Review

The input of microorganisms to the cultivation of mushrooms on lignocellulosic waste

  • Received: 06 December 2022 Revised: 12 February 2023 Accepted: 17 February 2023 Published: 01 March 2023
  • Lignocellulosic crop waste is the world's most abundant renewable raw material. Its burning leads to the loss of an energy valuable resource and causes enormous environmental damage. An environmentally friendly and promising biotechnological process for such waste utilization is the production of mushrooms for food and medicine. However, the energy intensity of substrate preparation hinders the development of work in this direction. Another significant challenge in this field is to increase the biological efficiency of substrate processing. The purpose of our investigation was to reveal the contribution of microorganisms to solving this and other problems of mushroom cultivation based on a review of the latest scientific research on the topic. The literature from databases of Google Scholar, Scopus, and Web of Science was selected by various combinations of search queries concerning mushrooms, substrates, microbial communities, and their effects. The current state of the issue of mushrooms and microorganisms' interactions is presented. The review considers in detail the contribution of microorganisms to the substrate preparation, describes microbial communities in various phases of the mushroom cultivation process, and identifies the main groups of microorganisms associated with lignocellulose degradation, mushroom growth promotion, and protection against pathogens. The significant contribution of bacteria to mushroom cultivation is shown. The review demonstrates that the contribution of bacteria to lignin degradation in lignocellulosic substrates during mushroom cultivation is largely underestimated. In this process, various genera of the bacterial phyla Bacillota, Pseudomonadota, and Actinomycetota are involved. The correct combinations of microorganisms can provide controllability of the entire cultivation process and increase required indicators. However, expanding research in this direction is necessary to remove gaps in understanding the relationship between microorganisms and mushrooms.

    Citation: Margarita Saubenova, Yelena Oleinikova, Amankeldi Sadanov, Zhanerke Yermekbay, Didar Bokenov, Yerik Shorabaev. The input of microorganisms to the cultivation of mushrooms on lignocellulosic waste[J]. AIMS Agriculture and Food, 2023, 8(1): 239-277. doi: 10.3934/agrfood.2023014

    Related Papers:

  • Lignocellulosic crop waste is the world's most abundant renewable raw material. Its burning leads to the loss of an energy valuable resource and causes enormous environmental damage. An environmentally friendly and promising biotechnological process for such waste utilization is the production of mushrooms for food and medicine. However, the energy intensity of substrate preparation hinders the development of work in this direction. Another significant challenge in this field is to increase the biological efficiency of substrate processing. The purpose of our investigation was to reveal the contribution of microorganisms to solving this and other problems of mushroom cultivation based on a review of the latest scientific research on the topic. The literature from databases of Google Scholar, Scopus, and Web of Science was selected by various combinations of search queries concerning mushrooms, substrates, microbial communities, and their effects. The current state of the issue of mushrooms and microorganisms' interactions is presented. The review considers in detail the contribution of microorganisms to the substrate preparation, describes microbial communities in various phases of the mushroom cultivation process, and identifies the main groups of microorganisms associated with lignocellulose degradation, mushroom growth promotion, and protection against pathogens. The significant contribution of bacteria to mushroom cultivation is shown. The review demonstrates that the contribution of bacteria to lignin degradation in lignocellulosic substrates during mushroom cultivation is largely underestimated. In this process, various genera of the bacterial phyla Bacillota, Pseudomonadota, and Actinomycetota are involved. The correct combinations of microorganisms can provide controllability of the entire cultivation process and increase required indicators. However, expanding research in this direction is necessary to remove gaps in understanding the relationship between microorganisms and mushrooms.



    加载中


    [1] Adhikari S, Nam H, Chakraborty JP (2018) Conversion of solid wastes to fuels and chemicals through pyrolysis, In: Bhaskar T, Pandey A, Mohan SV, et al. (Eds.), Waste biorefinery, Amsterdam, Oxford, Cambridge: Elsevier, 239–263.
