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Abstract: The Total Membrane Influx constrained Flux Balance Analysis (ToMI-FBA) algorithm 
was developed in this research as a new tool to help researchers decide which microbial host and 
medium formulation are optimal for expressing a new metabolic pathway. ToMI-FBA relies on 
genome-scale metabolic flux modeling and a novel in silico cell membrane influx constraint that 
specifies the flux of atoms (not molecules) into the cell through all possible membrane transporters. 
The ToMI constraint is constructed through the addition of an extra row and column to the 
stoichiometric matrix of a genome-scale metabolic flux model. In this research, the mathematical 
formulation of the ToMI constraint is given along with four case studies that demonstrate its 
usefulness. In Case Study 1, ToMI-FBA returned an optimal culture medium formulation for the 
production of isobutanol from Bacillus subtilis. Significant levels of L-valine were recommended to 
optimize production, and this result has been observed experimentally. In Case Study 2, it is 
demonstrated how the carbon to nitrogen uptake ratio can be specified as an additional ToMI-FBA 
constraint. This was investigated for maximizing medium chain length polyhydroxyalkanoates (mcl-
PHA) production from Pseudomonas putida KT2440. In Case Study 3, ToMI-FBA revealed a 
strategy of adding cellobiose as a means to increase ethanol selectivity during the stationary growth 
phase of Clostridium acetobutylicum ATCC 824. This strategy was also validated experimentally. 
Finally, in Case Study 4, B. subtilis was identified as a superior host to Escherichia coli, 
Saccharomyces cerevisiae, and Synechocystis PCC6803 for the production of artemisinate.  

Keywords: genome-scale model; microbial cell factory; flux balance analysis; de novo metabolic 
pathway 
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1. Introduction  

1.1. Production of biofuels, valuable chemicals, and pharmaceuticals by microbial cell factories 

A rapidly growing focus in the field of metabolic engineering is the construction of microbial 
cell factories (MCFs) that make use of engineered metabolic pathways for renewable production of 
biofuels, valuable chemicals, and pharmaceuticals. Recent examples using different microbial hosts 
include (among others): (i) isopropanol [1], 1-butanol [2], 3-methyl-1-butanol [3], styrene and 
aromatic building-blocks [4,5], glucaric acid [6], and 3-hydroxybutyrate [7] Taxol [8,9],  
astaxanthin [10,11], and artemisinin [12] using Escherichia coli; (ii) amino acids and poly 3-
hydroxybutyrate using Corynebacterium glutamicum [13]; and (iii) isoprene production in 
cyanobacteria [14]. In addition, significant efforts are underway in pathway design and enzyme 
engineering that will ensure this approach continues to grow [15–18]. The issue of microbial host 
selection has also arisen as researchers look for different microbes to optimally express engineered 
pathways [19,20,21]. In particular, isobutanol production through the non-fermentative 2-keto acid 
route has now been studied in E. coli [22], Synechocystis elongates [23], C. glutamicum [24], 
Bacillus subtilis [25], Saccharomyces cerevisiae [26], and Clostridium cellulolyticum [27]. It is clear 
that new pathways are under development and represent a significant new phase in renewable 
production of chemicals. It is well established that a new pathway will require high availability of 
precursors and required cofactors; however, more information is needed about how to choose an 
optimal microbial host, genetic manipulation(s), and culture medium formulation to express this 
pathway highly. In this research, a new computational platform based on genome-scale metabolic 
flux modeling is introduced that can determine which microbial host(s) and media formulations can 
provide the required precursors and cofactors essential to optimize expression of any newly derived 
pathway. This approach can also be used as a starting point for the metabolic engineer to design 
genetic manipulation strategies. 

1.2. Challenges of using non-platform hosts as microbial cell factories 

Well-studied organisms, such as E. coli, are often chosen for expression of engineered pathways 
because their genetic engineering toolset(s) are well established. Given the exponential growth of 
high-throughput “-omics” datasets, the rapid advancements in molecular biology, the elucidation of 
enzyme kinetic parameters, and the automated methods for building genome-scale metabolic flux 
models, systems-level knowledge is becoming enriched on the physiology and biochemistry of 
lesser-studied organisms. It is conceivable that several of these organisms may ultimately be found 
superior for the expression of certain pathways, depending on precursors and cofactors required. 
However, the crucial challenges that exist currently are to (i) screen potential hosts for the expression 
of an engineered metabolic pathway and (ii) evaluate the optimal pathway use by the selected hosts. 
Certainly as the number of common microbial hosts increases in biotechnology, advances in 
evaluating the suitability of hosts for pathways requiring different precursors and cofactors are 
needed. Similarly, a “minimal cell” may also eventually emerge as a universal host in biotechnology. 
In this case, the addition of metabolic pathways to properly allocate precursors and cofactors to 
pathways of interest will be needed. With the advances in genome-scale metabolic flux modeling, it 
is proposed here that this problem may be best solved computationally. 
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1.3. Genome-scale models and the incorporation of new metabolic pathways in silico 

