Research article Special Issues

Production and postharvest quality of Passiflora edulis Sims under brackish water and potassium doses

  • Received: 09 January 2024 Revised: 03 April 2024 Accepted: 08 April 2024 Published: 16 May 2024
  • The aim of this research was to assess the yield and postharvest characteristics of 'BRS Sol do Cerrado' sour passion fruits based on irrigation with varying levels of saline water and potassium fertilization. The study was conducted under field conditions at an experimental farm in São Domingos, Paraíba, Brazil. A randomized block design was implemented in a 5 × 4 factorial arrangement, with five levels of electrical conductivity of water (ECw): 0.3, 1.1, 1.9, 2.7, and 3.5 dS m−1, and four potassium doses (KD): 60, 80,100, and 120% of the recommended amount, with 3 replications. The potassium dose equivalent to 120% of the recommended dose in combination with low-salinity water resulted in the highest fresh mass accumulation in the sour passion fruit. Water electrical conductivity up to 2.7 dS m−1, along with the lowest recommended KD, led to increased levels of soluble solids and ascorbic acid in the sour passion fruit. Irrigation with water of 3.5 dS m−1 and using 80 to 100% of the recommended KD enhanced the total sugar content in the sour passion fruit. On the other hand, irrigation with water of 3.5 dS m−1 combined with 60% of the recommended KD resulted in a higher pulp yield in the 'BRS Sol do Cerrado' sour passion fruit 160 days post-transplantation. Adjustments in potassium fertilization management at different irrigation water salinity levels played a crucial role in maintaining both the production and quality of the sour passion fruit.

    Citation: Francisco Jean da Silva Paiva, Geovani Soares de Lima, Vera Lúcia Antunes de Lima, Weslley Bruno Belo de Souza, Lauriane Almeida dos Anjos Soares, Rafaela Aparecida Frazão Torres, Hans Raj Gheyi, Mariana de Oliveira Pereira, Maria Sallydelândia Sobral de Farias, André Alisson Rodrigues da Silva, Reynaldo Teodoro de Fátima, Jean Telvio Andrade Ferreira. Production and postharvest quality of Passiflora edulis Sims under brackish water and potassium doses[J]. AIMS Agriculture and Food, 2024, 9(2): 551-567. doi: 10.3934/agrfood.2024031

    Related Papers:

  • The aim of this research was to assess the yield and postharvest characteristics of 'BRS Sol do Cerrado' sour passion fruits based on irrigation with varying levels of saline water and potassium fertilization. The study was conducted under field conditions at an experimental farm in São Domingos, Paraíba, Brazil. A randomized block design was implemented in a 5 × 4 factorial arrangement, with five levels of electrical conductivity of water (ECw): 0.3, 1.1, 1.9, 2.7, and 3.5 dS m−1, and four potassium doses (KD): 60, 80,100, and 120% of the recommended amount, with 3 replications. The potassium dose equivalent to 120% of the recommended dose in combination with low-salinity water resulted in the highest fresh mass accumulation in the sour passion fruit. Water electrical conductivity up to 2.7 dS m−1, along with the lowest recommended KD, led to increased levels of soluble solids and ascorbic acid in the sour passion fruit. Irrigation with water of 3.5 dS m−1 and using 80 to 100% of the recommended KD enhanced the total sugar content in the sour passion fruit. On the other hand, irrigation with water of 3.5 dS m−1 combined with 60% of the recommended KD resulted in a higher pulp yield in the 'BRS Sol do Cerrado' sour passion fruit 160 days post-transplantation. Adjustments in potassium fertilization management at different irrigation water salinity levels played a crucial role in maintaining both the production and quality of the sour passion fruit.