    [2] Ali N, Zhang Q, Liu ZY, et al. (2020) Emerging technologies for the pretreatment of lignocellulosic materials for bio-based products. Appl Microbiol Biotechnol 104: 455–473. https://doi.org/10.1007/s00253-019-10158-w doi: 10.1007/s00253-019-10158-w
    [3] Cheng HH, Whang LM (2022) Resource recovery from lignocellulosic wastes via biological technologies: Advancements and prospects. Bioresour Technol 343: 126097. https://doi.org/10.1016/j.biortech.2021.126097 doi: 10.1016/j.biortech.2021.126097
    [4] Sidana A, Yadav SK (2022) Recent developments in lignocellulosic biomass pretreatment with a focus on eco-friendly, non-conventional methods. J Clean Prod 335: 130286. https://doi.org/10.1016/j.jclepro.2021.130286 doi: 10.1016/j.jclepro.2021.130286
    [5] Zhang ZC, Shah AM, Mohamed H, et al. (2021) Isolation and screening of microorganisms for the effective pretreatment of lignocellulosic agricultural wastes. Biomed Res Int 2021: 5514745. https://doi.org/10.1155/2021/5514745 doi: 10.1155/2021/5514745
    [6] Chang ST, Wasser SP (2017) The cultivation and environmental impact of mushrooms. Available from: https://oxfordre.com/environmentalscience/view/10.1093/acrefore/9780199389414.001.0001/acrefore-9780199389414-e-231.
    [7] Raman J, Jang K, Oh Y, et al. (2021) Cultivation and nutritional value of prominent Pleurotus spp.: An overview. Mycobiology 49: 1–14. https://doi.org/10.1080/12298093.2020.1835142 doi: 10.1080/12298093.2020.1835142
    [8] Chmelová D, Legerská B, Kunstová J, et al. (2022) The production of laccases by white-rot fungi under solid-state fermentation conditions. World J Microbiol Biotechnol 38: 21. https://doi.org/10.1007/s11274-021-03207-y doi: 10.1007/s11274-021-03207-y
    [9] Sousa D, Venâncio A, Belo I, et al. (2018) Mediterranean agro-industrial wastes as valuable substrates for lignocellulolytic enzymes and protein production by solid-state fermentation. J Sci Food Agric 98: 5248–5256. https://doi.org/10.1002/jsfa.9063 doi: 10.1002/jsfa.9063
    [10] Kumla J, Suwannarach N, Sujarit K, et al. (2020) Cultivation of mushrooms and their lignocellulolytic enzyme production through the utilization of agro-Industrial waste. Molecules 25: 2811. https://doi.org/10.3390/molecules25122811 doi: 10.3390/molecules25122811
    [11] Kainthola J, Podder A, Fechner M, et al. (2021) An overview of fungal pretreatment processes for anaerobic digestion: Applications, bottlenecks and future needs. Bioresour Technol 321: 124397. https://doi.org/10.1016/j.biortech.2020.124397 doi: 10.1016/j.biortech.2020.124397
    [12] Humpenöder F, Bodirsky BL, Weindl I, et al. (2022) Projected environmental benefits of replacing beef with microbial protein. Nature 605: 90–96. https://doi.org/10.1038/s41586-022-04629-w doi: 10.1038/s41586-022-04629-w
    [13] Lu HY, Lou HH, Hu JJ, et al. (2020) Macrofungi: A review of cultivation strategies, bioactivity, and application of mushrooms. CRFSFS 19: 2333–2356. https://doi.org/10.1111/1541-4337.12602 doi: 10.1111/1541-4337.12602
    [14] Jang KY, Oh YL, Oh M, et al. (2016) Introduction of the representative mushroom cultivars and groundbreaking cultivation techniques in Korea. J Mushroom 14: 136–141. https://doi.org/10.14480/jm.2016.14.4.136 doi: 10.14480/jm.2016.14.4.136
    [15] Wang L, Mao JG, Zhao HJ, et al. (2016) Comparison of characterization and microbial communities in rice straw- and wheat straw-based compost for Agaricus bisporus production. J Ind Microbiol Biotechnol 43: 1249–1260. https://doi.org/10.1007/s10295-016-1799-6 doi: 10.1007/s10295-016-1799-6
    [16] Sardar H, Ali MA, Anjum MA, et al. (2017) Agro-industrial residues influence mineral elements accumulation and nutritional composition of king oyster mushroom (Pleurotus eryngii). Sci Hortic 225: 327–334. https://doi.org/10.1016/j.scienta.2017.07.010 doi: 10.1016/j.scienta.2017.07.010
    [17] Ritota M, Manzi P (2019) Pleurotus spp. cultivation on different agri-food by-products: Example of biotechnological application. Sustainability 11: 5049. https://doi.org/10.3390/su11185049 doi: 10.3390/su11185049
    [18] Zhang HL, Wei JK, Wang QH, et al. (2019) Lignocellulose utilization and bacterial communities of millet straw based mushroom (Agaricus bisporus) production. Sci Rep 9: 1151. https://doi.org/10.1038/s41598-018-37681-6 doi: 10.1038/s41598-018-37681-6
    [19] Melanouri EM, Dedousi M, Diamantopoulou P (2022) Cultivating Pleurotus ostreatus and Pleurotus eryngii mushroom strains on agro-industrial residues in solid-state fermentation. Part Ⅰ: Screening for growth, endoglucanase, laccase and biomass production in the colonization phase. Carbon Resour Convers 5: 61–70. https://doi.org/10.1016/j.crcon.2021.12.004 doi: 10.1016/j.crcon.2021.12.004
    [20] Zikriyani H, Saskiawan I, Mangunwardoyo W (2018) Utilization of agricultural waste for cultivation of paddy straw mushrooms (Volvariella volvacea (Bull.) Singer 1951). Int J Agric Technol 14: 805–814.