Genome-scale metabolic flux models provide a snapshot prediction of steady-state metabolic 
activity and consist of a system of hundreds to thousands of linearized mass balance equations that 
are often solved using flux balance analysis (FBA) or flux variability analysis (FVA) with an 
objective function (i.e., maximizing the cell growth rate, among others) [28,29,30]. Thus, genome-
scale metabolic flux models serve as platforms for efficient, fast, and holistic analyses of metabolism 
in silico. The number of reconstructed genome-scale models is growing rapidly, and the automated 
reconstruction resources have enabled the generation of draft models for any organism with a 
sequenced genome [31,32,33]. Additional tools, such as the Multi-Metabolic Evaluator 
(MultiMetEval), allow users to work with collections of metabolic models and even perform multi-
objective analyses [34]. Thus, a systematic approach that allows incorporation of a new metabolic 
pathway into genome-scale models and further evaluates the potential use of that pathway is seen as 
a necesaary development. This was the motivation behind the creation of the Synthetic Metabolic 
Pathway Builder and Genome-Scale Model Database (SyM-GEM) 
(http://www.mesb.bse.vt.edu/SyM-GEM). The SyM-GEM web application allows the addition of 
user-created metabolic pathways to one or multiple genome-scale metabolic flux models of interest 
to biotechnology. The output of the SyM-GEM web application is a model compatible with the 
Systems Biology Markup Language (SBML) [35] that can be simulated using the COBRA  
Toolbox [36] in MATLAB. By combining the SyM-GEM and recently developed approach of Flux 
Balance Analysis with Flux Ratios (FBrAtio) [37,38], several metabolic engineering strategies 
(genetic manipulations) were installed in existing genome-scale models and evaluated for enhanced 
production of (i) cellulose from Arabidopsis thaliana using the AraGEM model [39]; (ii) isobutanol 
from engineered S. cerevisiae using iND750 model [40]; (iii) acetone from engineered Synechocystis 
PCC6803 using iJN678 model [41]; (iv) hydrogen from E. coli MG1655 using iAF1260 [42]; and (v) 
acetone, butanol, and isopropanol from engineered C. acetobutylicum using iCAC490 [37]. The 
results showed very good correlation between the experimental observations and the computational 
predictions. In some cases, the predictions introduced new and/or improved metabolic engneering 
strategies. However, in every case, it was not apparent that the host selected for pathway expression 
was, in fact, the optimal host or that the culture media had been formulated to ensure optimal 
expression. To address these questions, the Total Membrane Influx constrained Flux Balance 
Analysis (ToMI-FBA) algorithm was developed and is described in detail in the following sections.  

1.4. ToMI-FBA: A computational framework for global evaluation of media formulations and 
metabolic pathway use in multiple hosts  

The ToMI-FBA approach introduces a new stochastic set of constraints to the genome-scale 
metabolic flux model. In particular, ToMI-FBA allows the number of atoms that are imported into 
the in silico cell model (through any membrane transport process) to be constrained to a given value. 
This allows for a direct comparison of substrates (e.g., glucose vs. cellobiose) that contain different 
numbers of carbon atoms and allows different combinations of substrates to be imported 
simultaneously and compared directly. It also allows the exploration of common metabolic 
byproducts (e.g., acetate) for use as substrates. This new ToMI constraint is implemented by addition 
of new rows and columns to the stoichiometric matrix, similar (but not identical) to the FBrAtio 
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approach [37,38], and is discussed further below. In the stochastic approach used in ToMI-FBA, 
membrane transport processes of different potential carbon sources are enabled/disabled randomly so 
different combinations of transporters can be used simultaneously for the uptake of substrates and 
secretions of products. FBA is then applied with a constrained specific growth rate and the dual 
objectives of maximizing production of a targeted product while minimizing total flux in the 
metabolic network. The stochastic constraining of membrane transport reactions allows searching for 
all possible combinations of cofactors and precursors required for the engineered metabolic pathway 
to be used by the model. In other words, no prior knowledge or experimental observations are 
required about the physiology and biochemistry of cell metabolism prone to the new pathway. With 
ToMI-FBA, the whole process of adding a new pathway and evaluating its expression by multiple 
organisms and/or medium formulations in silico can be accomplished in a matter of hours. 
Performing the same task in laboratory requires skilled technicians, considerable time, and resources. 
The ToMI-FBA computational framework developed in this research assists researchers in 
generating systematic knowledge quickly before designing and implementing metabolic engineering 
strategies to optimize pathway expression. In this research, the ToMI-FBA method was applied to 
several genome-scale models with importance in biotechnology in four separate case studies to 
demonstrate its predictive capability. In particular, the case studies show (i) L-valine significantly 
improves the production of isobutanol from engineered B. subtilis, (ii) ethanol is the major 
fermentation product of cellobiose fermentation by C. acetobutylicum ATCC 824 at low pH, (iii) the 
carbon to nitrogen uptake ratio influences medium chain length polyhydroxyalkanoate (mcl-PHA) 
production from Pseudomonas putida KT2440, and (iv) B. subtilis is also a potential optimal host for 
the production of artemisinate. The ToMI-FBA algorithm is compatible with the COBRA Toolbox 
v2.0.5 [36] and is provided as a MATLAB function in the Supplementary Appendix to this 
manuscript.  