    加载中


    [1] Guimarães SF, Lima IM, Modolo LV (2020) Phenolic content and antioxidant activity of parts of Passiflora edulis as a function of plant developmental stage. Acta Bot Brasilica 34: 74–82. https://doi.org/10.1590/0102-33062019abb0148 doi: 10.1590/0102-33062019abb0148
    [2] Melo NJDA, Negreiros AMP, Sarmento JDA, et al. (2020) Physical-chemical characterization of yellow passion fruit produced in different cultivation systems. Emirates J Food Agric 32: 897–908. https://doi.org/10.9755/ejfa.2020.v32.i12.2224 doi: 10.9755/ejfa.2020.v32.i12.2224
    [3] Costa CAR, Machado GGL, Rodrigues LJ, et al. (2023) Phenolic compounds profile and antioxidant activity of purple passion fruit's pulp, peel and seed at different maturation stages. Sci Hortic 321: 1–8. https://doi.org/10.1016/j.scienta.2023.112244 doi: 10.1016/j.scienta.2023.112244
    [4] Xu H, Qiao P, Pan J, et al. (2023) CaCl2 treatment effectively delays postharvest senescence of passion fruit. Food Chem 417: 1–10. https://doi.org/10.1016/j.foodchem.2023.135786 doi: 10.1016/j.foodchem.2023.135786
    [5] IBGE—Instituto Brasileiro de Geografia e Estatística (2023) Produção agrícola municipal 2022. Available from: https://sidra.ibge.gov.br/pesquisa/pam/tabelas.
    [6] Rady MM, Mossa AH, Youssof AMA, et al. (2023) Exploring the reinforcing effect of nano-potassium on the antioxidant defense system reflecting the increased yield and quality of salt-stressed squash plants. Sci Hortic 308: 1–18. https://doi.org/10.1016/j.scienta.2022.111609 doi: 10.1016/j.scienta.2022.111609
    [7] Stiller V (2009) Soil salinity and drought alter wood density and vulnerability to xylem cavitation of baldcypress (Taxodium distichum (L.) Rich.) seedlings. Environ Exp Bot 67: 164–171. https://doi.org/10.1016/j.envexpbot.2009.03.012 doi: 10.1016/j.envexpbot.2009.03.012
    [8] Abdalla M, Ahmed MA, Cai G, et al. (2022) Coupled effects of soil drying and salinity on soil-plant hydraulics. Plant Physiol 190: 1228-1241. https://doi.org/10.1093/plphys/kiac229 doi: 10.1093/plphys/kiac229
    [9] Li C, Wang P, Wei Z, et al. (2012) The mitigation effects of exogenous melatonin on salinity-induced stress in Malus hupehensis. J Pineal Res 53: 298–306. https://doi.org/10.1111/j.1600-079X.2012.00999.x doi: 10.1111/j.1600-079X.2012.00999.x
    [10] Mohamed IAA, Shalby N, El-Badri AMA, et al. (2020) Stomata and xylem vessels traits improved by melatonin application contribute to enhancing salt tolerance and fatty acid composition of Brassica napus L. plants. Agronomy 10: 1–23. https://doi.org/10.3390/agronomy10081186 doi: 10.3390/agronomy10081186
    [11] Azzam, CR, Zaki SS, Bamagoos AA, et al. (2022) Soaking maize seeds in zeatin-type cytokinin biostimulators improves salt tolerance by enhancing the antioxidant system and photosynthetic efficiency. Plants 11: 1–19. https://doi.org/10.3390/plants11081004 doi: 10.3390/plants11081004
    [12] Rahimi E, Nazari F, Javadi T, et al. (2021) Potassium-enriched clinoptilolite zeolite mitigates the adverse impacts of salinity stress in perennial ryegrass (Lolium perenne L.) by increasing silicon absorption and improving the K/Na ratio. J Environ Manag 285: 1–11. https://doi.org/10.1016/j.jenvman.2021.112142 doi: 10.1016/j.jenvman.2021.112142
    [13] Meurer JM, Tiecher T, Mattielo L (2018) Potássio. In: Fernandes MS, Souza SR, Santos LA (Eds.), Nutrição mineral de plantas, Viçosa, MG: SBCS, 429–464.
    [14] Abdelraouf EAA, Nassar IN, Shoman AM (2022) Impacts of successive accumulation of salinity, drought and potassium on maize (Zea Mays L.) germination and growth. Assiut J Agric Sci 53: 101–117. https://doi.org/10.21608/ajas.2022.128649.1125 doi: 10.21608/ajas.2022.128649.1125
    [15] Tittal M, Mir RA, Jatav KS, et al. (2021) Supplementation of potassium alleviates water stress-induced changes in Sorghum bicolor L. Physiol Plant 172: 1–13. https://doi.org/10.1111/ppl.13306 doi: 10.1111/ppl.13306
    [16] Asaduzzaman MD, Asao T (2018) Potassium—improvement of quality in fruits and vegetables through hydroponic nutrient management. London, UK: IntechOpen. 118p. Available from: http://dx.doi.org/10.5772/intechopen.68611.