    [21] Ranjithkumar M, Uthandi S, Kumar PS, et al. (2022) Highly crystalline cotton spinning wastes utilization: Pretreatment, optimized hydrolysis and fermentation using Pleurotus florida for bioethanol production. Fuel 308: 122052. https://doi.org/10.1016/j.fuel.2021.122052 doi: 10.1016/j.fuel.2021.122052
    [22] Fayssal SA, Alsanad MA, El Sebaaly Z, et al. (2020) Valorization of olive pruning residues through bioconversion into edible mushroom Pleurotus ostreatus (Jacq. Ex Fr.) P. Kumm. (1871) of improved nutritional value. Scientifica 2020: 3950357. https://doi.org/10.1155/2020/3950357 doi: 10.1155/2020/3950357
    [23] Vetayasuporn S, Chutichudet P, Cho-Ruk K (2006) Bagasse as a possible substrate for Pleurotus ostreatus (Fr.) Kummer cultivation for the local mushroom farms in the northeast of Thailand. Pak J Biol Sci 9: 2512–2515. https://doi.org/10.3923/pjbs.2006.2512.2515 doi: 10.3923/pjbs.2006.2512.2515
    [24] Carrasco-Cabrera CP, Bell TL, Kertesz MA (2019) Caffeine metabolism during cultivation of oyster mushroom (Pleurotus ostreatus) with spent coffee grounds. Appl Microbiol Biotechnol 103: 5831–5841. https://doi.org/10.1007/s00253-019-09883-z doi: 10.1007/s00253-019-09883-z
    [25] Chai WY, Krishnan UG, Sabaratnam V, et al. (2021) Assessment of coffee waste in formulation of substrate for oyster mushrooms Pleurotus pulmonarius and Pleurotus floridanus. Future Foods 4: 100075. https://doi.org/10.1016/j.fufo.2021.100075 doi: 10.1016/j.fufo.2021.100075
    [26] Omoni VT, Lag-Brotons AJ, Ibeto CN, et al. (2021) Effects of biological pre-treatment of lignocellulosic waste with white-rot fungi on the stimulation of 14C-phenanthrene catabolism in soils. Int Biodeterior Biodegrad 165: 105324. https://doi.org/10.1016/j.ibiod.2021.105324 doi: 10.1016/j.ibiod.2021.105324
    [27] Ivarsson E, Grudén M, Södergren J, et al. (2021) Use of faba bean (Vicia faba L.) hulls as substrate for Pleurotus ostreatus–Potential for combined mushroom and feed production. J Clean Prod 313: 127969. https://doi.org/10.1016/j.jclepro.2021.127969 doi: 10.1016/j.jclepro.2021.127969
    [28] Oliveira do Carmo C, Mota da Silva R, de Souza Rodrigues M, et al. (2021) Bioconversion of sisal agro-industrial waste into high protein oyster mushrooms. Bioresour Technol Rep 14: 100657. https://doi.org/10.1016/j.biteb.2021.100657 doi: 10.1016/j.biteb.2021.100657
    [29] Hamed HA, Mohamed MF, Elshaikh KA, et al. (2022) Banana residue could be a viable rice straw alternative for Pleurotus mushroom production. IJROWA 11: 343–354. https://doi.org/10.30486/ijrowa.2022.1923511.1204 doi: 10.30486/ijrowa.2022.1923511.1204
    [30] Wachira JW, Nguluu S, Kimatu J (2022) Differential growth and productivity of oyster mushroom (Pleurotus pulmonarius) on agro-waste substrates in semi-arid regions of Kenya. IJROWA 11: 375–383. https://doi.org/10.30486/IJROWA.2022.1931154.1252 doi: 10.30486/IJROWA.2022.1931154.1252
    [31] Triyono S, Haryanto A, Telaumbanua M, et al. (2019) Cultivation of straw mushroom (Volvariella volvacea) on oil palm empty fruit bunch growth medium. IJROWA 8: 381–392. https://doi.org/10.1007/s40093-019-0259-5 doi: 10.1007/s40093-019-0259-5
    [32] Li H, Tian Y, Menolli N Jr, et al. (2021) Reviewing the world's edible mushroom species: A new evidence-based classification system. CRFSFS 20: 1982–2014. https://doi.org/10.1111/1541-4337.12708 doi: 10.1111/1541-4337.12708
    [33] Food and Agriculture Organization of the United Nations database. Available from: http://www.fao.org/faostat/en/#data/QC/.