2. Materials and Methods 

2.1. Culture growth and analysis of metabolic substrates and products 

C. acetobutylicum ATCC 824 was initially grown anaerobically on 2x YTG plates and later in 
liquid 2x YTG as described previously [43]. Culture growth was monitored by OD600, and the 
cellobiose substrate and major metabolic products (i.e., acetate, butyrate, acetone, butanol, ethanol) 
were measured by HPLC using a previously developed method [43]. A Shimadzu HPLC (Shimadzu 
Co., Kyoto, Japan) was used along with an Aminex HPX-87H, 300 × 7.8 mm column (BioRad, 
Hercules, CA) for metabolite quantifications. Sulfuric acid (5 mM) was used as the isocratic mobile 
phase, and a constant flow rate of 0.5 mL/min was used. The column was maintained at 60˚C, 
detection was performed using refractive index, and the method was run for 35 minutes. To 
investigate the effects of cellobiose uptake during solventogenesis, the culture was grown to the 
onset of solventogenesis (OD600 = 3–3.5), cells were pelleted by centrifugation, and re-suspended in 
fresh 2x YTG (pH adjusted to 4.5) containing cellobiose substrate. 
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2.2. Software 

All simulations were performed using MATLAB (R2012b) (MathWorks, Natick, MA) with the 
COBRA Toolbox v2.0.5 [36] and the open-source GLPK linear programming software. Standard 
FBA was used with the ToMI-FBA calculations. Both standard FBA and parsimonius FBA  
(pFBA) [44] were used as “traditional” FBA calculations in comparisons with ToMI-FBA. Both 
FBA and pFBA were run through the COBRA Toolbox v2.0.5. Genome-scale metabolic flux models 
were written in the Systems Biology Markup Language (SBML). To read and write SBML formatted 
models, the SBML Toolbox v4.1.0 and SBML library v5.8.0 were used [45]. The SyM-GEM 
database and web application (http://www.mesb.bse.vt.edu/SyM-GEM) was used to add metabolic 
pathways to genome-scale metabolic flux models of interest.  

2.3. Genome-scale metabolic flux models, metabolic pathways, and the goals of case studies 

In Case Study 1 of this research, the engineered metabolic pathway for the production of 
isobutanol from pyruvate through 2-ketoisovalerate intermediate developed by Atsumi et al. [22] 
(Figure 1a) was installed in the iBsu1103 model of Bacillus subtilis [46]. The goal of this case study 
was to use ToMI-FBA to determine what additional culture medium component(s) could further 
increase isobutanol production (Figure 1a). In Case Study 2, a genome-scale model of P. putida 
KT2440 was downloaded from the Model SEED [31]. Pathways to mcl-PHA from octanoate (Figure 
1b) and acetyl-CoA (Figure 1c) were installed using SyM-GEM. ToMI-FBA with a constrained 
carbon to nitrogen uptake ratio was implemented to study this critical facet of culture medium design 
on mcl-PHA production. In Case Study 3, the iCAC490 model of C. acetobutylicum ATCC 824 [37] 
was updated to create the iCAC498 model, which is freely available through SyM-GEM. No 
additional pathways were added to this model, but ToMI-FBA was applied to determine which 
substrates and culture medium components impact acetone/butanol/ethanol (ABE) selectivity during 
the stationary phase of culture growth. Finally, in Case Study 4, the metabolic pathway for 
artemisinate production developed by Ro et al. [47] (Figure 1d) was added to the iAF1260 model of 
E. coli [42], the iBsu1103 model of B. subtilis [46], the iND750 model of S. cerevisiae [40], and the 
iJN678 model of Synechocystis PCC6803 [41]. The goal of this case study was to determine which of 
these hosts could achieve a higher artemisinate yield in silico. 

2.4. Development and implementation of the ToMI constraint 

The ToMI-FBA algorithm (i) locates all membrane transport reactions in a COBRA formatted 
genome-scale model, (ii) randomly sets directionality of unconstrained transport reactions, (iii) 
updates the stoichiometric matrix with the Total Membrane Influx (ToMI) constraint, (iv) constrains 
the specific growth rate to a specified value, (v) sets the new objective function of maximizing 
secretion of a targeted product, and (vi) performs FBA (or pFBA) given the new constraints and 
objective function. The entire sequence is repeated over a specified number of iterations (default = 
1000), and the optimum solution, flux distribution, and constraints are retained. The ToMI constraint 
is implemented as follows. The ToMI value is assigned based on the total atom influx across the cell 
membrane. This means that by random assignment of transporters for influx or efflux, the size of the 
transported molecule(s) (i.e., number of carbon atoms in different carbohydrate sources) is taken into 
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account. The following is a mathematical description of ToMI. The quantity ,  is the number of 
atoms of reactant x in reaction i. If there are y total reactants in reaction i and there are j total 
membrane transport reactions with constraints set to allow membrane influx only, the ToMI value is 
calculated according to Eq. 1. In general, the ToMI is defined as the total number of atoms in 
reactants of influx reactions multiplied by the flux values of those reactions. 

 

Figure 1. Metabolic pathways used as case studies in this research for the 
production of (A) isobutanol, (B and C) mcl-PHA, and (D) artemisinate. 