    [17] Lima GS, Souza WBB, Soares LAA, et al. (2020) Dano celular e pigmentos fotossintéticos do maracujazeiro-azedo em função da natureza catiônica da água. Irriga 25: 663–669. http://dx.doi.org/10.15809/irriga.2020v25n4p663-669 doi: 10.15809/irriga.2020v25n4p663-669
    [18] Costa AFS, Costa NA, Ventura JÁ, et al. (2008) Recomendações técnicas para o cultivo do maracujazeiro. Vitória, ES: Incaper (Incaper. Documentos, 162) 56p. Available from: https://biblioteca.incaper.es.gov.br/digital/bitstream/item/106/1/DOC-162-Tecnologias-Producao-Maracuja-CD-7.pdf.
    [19] Lima GS, Souza WBB, Paiva FJS, et al. (2023) Tolerance of sour passion fruit cultivars to salt stress in a semi-arid region. Revista Brasileira de Engenharia Agrícola e Ambiental 27: 785–794. https://doi.org/10.1590/1807-1929/agriambi.v27n10p785-794 doi: 10.1590/1807-1929/agriambi.v27n10p785-794
    [20] Teixeira PC, Donagemma GK, Fontana A, et al. (2017) Manual de métodos de análise de solo. 3rd. Brasília, DF, Brazil. 574p. Available from: https://www.infoteca.cnptia.embrapa.br/handle/doc/1085209
    [21] Richards LA (1954) Diagnosis and improvement of saline and alkali soils. Washington: U.S, Department of Agriculture, 160p.
    [22] BRASIL (2005) Normas analíticas do Instituto Adolfo Lutz. São Paulo: Instituto Adolfo Lutz. Available from: https://wp.ufpel.edu.br/nutricaobromatologia/files/2013/07/Normas ADOLFOLUTZ.pdf.
    [23] AOAC—Association of Official Analytical Chemists (2005) Official methods of analysis of the AOAC. 18th ed., Gaithersburg, M.D, USA. 26p.
    [24] Yemn EW, Willis AJ (1954) The estimation of carbohydrate in plant extracts by anthrone. Biochem J 57: 508–514. https://doi.org/10.1042/bj0570508 doi: 10.1042/bj0570508
    [25] Strohecker R, Henning HM (1967) Analisis de vitaminas: métodos comprobados. Madrid: Paz Montalvo. 428p.
    [26] Govaerts B, Sayre KD, Lichter K, et al. (2007) Influence of permanent raised bed planting and residue management on physical and chemical soil quality in rain fed maize/wheat systems. Plant Soil 291: 39–54. https://doi.org/10.1007/s11104-006-9172-6 doi: 10.1007/s11104-006-9172-6
    [27] Hotelling H (1947) Multivariate quality control illustrated by air testing of sample bombsights. In: Eisenhart C, Hastay MW, Wallis WA (Eds.), Techniques of Statistical Analysis, McGraw Hill, New York, 111–184.
    [28] Hair FJ, Black WC, Babin BJ, et al. (2009) Análise multivariada de dados. 6th ed., Tradução Adonai Schlup Sant'Anna. Porto Alegre: Bookman, 688p.
    [29] Statsoft INC (2004) Programa computacional Statistica (data analysis software system) version 7.0. E. A. U.141-197. Available from: https://statsoft-academic.com.br.
    [30] Ferreira DF (2019) SISVAR: A computer analysis system to fixed effects split plot type designs. Revista Brasileira de Biometria 37: 529–535. https://doi.org/10.28951/rbb.v37i4.450 doi: 10.28951/rbb.v37i4.450
    [31] Kaiser HF (1960) The application of electronic computers to factor analysis. Edu Psychol Meas 20: 141–151. https://doi.org/10.1177/001316446002000116 doi: 10.1177/001316446002000116
    [32] Chen Z, Guo Z, Xu N, et al. (2023) Graphene nanoparticles improve alfalfa (Medicago sativa L.) growth through multiple metabolic pathways under salinity-stressed environment. J Plant Physiol 289: 1–14. https://doi.org/10.1016/j.jplph.2023.154092 doi: 10.1016/j.jplph.2023.154092
    [33] Ramos JG, Lima VLA, Lima GS, et al. (2022) Produção e qualidade pós-colheita do maracujazeiro-azedo irrigado com águas salinas e aplicação exógena de H2O2. Irriga 27: 540–556. https://doi.org/10.15809/irriga.2022v27n3p540-556 doi: 10.15809/irriga.2022v27n3p540-556
    [34] Sousa GG, Viana TA, Pereira ED, et al. (2014) Fertirrigação potássica na cultura do morango no litoral Cearense. Bragantia 73: 39–44. https://doi.org/10.1590/brag.2014.006 doi: 10.1590/brag.2014.006
    [35] Li B, Wim V, Shukla MK, et al. (2021) Drip irrigation provides a trade-off between yield and nutritional quality of tomato in the solar greenhouse. Agric Water Manag 249: 1–11. https://doi.org/10.1016/j.agwat.2021.106777 doi: 10.1016/j.agwat.2021.106777