    [34] Alekseeva KL (2002) Scientific basis for the cultivation and protection of edible mushrooms from pests and diseases. PhD thesis, All-Russian Research Institute of Vegetable Growing.
    [35] Nayak B, Panda BP (2016) Modelling and optimization of texture profile of fermented soybean using response surface methodology. AIMS Agric Food 1: 409–418. https://doi.org/10.3934/agrfood.2016.4.409 doi: 10.3934/agrfood.2016.4.409
    [36] Li CT, Xu S (2022) Edible mushroom industry in China: Current state and perspectives. Appl Microbiol Biotechnol 106: 3949–3955. https://doi.org/10.1007/s00253-022-11985-0 doi: 10.1007/s00253-022-11985-0
    [37] Sun YN, Zhang M, Fang Z (2020) Efficient physical extraction of active constituents from edible fungi and their potential bioactivities: A review. Trends Food Sci Technol 105: 468–482. https://doi.org/10.1016/j.tifs.2019.02.026 doi: 10.1016/j.tifs.2019.02.026
    [38] El-Ramady H, Abdalla N, Badgar K, et al. (2022) Edible mushrooms for sustainable and healthy human food: nutritional and medicinal attributes. Sustainability 14: 4941. https://doi.org/10.3390/su14094941 doi: 10.3390/su14094941
    [39] Venturella G, Ferraro V, Cirlincione F, et al. (2021) Medicinal mushrooms: Bioactive compounds, use, and clinical trials. Int J Mol Sci 22: 634. https://doi.org/10.3390/ijms22020634 doi: 10.3390/ijms22020634
    [40] Kapahi M (2019) Recent advances in cultivation of edible mushrooms, In: Singh BP, Lallawmsanga, Passari AK (Eds.), Biology of macrofungi, Cham: Springer, 275–286.
    [41] Niego AG, Rapior S, Thongklang N, et al. (2021) Macrofungi as a nutraceutical source: Promising bioactive compounds and market value. J Fungi 7: 397. https://doi.org/10.3390/jof7050397 doi: 10.3390/jof7050397
    [42] Kovalev VS, Grandl W, Manukovsky NS, et al. (2022) Modeling a lunar base mushroom farm. Life Sci Space Res 33: 1–6. https://doi.org/10.1016/j.lssr.2021.12.005 doi: 10.1016/j.lssr.2021.12.005
    [43] Zhang CT, Guan X, Yu SQ, et al. (2022) Production of meat alternatives using live cells, cultures and plant proteins. Curr Opin Food Sci 43: 43–52. https://doi.org/10.1016/j.cofs.2021.11.002 doi: 10.1016/j.cofs.2021.11.002
    [44] El-Ramady H, Abdalla N, Fawzy Z, et al. (2022) Green biotechnology of oyster mushroom (Pleurotus ostreatus L.): A sustainable strategy for myco-remediation and bio-fermentation. Sustainability 14: 3667. https://doi.org/10.3390/su14063667 doi: 10.3390/su14063667
    [45] Berovic M (2019) Cultivation of medicinal mushroom biomass by solid-state bioprocessing in bioreactors, In: Steudler S, Werner A, Cheng J (Eds.) Solid state fermentation, Cham: Springer, 3–25. https://doi.org/10.1007/10_2019_89
    [46] Wang F, Xu L, Zhao LT, et al. (2019) Fungal laccase production from lignocellulosic agricultural wastes by solid-state fermentation: A review. Microorganisms 7: 665. https://doi.org/10.3390/microorganisms7120665 doi: 10.3390/microorganisms7120665
    [47] Yafetto L (2022) Application of solid-state fermentation by microbial biotechnology for bioprocessing of agro-industrial wastes from 1970 to 2020: A review and bibliometric analysis. Heliyon 8: e09173. https://doi.org/10.1016/j.heliyon.2022.e09173 doi: 10.1016/j.heliyon.2022.e09173
    [48] Li GQ, Wang YH, Zhu PL, et al. (2022) Functional characterization of laccase isozyme (PoLcc1) from the edible mushroom Pleurotus ostreatus involved in lignin degradation in cotton straw. Int J Mol Sci 23: 13545. https://doi.org/10.3390/ijms232113545 doi: 10.3390/ijms232113545