,            . 1 

Not only can the ToMI value be calculated, it can also be specified and used as a constraint in a 
traditional genome-scale metabolic flux model (Eq. 2), where  is the      stoichiometric 
coefficient matrix and  is the vector of optimized flux values. To do this, Eq. 1 is re-arranged and 
set equal to zero, as shown in Eq. 3. To add the ToMI constraint to the stoichiometric matrix, the 
following steps are implemented: (i) add a new row and column to , (ii) set the stoichiometric 
coefficient at ,  equal to –ToMI, (iii) set the upper and lower constraints of the new reaction 
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membrane (e.g., , , ⋯ ). This procedure has been automated by the COBRA v2.0.5 
compatible ToMI-FBA MATLAB function included in the Supplementary Appendix. 

∙ 0           . 2 

, , ⋯ , , ⋯ ⋯ 0           . 3 

The ToMI-FBA algorithm distinguishes among different transporters used by different genome-
scale metabolic flux models and is also capable of finding the membrane transport reactions of multi-
compartmental organismal models (i.e., the periplasm of E. coli models). When multiple 
compartments are included in a model, the membrane connected to the extracellular compartment is 
automatically considered for constraining ToMI.  

2.5. Development and implementation of the carbon to nitrogen uptake ratio constraint 

The carbon to nitrogen uptake ratio (CNR) can also be specified as a constraint in a genome-
scale metabolic flux model ( ∙ 0) through the addition of a new row to the stoichiometric matrix, 

. The definition of the CNR is defined in Eq. 4, where j is the number of reactions in the model,  
represents the flux (membrane influx) of reaction i,  is the total number of carbon atoms 
transported in reaction i, and  is the total number of nitrogen atoms transported in this reaction. Eq. 
4 is rearranged and set equal to zero (Eq. 5), and is further arranged to group terms by each  (Eq. 6). 
The constraint is added to  by adding an additional row to the matrix and then adding the 
stoichiometric coefficient ( ∙ ) in each column corresponding to . Unlike the ToMI 
constraint, the CNR constraint does not require the addition of a new column to . This routine is 
included with the ToMI-FBA MATLAB function in the Supplementary Appendix. 

∑

∑
            . 4 

⋯ ⋯ 0           . 5 

∙ ∙ ⋯ 0           . 6 

2.6. Development and implementation of the specific proton flux constraint 

The specific proton flux (SPF) is a genome-scale metabolic modeling constraint originally 
developed by Senger and Papoutsakis [48] and specifies the total efflux of protons crossing the 
membrane of an in silico cell. The SPF includes the free protons in membrane transport reactions, 
but it also includes protons bound to acids that later deprotonate in the extracellular medium (i.e., 
acetic acid (acetate) and butyric acid (butyrate)). Thus, constraining the SPF in the presence of weak 
acids is more difficult than constraining the “exchange” flux of protons. The SPF constraint is 
implemented similarly to the ToMI constraint. In particular, the SPF is defined by Eq. 7, where j is 
the total number of reactions,  is the number of protons transported and  is the flux of the  
membrane transport reaction. 
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Like the ToMI constraint, the SPF constraint is added to the stoichiometric matrix by (i) re-
arranging Eq. 7 (set equal to zero), (ii) adding a new row and column to the stoichiometric matrix, 
(iii) adding stoichiometric coefficients in the new row and columns that correspond to transport 
reactions and the SPF, and (iv) constraining the new SPF reaction to a flux value of 1. Similar to 
ToMI-FBA, the SPF constraint is compatible with the COBRA Toolbox v2.0.5 and COBRA 
formatted genome-scale metabolic flux models. A COBRA v2.0.5 compatible MATLAB function 
capable of implementing the SPF constraint is also included in the Supplementary Appendix.  

3. Results 

3.1. Case Study 1: L-Valine improves isobutanol production from B. subtilis  

Isobutanol has attracted considerable attention as an advanced liquid biofuel because it has 
superior physical properties (e.g., energy density, hygroscopicity) to ethanol and has a higher octane 
number and is slightly less toxic to fermenting cultures than 1-butanol. After the introduction of the 
2-keto acid pathway as a potential non-fermentative pathway to produce isobutanol in E. coli [22], 
there have been several metabolic engineering efforts to install this pathway in different hosts to 
enable isobutanol production from diverse substrates, including cellulose and CO2/sunlight. 
Isobutanol yield from engineered E. coli was highest (0.41 g isobutanol per g glucose) when it was 
removed continuously from the cell culture broth to minimize product toxicity [49]. Higher tolerance 
has been shown by C. glutamicum [50] and especially B. subtilis (more than 2-fold increased product 
tolerance) [51]. It has also been shown experimentally that isobutanol production was enhanced 
significantly when L-valine was added to the culture medium of this organism [25]. The ToMI-FBA 
approach was implemented with a modified iBsu1103 model of B. subtilis to determine whether L-
valine would be identified as a critical culture medium component to maximize isobutanol 
production.  