    [36] Zhang X, You S, Tian Y, et al. (2019) Comparison of plastic film, biodegradable paper and bio-based film mulching for summer tomato production: Soil properties, plant growth, fruit yield and fruit quality. Sci Hortic 249: 38–48. https://doi.org/10.1016/j.scienta.2019.01.037 doi: 10.1016/j.scienta.2019.01.037
    [37] Qureshi MI, Abdin MZ, Ahmad J, et al. (2013) Effect of long-term salinity on cellular antioxidants, compatible solute and fatty acid profile of sweet annie (Artemisia annua L.). Phytochemistry 95: 215–223. https://doi.org/10.1016/j.phytochem.2013.06.026 doi: 10.1016/j.phytochem.2013.06.026
    [38] Julkowska MM, Testerink C (2015) Tuning plant signaling and growth to survive salt. Trends Plant Sci 20: 586–594. https://doi.org/10.1016/j.tplants.2015.06.008 doi: 10.1016/j.tplants.2015.06.008
    [39] Paiva FJS, Lima GS, Lima, VLA, et al. (2021) Gas exchange and production of passion fruit as affected by cationic nature of irrigation water. Revista Caatinga 34: 926–936. https://doi.org/10.1590/1983-21252021v34n420rc doi: 10.1590/1983-21252021v34n420rc
    [40] Nascimento JAM, Cavalcante LF, Dantas SAG, et al. (2015) Biofertilizante e adubação mineral na qualidade de frutos de maracujazeiro amarelo irrigado com água salina. Irriga 20: 220–232. https://doi.org/10.15809/irriga.2015v20n2p220 doi: 10.15809/irriga.2015v20n2p220
    [41] BRASIL—Ministério da Agricultura Pecuária e Abastecimento (2018) Instrução normativa nº 37, de 1 de outubro de 2018. Regulamento técnico geral para fixação dos padrões de identidade e qualidade para suco de maracujá, Brasília, DF. Available from: https://www.legisweb.com.br/legislacao/?id = 368178.
    [42] Raimundo K, Magri RS, Simionato EMRS, et al. (2009) Avaliação física e química da polpa de maracujá congelada comercializada na região de Bauru. Revista Brasileira de Fruticultura 31: 539–543. https://doi.org/10.1590/S0100-29452009000200031 doi: 10.1590/S0100-29452009000200031
    [43] Dias TJ, Cavalcante LF, Freira JLO, et al. (2011) Qualidade química de frutos do maracujazeiro-amarelo em solo com biofertilizante irrigado com águas salinas. Revista Brasileira de Engenharia Agrícola e Ambiental 15: 229–236. https://doi.org/10.1590/S1415-43662011000300002 doi: 10.1590/S1415-43662011000300002
    [44] Matsura FCAU, Folegatti MIS (2002) Maracujá: pós-colheita. Brasília: Embrapa Informação Tecnológica (Frutas do Brasil, 23), 51p.
    [45] Rocha MC, Silva ALB, Almeida A, et al. (2001) Efeito do uso de biofertilizante Agrobio sobre as características físico-químicas na pós-colheita do maracujazeiro amarelo (Passiflora edulis f. flavicarpa Deg) no município de Taubaté. Revista Biociências 7: 7–13.
    [46] Pinheiro FWA, Lima GS, Sousa PFN, et al. (2023) Potassium fertilization in the cultivation of sour passion fruit under irrigation strategies with brackish water. Revista Brasileira de Engenharia Agrícola e Ambiental 27: 42–50. https://doi.org/10.1590/1807-1929/agriambi.v27n1p42-50 doi: 10.1590/1807-1929/agriambi.v27n1p42-50
    [47] Wang XG, Zhao HZX, Jiang JC, et al. (2015) Effects of potassium deficiency on photosynthesis and photoprotection mechanisms in soybean (Glycine max (L.) Merr.). J Integr Agric 14: 856–863. https://doi.org/10.1016/S2095-3119(14)60848-0 doi: 10.1016/S2095-3119(14)60848-0
    [48] Pinheiro AM, Fernandes AG, Fai AEC, et al. (2006) Avaliação química, físicoquímica e microbiológica de sucos de frutas integrais: Abacaxi, caju e maracujá. Ciência e Tecnologia de Alimentos 26: 98–103. https://doi.org/10.1590/S0101-20612006000100017 doi: 10.1590/S0101-20612006000100017
    [49] Costa JRM, Lima CAA, Lima EDPA, et al. (2001) Caracterização dos frutos de maracujá amarelo irrigados com água salina. Revista Brasileira de Engenharia Agrícola e Ambiental 5: 143–146. https://doi.org/10.1590/S1415-43662001000100027 doi: 10.1590/S1415-43662001000100027
    [50] Vianna-Silva T, Resende ED, Viana AP, et al. (2008) Qualidade do suco de maracujá-amarelo em diferentes épocas de colheita. Ciências e Tecnologia de Alimentos 28: 545–550. DOI:10.1590/S0101-20612008000300007 doi: 10.1590/S0101-20612008000300007
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(276) PDF downloads(62) Cited by(0)

Article outline

Figures and Tables

Figures(4)  /  Tables(3)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog