27: 1177-1180. doi: 10.1038/nbt.1586 |
[24] | Smith KM, Cho KM, Liao JC (2010) Engineering Corynebacterium glutamicum for isobutanol production. Appl Microbiol Biotechnol 87: 1045-1055. doi: 10.1007/s00253-010-2522-6 |
[25] | Jia X, Li S, Xie S, et al. (2011) Engineering a metabolic pathway for isobutanol biosynthesis in Bacillus subtilis. Appl Biochem Biotechnol 168: 1-9. |
[26] | Chen X, Nielsen KF, Borodina I, et al. (2011) Increased isobutanol production in Saccharomyces cerevisiae by overexpression of genes in valine metabolism. Biotechnol Biofuels 4: 21. doi: 10.1186/1754-6834-4-21 |
[27] | Higashide W, Li Y, Yang Y, et al. (2011) Metabolic engineering of Clostridium cellulolyticum for production of isobutanol from cellulose. Appl Environ Microbiol 77: 2727-2733. |
[28] | Orth JD, Thiele I, Palsson BO (2010) What is flux balance analysis? Nat Biotechnol 28: 245-248. doi: 10.1038/nbt.1614 |
[29] | Varma A, Palsson BO (1994) Metabolic flux balancing - basic concepts, scientific and practical use. Bio-Technol 12: 994-998. doi: 10.1038/nbt1094-994 |
[30] | Reed JL, Palsson BO (2004) Genome-scale in silico models of E. coli have multiple equivalent phenotypic states: assessment of correlated reaction subsets that comprise network states. Genome Res 14: 1797-1805. |
[31] | Henry CS, DeJongh M, Best AA, et al. (2010) High-throughput generation, optimization and analysis of genome-scale metabolic models. Nat Biotechnol 28: 977-982. doi: 10.1038/nbt.1672 |
[32] | Devoid S, Overbeek R, DeJongh M, et al. (2013) Automated genome annotation and metabolic model reconstruction in the SEED and Model SEED. Methods Mol Biol 985: 17-45. doi: 10.1007/978-1-62703-299-5_2 |
[33] | DeJongh M, Formsma K, Boillot P, et al. (2007) Toward the automated generation of genome-scale metabolic networks in the SEED. BMC Bioinformatics 8: 139. doi: 10.1186/1471-2105-8-139 |
[34] | Zakrzewski P, Medema MH, Gevorgyan A, et al. (2012) MultiMetEval: comparative and multi-objective analysis of genome-scale metabolic models. PloS One 7: e51511. doi: 10.1371/journal.pone.0051511 |
[35] | Hucka M, Finney A, Sauro HM, et al. (2003) The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models. Bioinformatics 19: 524-531. doi: 10.1093/bioinformatics/btg015 |
[36] | Schellenberger J, Que R, Fleming RM, et al. (2011) Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox v2.0. Nat Protoc 6: 1290-1307. doi: 10.1038/nprot.2011.308 |
[37] | McAnulty MJ, Yen JY, Freedman BG, et al. (2012) Genome-scale modeling using flux ratio constraints to enable metabolic engineering of clostridial metabolism in silico. BMC Syst Biol 6: 42. doi: 10.1186/1752-0509-6-42 |
[38] | Yen JY, Nazem-Bokaee H, Freedman BG, et al. (2013) Deriving metabolic engineering strategies from genome-scale modeling with flux ratio constraints. Biotechnol J 8: 581-594. |
[39] | de Oliveira Dal'Molin CG, Quek LE, Palfreyman RW, et al. (2010) AraGEM, a genome-scale reconstruction of the primary metabolic network in Arabidopsis. Plant Physiol 152: 579-589. doi: 10.1104/pp.109.148817 |
[40] | Duarte NC, Herrgard MJ, Palsson BO (2004) Reconstruction and validation of Saccharomyces cerevisiae iND750, a fully compartmentalized genome-scale metabolic model. Genome Res 14: 1298-1309. doi: 10.1101/gr.2250904 |
[41] | Nogales J, Gudmundsson S, Knight EM, et al. (2012) Detailing the optimality of photosynthesis in cyanobacteria through systems biology analysis. Proc Natl Acad Sci U S A 109: 2678-2683. doi: 10.1073/pnas.1117907109 |
[42] | Feist AM, Henry CS, Reed JL, et al. (2007) A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information. Mol Syst Biol 3: 121. |
[43] | Jones SW, Paredes CJ, Tracy B, et al. (2008) The transcriptional program underlying the physiology of clostridial sporulation. Genome Biol 9: R114. doi: 10.1186/gb-2008-9-7-r114 |
[44] | Lewis NE, Hixson KK, Conrad TM, et al. (2010) Omic data from evolved E. coli are consistent with computed optimal growth from genome-scale models. Mol Syst Biol 6: 390. |
[45] | Keating SM, Bornstein BJ, Finney A, et al. (2006) SBMLToolbox: an SBML toolbox for MATLAB users. Bioinformatics 22: 1275-1277. doi: 10.1093/bioinformatics/btl111 |
[46] | Henry CS, Zinner JF, Cohoon MP, et al. (2009) iBsu1103: a new genome-scale metabolic model of Bacillus subtilis based on SEED annotations. Genome Biol 10: R69. doi: 10.1186/gb-2009-10-6-r69 |
[47] | Ro DK, Paradise EM, Ouellet M, et al. (2006) Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature 440: 940-943. doi: 10.1038/nature04640 |
[48] | Senger RS, Papoutsakis ET (2008) Genome-scale model for Clostridium acetobutylicum: Part II. Development of specific proton flux states and numerically determined sub-systems. Biotechnol Bioeng 101: 1053-1071. |
[49] | Baez A, Cho KM, Liao JC (2011) High-flux isobutanol production using engineered Escherichia coli: a bioreactor study with in situ product removal. Appl Microbiol Biotechnol 90: 1681-1690. doi: 10.1007/s00253-011-3173-y |
[50] | Blombach B, Riester T, Wieschalka S, et al. (2011) Corynebacterium glutamicum tailored for efficient isobutanol production. Appl Environ Microbiol 77: 3300-3310. doi: 10.1128/AEM.02972-10 |
[51] | Li S, Wen J, Jia X (2011) Engineering Bacillus subtilis for isobutanol production by heterologous Ehrlich pathway construction and the biosynthetic 2-ketoisovalerate precursor pathway overexpression. Appl Microbiol Biotechnol 91: 577-589. doi: 10.1007/s00253-011-3280-9 |
[52] | Follonier S, Panke S, Zinn M (2011) A reduction in growth rate of Pseudomonas putida KT2442 counteracts productivity advances in medium-chain-length polyhydroxyalkanoate production from gluconate. Microb Cell Fact 10: 25. |
[53] | Tracy BP, Jones SW, Fast AG, et al. (2012) Clostridia: the importance of their exceptional substrate and metabolite diversity for biofuel and biorefinery applications. Curr Opin Biotechnol 23: 364-381. doi: 10.1016/j.copbio.2011.10.008 |
[54] | Senger RS, Papoutsakis ET (2008) Genome-scale model for Clostridium acetobutylicum: Part I. Metabolic network resolution and analysis. Biotechnol Bioeng 101: 1036-1052. |
[55] | Martin VJ, Pitera DJ, Withers ST, et al. (2003) Engineering a mevalonate pathway in Escherichia coli for production of terpenoids. Nat Biotechnol 21: 796-802. doi: 10.1038/nbt833 |