The isobutanol pathway [22] (shown in Figure 1a) was added to the iBsu1103 model of B. 
subtilis. To do this, two new compounds (isobutyraldehyde and isobutanol) and four new reactions 
were added to iBsu1103. Two steps of this pathway (acetohydroxy acid isomeroreductase and 
dihydroxy acid dehydratase) were already present in the iBsu1103 model. ToMI-FBA was applied 
with the objective of maximizing isobutanol production at multiple constrained growth rates (from 
0.1 to 0.5 h−1). The ToMI values were varied from 0 to 500 mmol equivalent atoms gDCW−1 h−1. 
ToMI-FBA was applied with and without the possibility of importing L-valine from a minimal 
culture media (i.e., glucose, ammonia, O2, and required minerals). The results of the ToMI-FBA 
simulations with allowed L-valine uptake are given in Figure 2a. The difference in isobutanol 
production given a minimal culture medium with L-valine and a minimal medium without L-valine 
is shown in Figure 2b. Based on these results, isobutanol production is directly correlated with ToMI 
and inversely correlated with the specific growth rate. In addition, significantly higher isobutanol 
production levels were observed when L-valine was included as a possible substrate. In all cases 
where L-valine could be imported (Figure 2a), ToMI-FBA found it beneficial to import L-valine. A 
complex medium formulation consisting of all carbon sources, amino acids, weak acids, nucleotides, 
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and cofactors present in the iBsu1103 model as simulated using ToMI-FBA. Here, L-valine uptake 
was also found to increase isobutanol production. To analyze the isobutanol pathway use, the ToMI-
FBA simulations were repeated 10 times with random influx/efflux assignments to membrane 
transport reactions. At the end of each simulation, the iteration that resulted in the highest isobutanol 
flux was retained along with the network fluxes for that iteration. In order to find the optimum 
number of iterations for the modified iBsu1103 model, ToMI-FBA was run for 10, 30, 50, 100, and 
1000 iterations (results not shown). With less than 50 iterations, the algorithm did not converge, and 
using more than 50 iterations returned identical results with the added computational expense. Thus, 
100 iterations were used for the computational study, and all simulations showed isobutanol pathway 
use by iBsu1103. The average fluxes and standard deviations (over 10 ToMI-FBA simulations of 100 
iterations each) of the isobutanol pathway for simulated growth on minimal media with L-valine and 
complex media are shown in Table 1 for the arbitrarily constrained ToMI of 300 mmol equivalent 
atoms gDCW−1 h−1, specific growth rate of 0.2 h−1, and glucose uptake rate of 10 mmol gDCW−1 h−1. 
According to ToMI-FBA simulation results, a portion of L-valine was converted to 2-keto-
isovalerate, which was further metabolized to isobutanol. Moreover, in 50% of simulations, 2-keto-
isovalerate was converted to 2-isopropylmalate, which was further metabolized to leucine. The ideal 
sources of carbon and nitrogen were a combination of several amino acids (including isoleucine, 
leucine, methionine, proline, tryptophan, and tyrosine) and propionate. Nucleotides (such as AMP 
and CMP), citrate, and niacin were also necessary in most simulations to generate high yield. 
Potassium, calcium, magnesium, and iron were also essential for the growth in silico. It is noted that 
with complex growth medium and constrained glucose uptake, L-proline and propionate uptake were 
preferred over L-valine, suggesting additional room for complex medium development. Major 
byproducts, such as carbon dioxide and water, were intuitive simulation results. The iBsu1103 model 
also has the capability to produce acetoin from acetolactate; however, simulation results yielded no 
acetoin production in silico. These results are in agreement with the experimental findings [25,51]. 
Overall, ToMI-FBA successfully identified L-valine as a beneficial culture medium component, 
which has been verified experimentally. 

Of course, it is important to consider the meaning of the results of this case study presented in 
Figure 2 and Table 1. During ToMI-FBA, the specific growth rate of the host is constrained while 
flux is maximized through the production pathway (and minimized over the entire metabolic 
network). This means that the results presented in Figure 2 and Table 1 represent the upper limits of 
what is possible. In reality, production and flux values will be less since the cellular objective is 
growth, not production. Thus, results from ToMI-FBA should be used to compare conditions for 
more or less production of a targeted metabolite, not to predict exact production rates. While ToMI-
FBA has the capability of defining favorable conditions and hosts for production of a targeted 
chemical, clearly there is potential to combine ToMI-FBA with approaches that also suggest genetic 
manipulations as metabolic engineering strategies. 

Next, it is important to compare the ToMI-FBA simulation results with traditional FBA 
simulation results. Here, the specific growth rate was constrained (e.g.,  = 0.2 h−1), the specific 
uptake of glucose was constrained (i.e., 10 mmol gDCW−1 h−1), and the formation of isobutanol was 
maximized. To be consistent with ToMI-FBA, all other membrane transport (and metabolite 
exchange) reactions were allowed to be reversible. The results from standard FBA did not favor L-
valine uptake, and several transport reactions reached their upper or lower flux bound. Next, 
isobutanol production was constrained (i.e., 10 mmol gDCW−1 h−1), and pFBA was used to minimize 
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the total metabolic flux. This simulation did identify L-valine as an important media component for 
isobutanol production. However, it also erroneously identified 2-oxoglutarate, glycerol 3-phosphate, 
and acetoacetate as important substrates while secreting uncommon byproducts, such as glucose  
6-phosphate. The ToMI-FBA approach called for the consumption of glucose, amino acids 
(including L-valine), trace minerals, and propionic acid (in a small amount) and led to the production 
of largely cell biomass, isobutanol, CO2, and water.  