    [49] Suwannarach N, Kumla J, Zhao Y, et al. (2022) Impact of cultivation substrate and microbial community on improving mushroom productivity: A review. Biology 11: 569. https://doi.org/10.3390/biology11040569 doi: 10.3390/biology11040569
    [50] Yang YR, Guo YX, Wang QY, et al. (2022) Impacts of composting duration on physicochemical properties and microbial communities during short-term composting for the substrate for oyster mushrooms. Sci Total Environ 847: 157673. https://doi.org/10.1016/j.scitotenv.2022.157673 doi: 10.1016/j.scitotenv.2022.157673
    [51] Kertesz MA, Thai M (2018) Compost bacteria and fungi that influence growth and development of Agaricus bisporus and other commercial mushrooms. Appl Microbiol Biotechnol 102: 1639–1650. https://doi.org/10.1007/s00253-018-8777-z doi: 10.1007/s00253-018-8777-z
    [52] Bangyeekhun E, Sawetsuwannakul K, Romruen U (2020) UV-induced mutagenesis in Volvariella volvacea to improve mushroom yield. Songklanakarin J Sci Technol 42: 910–916. https://sjst.psu.ac.th/journal/42-4/25.pdf
    [53] Wang Q, Juan JX, Xiao TT, et al. (2021) The physical structure of compost and C and N utilization during composting and mushroom growth in Agaricus bisporus cultivation with rice, wheat, and reed straw-based composts. Appl Microbol Biotechnol 105: 3811–3823. https://doi.org/10.1007/s00253-021-11284-0 doi: 10.1007/s00253-021-11284-0
    [54] Song TT, Shen YY, Jin QL, et al. (2021) Bacterial community diversity, lignocellulose components, and histological changes in composting using agricultural straws for Agaricus bisporus production. Peer J 9: e10452. https://doi.org/10.7717/peerj.10452 doi: 10.7717/peerj.10452
    [55] Bellettini MB, Fiorda FA, Maieves HA, et al. (2019) Factors affecting mushroom Pleurotus spp. Saudi J Biol Sci 26: 633–646. https://doi.org/10.1016/j.sjbs.2016.12.005 doi: 10.1016/j.sjbs.2016.12.005
    [56] Hoa HT, Wang CL, Wang CH (2015) The effects of different substrates on the growth, yield, and nutritional composition of two oyster mushrooms (Pleurotus ostreatus and Pleurotus cystidiosus). Mycobiology 43: 423–434. https://doi.org/10.5941/MYCO.2015.43.4.423 doi: 10.5941/MYCO.2015.43.4.423
    [57] Li HZ, Zhang ZJ, Li MX, et al. (2017) Yield, size, nutritional value, and antioxidant activity of oyster mushrooms grown on perilla stalks. Saudi J Biol Sci 24: 347–354. https://doi.org/10.1016/j.sjbs.2015.10.001 doi: 10.1016/j.sjbs.2015.10.001
    [58] Hassan NA, Supramani S, Azzimi Sohedein MN, et al. (2019) Efficient biomass-exopolysaccharide production from an identified wild-Serbian Ganoderma lucidum strain BGF4A1 mycelium in a controlled submerged fermentation. Biocatal Agric Biotechnol 21: 101305. https://doi.org/10.1016/j.bcab.2019.101305 doi: 10.1016/j.bcab.2019.101305
    [59] Velez MEV, da Luz JMR, da Silva M de CS, et al. (2019) Production of bioactive compounds by the mycelial growth of Pleurotus djamor in whey powder enriched with selenium. LWT 114: 108376. https://doi.org/10.1016/j.lwt.2019.108376 doi: 10.1016/j.lwt.2019.108376
    [60] Rózsa S, Măniuțiu DN, Poșta G, et al. (2019) Influence of the culture substrate on the Agaricus blazei murrill mushrooms vitamins content. Plants 8: 316. https://doi.org/10.3390/plants8090316 doi: 10.3390/plants8090316