 

Figure 2. (A) Production of isobutanol (mmol gDCW−1 h−1) from the modified 
iBsu1103 model of B. subtilis in the presence of minimal media supplemented with 
L-valine as a function of ToMI and the specific growth rate. (B) The additional flux 
that adding L-valine to minimal media provides over minimal media alone. The 
maximum values of each plot are given. 

The ToMI-FBA approach limits the flux of atoms that can enter the cell through all transport 
reactions simultaneously. All metabolites with membrane transport reactions are available equally to 
the cell model, but the optimization selects only those that maximize isobutanol production. Thus, 
ToMI-FBA maximizes isobutanol production per atom entering the metabolic network. To do this 
effectively, reduced substrates are preferred, and these often appear as culture media components. 
Thus, the ToMI-FBA approach may be effective for designing culture media for the production of a 
desired product. 

3.2. Case Study 2: The carbon to nitrogen uptake ratio influences mcl-PHA production by P. putida 
KT2440 

It is known that nitrogen limitation leads to the onset of mcl-PHA production in P. putida 
KT2440. In addition, mcl-PHA can be produced from several carbon sources, but preferred and non-
preferred sources do exist [52]. Starting with a genome-scale model downloaded from the Model 
SEED (and available on SyM-GEM), pathways to mcl-PHA through de novo fatty acid biosynthesis 
and -oxidation (Figure 1b,c) were added using SyM-GEM. Next, the ToMI and CNR constraints 
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(Eqns. 3 and 6) were applied and varied, along with the specific growth rate, in ToMI-FBA 
simulations. Selected simulation results are shown in Figure 3, and mcl-PHA production was 
influenced by all three variables. In addition, an upper limit was established for the carbon to 
nitrogen uptake ratio at different values of ToMI (Figure 3a) and specific growth rate (Figure 3b). 
Beyond this boundary, growth and mcl-PHA production were infeasible. Simulations were run in the 
presence and absence of the preferred substrate for mcl-PHA production, octanoate. The preference 
for octanoate increased maximum mcl-PHA production by only about 1%, but its use minimized 
total flux of the metabolic network. Through the ToMI-FBA simulations, preferred substrates were 
identified as those often-used in “optimum” solutions. These are listed in Figure 3d. Octanoate was 
identified through ToMI-FBA simulations as the most preferred substrate, and this is consistent with 
experimental findings [52]. When traditional FBA was applied to this problem, the CNR constraint 
was critical to simulate mcl-PHA production. In addition, returning a set of preferred substrates 
consistent with the literature was not possible with FBA or pFBA, even with the CNR constraint 
installed. This case study also demonstrates the value of the CNR constraint in establishing the 
feasible phenotypic space, which is critical for culture medium design when nutrient limitation elicits 
production of a desired product. 

3.3. Case Study 3: Cellobiose fermentation increases ethanol selectivity in C. acetobutylicum 

The Gram-positive anaerobe C. acetobutylicum ATCC 824 is of considerable research interest 
due to its ability to convert a wide range of substrates to ABE products [43,53]. This organism 
undergoes a genetically programed metabolic shift where acids (i.e., acetate and butyrate) are 
produced during the exponential growth phase followed by acid re-uptake and conversion to ABE 
products during the stationary phase of culture growth. Senger and Papoutsakis developed the 
concept of the SPF and investigated its role in the metabolic shift in their original genome-scale 
modeling research of C. acetobutylicum [48,54]. In general, with a favorable proton motive force 
between the cytosol and extracellular environment, the cell can secrete acids (which is preferred). 
With a low medium pH, the cell must secrete solvents instead. ToMI-FBA was applied in this case to 
determine what substrate(s) could influence ABE selectivity when the SPF was constrained to mimic 
low medium pH. Butanol and acetone were highly coupled and maximized by butyrate uptake 
(which is well known). Ethanol, on the other hand, was maximized by cellobiose uptake during 
solventogenesis, a non-intuitive result. Traditional FBA, with and without the SPF constraint, was 
applied to see if a similar result could be obtained. Without the SPF constraint, FBA and pFBA 
returned lactate and 2-oxoglutarate as substrates to boost ethanol production during the stationary 
phase of growth. With the SPF constraint installed, FBA and pFBA returned mixtures of glucose and 
acetate. No case returned the same result (i.e., cellobiose) as the ToMI-FBA approach with the SPF 
constraint. 

This ToMI-FBA simulation result was tested experimentally by (i) growing C. acetobutylicum 
to the onset of the stationary phase, (ii) separating cells from culture media (i.e., acetate and butyrate), 
and (iii) re-suspending cells in fresh culture media (pH adjusted to 4.5) with either a glucose or 
cellobiose substrate. As shown in Figure 4, cellobiose was converted to ethanol under these 
conditions and glucose was not, confirming the ToMI-FBA simulation result. It is noted that acid 
products were still produced by the experimental culture with the addition of cellobiose (glucose was 
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converted primarily to acids). However, this culture receiving cellobiose accumulated nearly twice as 
much ethanol during the stationary phase of growth. 