    [61] Rathore H, Prasad S, Kapri M, et al. (2019) Medicinal importance of mushroom mycelium: Mechanisms and applications. J Funct Foods 56: 182–193. https://doi.org/10.1016/j.jff.2019.03.016 doi: 10.1016/j.jff.2019.03.016
    [62] Vos AM, Heijboer A, Boschker HTS, et al. (2017) Microbial biomass in compost during colonization of Agaricus bisporus. AMB Express 7: 12. https://doi.org/10.1186/s13568-016-0304-y doi: 10.1186/s13568-016-0304-y
    [63] Carrasco J, Zied DC, Pardo JE, et al. (2018) Supplementation in mushroom crops and its impact on yield and quality. AMB Expr 8: 146. https://doi.org/10.1186/s13568-018-0678-0 doi: 10.1186/s13568-018-0678-0
    [64] Yu F, Liang JF, Song J, et al. (2020) Bacterial community selection of Russula griseocarnosa mycosphere soil. Front Microbiol 11: 347. https://doi.org/10.3389/fmicb.2020.00347 doi: 10.3389/fmicb.2020.00347
    [65] Sassine YN, Naim L, El Sebaaly Z, et al. (2021) Nano urea effects on Pleurotus ostreatus nutritional value depending on the dose and timing of application. Sci Rep 11: 5588. https://doi.org/10.1038/s41598-021-85191-9 doi: 10.1038/s41598-021-85191-9
    [66] Naim L, Alsanad MA, Shaban N, et al. (2020) Production and composition of Pleurotus ostreatus cultivated on Lithovit®-Amino25 supplemented spent substrate. AMB Expr 10: 188. https://doi.org/10.1186/s13568-020-01124-1 doi: 10.1186/s13568-020-01124-1
    [67] Bellettini MB, Fiorda FA, Maieves HA, et al. (2019) Factors affecting mushroom Pleurotus spp. Saudi J Biol Sci 26: 633–646. https://doi.org/10.1016/j.sjbs.2016.12.005 doi: 10.1016/j.sjbs.2016.12.005
    [68] Sakamoto Y (2018) Influences of environmental factors on fruiting body induction, development and maturation in mushroom-forming fungi. Fungal Biol Rev 32: 236–248. https://doi.org/10.1016/j.fbr.2018.02.003 doi: 10.1016/j.fbr.2018.02.003
    [69] Dorr E, Koegler M, Gabrielle B, et al. (2021) Life cycle assessment of a circular, urban mushroom farm. J Clean Prod 288: 125668. https://doi.org/10.1016/j.jclepro.2020.125668 doi: 10.1016/j.jclepro.2020.125668
    [70] Thai M, Safianowicz K, Bell TL, et al. (2022) Dynamics of microbial community and enzyme activities during preparation of Agaricus bisporus compost substrate. ISME Commun 2: 88. https://doi.org/10.1038/s43705-022-00174-9 doi: 10.1038/s43705-022-00174-9
    [71] Reyes-Torres M, Oviedo-Ocaña ER, Dominguez I, et al. (2018) A systematic review on the composting of green waste: Feedstock quality and optimization strategies. Waste Manage 77: 486–499. https://doi.org/10.1016/j.wasman.2018.04.037 doi: 10.1016/j.wasman.2018.04.037
    [72] Vieira FR, Pecchia JA (2018) An exploration into the bacterial community under different pasteurization conditions during substrate preparation (composting–phase Ⅱ) for Agaricus bisporus cultivation. Microb Ecol 75: 318–330. https://doi.org/10.1007/s00248-017-1026-7 doi: 10.1007/s00248-017-1026-7
    [73] Vieira FR, Pecchia JA (2022) Bacterial community patterns in the Agaricus bisporus cultivation system, from compost raw materials to mushroom caps. Microb Ecol 84: 20–32. https://doi.org/10.1007/s00248-021-01833-5 doi: 10.1007/s00248-021-01833-5
    [74] Jurak E., Punt AM, Arts W, et al. (2015) Fate of carbohydrates and lignin during composting and mycelium growth of Agaricus bisporus on wheat straw based compost. PLoS One 10: e0138909. https://doi.org/10.1371/journal.pone.0138909 doi: 10.1371/journal.pone.0138909