 

Figure 3. Production of mcl-PHA from the P. putida KT2440 genome-scale model. 
(A) Varied ToMI and CNR given a constant specific growth rate of 0.2 h−1. (B) 
Varied CNR and specific growth rate given a constant ToMI value of 300 mmol 
equivalent atoms gDCW−1 h−1. (C) Varied ToMI and specific growth rate given a 
constant CNR of 20 mmol mmol−1. Also given is a list of preferred substrates found 
from ToMI-FBA simulations given a specific growth rate of 0.2 h−1, ToMI of 300 
mmol equivalent atoms gDCW−1 h−1, and CNR of 20 mmol mmol−1. The maximum 
values of each plot are given. 

3.4. Case Study 4: Host selection for artemisinate production 

The need for more effective antimalarial therapies led to the pursuit of artemisinin-based 
combination therapies, where artemisinate is a key drug. Artemisinin is a naturally derived product; 
however, the high price and low availability of this plant-derived antimalarial drug motivated 
investigation into production by an engineered MCF. In this regard, Martin et al. [55] first reported 
the production of amorphadiene, the precursor for artemisinate production, using engineered E. coli 
that expressed the mevalonate-dependent (MEV) pathway of S. cerevisiae. Tsuruta et  
al. [12] produced >0.25 g L−1 of amorphadiene in an optimized fed-batch, where HMG-CoA 
synthase and HMG-CoA reductase (two key genes in the MEV pathway) were replaced with 
homologs from Staphylococcus aureus. In addition, Ro et al. [47] introduced a cytochrome P450 
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monooxygenase (CYP71AV1) from A. annua to an engineered S. cerevisiae to enable the production 
of artemisinate from the precursor, amorphadiene in the same host. In this case study, the ToMI-FBA 
algorithm was applied to modified genome-scale models of E. coli K12 MG1655 (iAF1260) [42], S. 
cerevisiae (iND750) [40], B. subtilis (iBsu1103) [46], and Synechocystis PCC6803 (iJN678) [41] to 
determine which host is superior for producing artemisinate. All genome-scale models were modified 
to express the artemisinate pathway (Figure 1d). As a result of this pathway addition,  

Table 1. Average ToMI-FBA reaction fluxes* of the isobutanol pathway installed in the 

iBsu1103 model of B. subtilis. 

 Minimal Medium + L-Valine Complex Medium 

Reaction Average Flux  
(mmol gDCW−1 h−1)

Standard 
Deviation 

Average Flux  
(mmol gDCW−1 h−1) 

Standard 
Deviation 

(2) Pyruvate → Acetolactate + CO2 7.984 1.291 9.6510 0.1229 

Pyruvate + 2-Hydroxyethyl-ThPP ↔ 
Acetolactate + TPP 

0.8845 1.291 2.042 0.05810 

Acetolactate + NADPH + H+ ↔ 2,3-
Dihydroxy-isovalerate + NADP 

8.868 4.452 × 10−3 11.69 0.1657 

2,3-Dihydroxy-isovalerate ↔ 2-
Keto-isovalerate + H2O 

8.868 4.452 × 10−3 11.69 0.1657 

2-Keto-isovalerate → 
Isobutyraldehyde + CO2 

11.67 1.441 × 10−5 11.87 5.837 × 10−3

Isobutyraldehyde + NADH + H+ ↔ 
Isobutanol + NAD 

11.67 1.441 × 10−5 11.87 5.837 × 10−3 

L-Valine [e] + H+ [e] → L-Valine [c] 
+ H+ [c] 

2.931 1.441 × 10−5 0.2436 0.1725 

L-Proline [e] + H+ [e] → L-Proline 
[c] + H+ [c] 

0 0 1.049 0.02466 

Propionate [e] + H+ [e] → Propionate 
[c] + H+ [c] 

0 0 2.723 0.1824 

* The ToMI-FBA reaction fluxes are the upper limits of metabolic flux, not what is expected experimentally. Comparing 

the ToMI-FBA reaction fluxes can identify favorable conditions for production of a targeted metabolite. 

1 In ToMI-FBA simulations, isobutanol production was maximized in FBA. 
2 The ToMI value was constrained to 300 mmol equivalent atoms gDCW-1 h-1, the specific growth rate was constrained to 

0.2 h-1, and the glucose uptake rate was constrained to 10 mmol gDCW-1 h-1 in all simulations. 
3 The Average Flux and Standard Deviation were obtained from 10 independent simulations containing 100 iterations 

each. 
4 The “[e]” and “[c]” specify extracellular and cytosol compartments, respectively. If unspecified, all other compounds 

are assumed to be cytosolic. 
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amorpha-4,11-diene and artemisinate were introduced to the genome-scale models of the 
aforementioned organisms as new compounds. To determine the maximum artemisinate production 
by these potential hosts, the ToMI-FBA was applied at multiple constrained growth rates (from 0.1 to 
0.5 h−1) and ToMI values (from 0 to 500 mmol equivalent atoms gDCW−1 h−1). The ToMI-FBA 
results for each potential host are shown in Figure 5. Overall, in silico expression of the pathway in B. 
subtilis (iBsu1103) revealed a higher artemisinate production potential compared to the other hosts. 
To demonstrate, at ToMI and specific growth rate values of 0.2 h−1 and 200 mmol equivalent atoms 
gDCW−1 h−1, B. subtilis has the potential to produce ~ 14% more artemisinate than either of E. coli 
or S. cerevisiae. Synechocystis PCC6803 (iJN678) returned almost 25% less artemisinate production 
in silico than either of E. coli (iAF1260) or S. cerevisiae (iND750). While we cannot validate this 
simulation result experimentally, this case study shows a unique application of ToMI-FBA. 