    [75] Vetayasuporn S (2004) Effective microorganisms for enhancing Pleurotus ostreatus (Fr.) Kummer production. J Biol Sci 4: 706–710. https://doi.org/10.3923/jbs.2004.706.710 doi: 10.3923/jbs.2004.706.710
    [76] Carrasco J, García-Delgado C, Lavega R, et al. (2020) Holistic assessment of the microbiome dynamics in the substrates used for commercial champignon (Agaricus bisporus) cultivation. Appl Microb Biotechnol 13: 1933–1947. https://doi.org/10.1111/1751-7915.13639 doi: 10.1111/1751-7915.13639
    [77] Song TT, Shen YY, Jin QL, et al. (2021) Bacterial community diversity, lignocellulose components, and histological changes in composting using agricultural straws for Agaricus bisporus production. Peer J 9: e10452. https://doi.org/10.7717/peerj.10452 doi: 10.7717/peerj.10452
    [78] Braat N, Koster MC, Wösten HAB (2022) Beneficial interactions between bacteria and edible mushrooms. Fungal Biol Rev 39: 60–72. https://doi.org/10.1016/j.fbr.2021.12.001 doi: 10.1016/j.fbr.2021.12.001
    [79] Zhang X, Zhong YH, Yang SD, et al. (2014) Diversity and dynamics of the microbial community on decomposing wheat straw during mushroom compost production. Bioresour Technol 170: 183–195. https://doi.org/10.1016/j.biortech.2014.07.093 doi: 10.1016/j.biortech.2014.07.093
    [80] Cao GT, Song TT, Shen YY, et al. (2019) Diversity of bacterial and fungal communities in wheat straw compost for Agaricus bisporus cultivation. HortScience 54: 100–109. https://doi.org/10.21273/HORTSCI13598-18 doi: 10.21273/HORTSCI13598-18
    [81] Duran K, van den Dikkenberg M, van Erven G, et al. (2022) Microbial lignin degradation in an industrial composting environment. Bioresour Technol Rep 17: 100911. https://doi.org/10.1016/j.biteb.2021.100911 doi: 10.1016/j.biteb.2021.100911
    [82] Chang WQ, Feng WL, Yang Y, et al. (2022) Metagenomics analysis of the effects of Agaricus bisporus mycelia on microbial diversity and CAZymes in compost. PeerJ 10: e14426. https://doi.org/10.7717/peerj.14426 doi: 10.7717/peerj.14426
    [83] Guo YP, Zhang GQ, Chen QJ, et al. (2014) Bacterial community structure analysis for mushroom (Agaricus bisporus) compost using PCR-DGGE technique. Chin J Appl Environ Biol 20: 832–839. http://doi.org/10.3724/SP.J.1145.2014.03020 doi: 10.3724/SP.J.1145.2014.03020
    [84] Wang XL, Yao B, Su XY (2018) Linking enzymatic oxidative degradation of lignin to organics detoxification. Int J Mol Sci 19: 3373. https://doi.org/10.3390/ijms19113373 doi: 10.3390/ijms19113373
    [85] Qin GJ, Wang X, Chen QJ, et al. (2017) Changes of lignocellulolytic enzymes and material components in different compost formulas during the production of Agaricus bisporus. Chin J Appl Environ Biol 23: 1035–1041. https://doi.org/10.3724/SP.J.1145.2017.01019 doi: 10.3724/SP.J.1145.2017.01019
    [86] Gao XJ, Zhang HL, Sang YX, et al. (2018) Feasibility of weeds-based compost-cultivated Agaricus bisporus. Chin J Appl Environ Biol 24: 1275–1282. https://doi.org/10.19675/j.cnki.1006-687x.2018.01033 doi: 10.19675/j.cnki.1006-687x.2018.01033
    [87] Wang JJ, Chang F, Tang XQ, et al. (2020) Bacterial laccase of Anoxybacillus ayderensis SK3-4 from hot springs showing potential for industrial dye decolorization. Ann Microbiol 70: 51. https://doi.org/10.1186/s13213-020-01593-6 doi: 10.1186/s13213-020-01593-6
    [88] Verma G, Anand P, Verma D, et al. (2020). Microbial laccase production and its industrial applications, In: Mishra P, Mishra RR, Adetunji CO (Eds.), Innovations in food technology, Singapore: Springer.