 

Figure 4. Experimental results showing the production of ethanol by C. 
acetobutylicum given the addition of glucose (white) or cellobiose (black) at the end 
of exponential growth. 

A comparable simulation study can be run using a traditional FBA approach. To do this, one 
would do the following for all models: (i) constrain the growth rate to a specified value, (ii) constrain 
the artemisinate production rate to a specified value, (iii) unconstrain all membrane transport (and 
metabolite exchange) reactions, (iv) run pFBA to minimize total flux of the system. Then, one must 
compute the total atom flux of all metabolites transported into the metabolic network. This is done by 
calculating the product of the input flux and the number of atoms in the metabolite being transported 
(over all membrane transport reactions). This allows one to calculate the production of artemisinate 
per flux of atoms transported into the metabolic network. All models will return the same growth rate 
and artemisinate production rate. The optimum model will achieve this with the minimum input flux. 
ToMI-FBA solves this problem easily by doing the reverse. It allows the input atomic flux to be 
constrained (treating all membrane transporters equally) so the artemisinate production rate can be 
calculated directly and compared among different models. 
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4. Discussion 

The ToMI-FBA approach has the ability to constrain the total atom influx of an in silico cellular 
model in order to evaluate metabolic activity. The ToMI constraint is unique in that it implements a 
constraint on multiple reactions simultaneously with the only requirement being that the sum of 
fluxes through those reactions equal a specified value. This approach removes bias commonly given 
to “larger” substrates that allow influx of additional carbon (e.g., glucose vs. cellobiose). The 
applications of ToMI-FBA are numerous, and those addressed in this research include culture 
medium design and host selection for optimized expression of engineered metabolic pathways.  

 

Figure 5. The maximum production of artemisinate (mmol gDCW−1 h−1) from 
complex media as a function of ToMI and specific growth rate for the following 
models: (A) iAF1260 model of E. coli, (B) iBsu1103 model of B. subtilis, (C) iND750 
model of S. cerevisiae, and (D) iJN678 model of Synechocystis PCC6803. The 
maximum values of each plot are given. 

However, it is important to note that ToMI-FBA returns only the potential for product formation. 
ToMI-FBA operates by maximizing product formation as the objective of FBA (or pFBA). This does 
not mimic physical systems, as typically the growth rate of organism is maximized in nature 
(although several objective functions have been investigated in genome-scale modeling). Therefore, 
one possible future application of the ToMI-FBA might be combining it with another optimization 
problem (i.e., genetic manipulations) to formulate a bi-level optimization problem for maximizing 
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target product formation. However, significant metabolic engineering may be required to achieve the 
quantitative results returned by ToMI-FBA. This is particularly true for the case of host selection. 
Investigators must also take into account additional aspects such as: (i) the observed growth rate, (ii) 
the genetic toolsets available, and (iii) first-hand strain specific information and observations when 
selecting a host to express a targeted metabolic pathway.  

ToMI-FBA will return the potential of possible hosts but not an estimate of the work required to 
achieve this potential. In addition, ToMI-FBA can be used to design optimal culture media 
formulations based on the potential for product formation. However, this too may require significant 
metabolic engineering to achieve optimal productivity. Additional points that should be emphasized 
about using ToMI-FBA for targeted pathway productivity predictions include the current unknown 
relationship between the specific growth rate and total membrane influx. Given relationships such as 
Fiures 2, 3, and 5, it is unknown what ToMI and specific growth rate combination will be observed 
in reality. For example the ToMI and specific growth rate of wild-type E. coli grown on glucose is 
much greater than that of Synechocystis PCC6803 grown autotrophically. In addition, the 
relationship between ToMI and the specific growth rate is not well understood and is likely 
organism-specific. In genome-scale metabolic flux models, this is likely a function of the biomass 
equation, which has been shown to have differing degrees of sensitivity to metabolic flux 
distributions in different models. In addition, ToMI-FBA cannot be used to predict physical 
characteristics for which mechanisms are not contained in the genome-scale metabolic flux model, 
such as product toxicity. 

5. Conclusions 

The ToMI-FBA approach has proven useful for screening culture medium components and even 
selecting microbial hosts that can maximize production of a targeted product.  The CNR and SPF 
constraints provide a means for simulating metabolism under defined carbon-to-nitrogen uptake 
conditions as well under different culture medium pH conditions. Although achieving the 
quantitative production levels returned by ToMI-FBA may be unlikely, using ToMI-FBA results 
qualitatively is rational and has been shown in this research to result in increased product formation 
for three cases tested. ToMI-FBA should be used to design computational experiments that identify 
non-intuitive culture medium components and cellular responses. Ideally, ToMI-FBA will serve as a 
“first evaluation” for potential hosts and culture media formulations for newly designed metabolic 
pathways to be expressed by an engineered MCF. Additional uses of ToMI-FBA likely exist and 
should be explored in future research. In addition, the methodology of constraining ToMI and SPF 
presented in this research has numerous applications and can be used in conjunction with the 
similarly implemented FBrAtio constraint to design metabolic engineering strategies and determine 
metabolic potential.  
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