    [89] Shen Q, Tang JW, Sun H, et al. (2022) Straw waste promotes microbial functional diversity and lignocellulose degradation during the aerobic process of pig manure in an ectopic fermentation system via metagenomic analysis. Sci Total Environ 838: 155637. https://doi.org/10.1016/j.scitotenv.2022.155637 doi: 10.1016/j.scitotenv.2022.155637
    [90] Chauhan PS (2020) Role of various bacterial enzymes in complete depolymerization of lignin: A review. Biocatal Agric Biotechnol 23: 101498. https://doi.org/10.1016/j.bcab.2020.101498 doi: 10.1016/j.bcab.2020.101498
    [91] Sánchez C (2010) Cultivation of Pleurotus ostreatus and other edible mushrooms. Appl Microbiol Biotechnol 85: 1321–1337. https://doi.org/10.1007/s00253-009-2343-7 doi: 10.1007/s00253-009-2343-7
    [92] Vajna B, Nagy A, Sajben E (2010) Microbial community structure changes during oyster mushroom substrate preparation. Appl Microbiol Biotechnol 86: 367–375. https://doi.org/10.1007/s00253-009-2371-3 doi: 10.1007/s00253-009-2371-3
    [93] Vieira FR, Pecchia JA, Segato F, et al. (2019). Exploring oyster mushroom (Pleurotus ostreatus) substrate preparation by varying phase Ⅰ composting time: Changes in bacterial communities and physicochemical composition of biomass impacting mushroom yields. J Appl Microbiol 126: 931–944. https://doi.org/10.1111/jam.14168 doi: 10.1111/jam.14168
    [94] Guo YX, Chen QJ, Qin Y, et al. (2021) Succession of the microbial communities and function prediction during short-term peach sawdust-based composting. Bioresour Technol 332: 125079. https://doi.org/10.1016/j.biortech.2021.125079 doi: 10.1016/j.biortech.2021.125079
    [95] Kong WL, Sun B, Zhang JY, et al. (2020) Metagenomic analysis revealed the succession of microbiota and metabolic function in corncob composting for preparation of cultivation medium for Pleurotus ostreatus. Bioresour Technol 306: 123156. https://doi.org/10.1016/j.biortech.2020.123156 doi: 10.1016/j.biortech.2020.123156
    [96] Cao M, Wang W, Chen Q, et al. (2022) Physicochemical properties and microbial dynamics of different substrate treatment processes for oyster mushroom cultivation. Chin J Appl Environ Biol 28: 705–711. https://doi.org/10.19675/j.cnki.1006-687x.2020.12041 doi: 10.19675/j.cnki.1006-687x.2020.12041
    [97] Annenkov BG, Azarova VA (2008) Method of bacillar thermoanaerobic preparation of high-quality straw substrate for intense non-sterile cultivation of oyster mushroom. Patent RU 2409019C2.
    [98] Sadanov AK, Saubenova MG, Kuznetsova TV, et al. (2018) Method of preparation of substrate for cultivation of oyster mushroom mycelium, involves pre-processing raw materials by solid phase fermentation using cellulolytic bacteria. Patent EA30400-B1.
    [99] Ilyaletdinov AN, Saubenova MG, Vladimirova EV (1991) Production of fodder from non-utilisable plant waste–by making silage using specified combination of bacteria strains. Patent SU1695871-A1.
    [100] Ilyaletdinov AN, Saubenova MG, Puzyrevskaya OM, et al. (1992) Ministry of Agriculture and Food of the Republic of Kazakhstan. Main directorate of scientific and technological progress. Technology for harvesting and microbiological processing of straw (recommendations). Almaty: Kainar.
    [101] Saubenova MG (1998) Use of cellulolytic bacteria in feed production. Prikladnaya Biokhimiya Mikrobiologiya 34: 91–94.
    [102] Saubenova MG, Puzyrevskaja OM, Galimbaeva RSh, et al. (1995) Bacillus acidocaldarius VKPM B-5250 bacterial strain used for straw ensiling. Patent KZ 2119.
    [103] Saubenova МG, Кuznetsova ТV, Оleinikova YА (2017) The use of bacteria-producers of cellulose and organic acids for stimulation of growth of the mycelium of the oyster mushroom. Int J Appl Fundam Res 10: 102–105. https://applied-research.ru/en/article/view?id = 11870
    [104] Sadanov AK, Saubenova MG, Oleinikova YA (2013) Fodder production for microbial conversion of e.g. wheat and rice straw comprises utilizing strain of cellulolytic bacteria Bacillus coagulans 177 for solid state fermentation of cellulose-containing raw material. Patent KZ27568-A4.
    [105] Mcgee CF, Byrne H, Irvine A et al. (2017) Diversity and dynamics of the DNA and cDNA-derived bacterial compost communities throughout the Agaricus bisporus mushroom cropping process. Ann Microbiol 67: 751–761. https://doi.org/10.1007/s13213-017-1303-1 doi: 10.1007/s13213-017-1303-1
    [106] Carrasco J, Preston GM (2020) Growing edible mushrooms: a conversation between bacteria and fungi. Environ Microbiol 22: 858–872. https://doi.org/10.1111/1462-2920.14765 doi: 10.1111/1462-2920.14765
    [107] Wood DA (1980) Production, purification and properties of extracellular laccase of Agaricus bisporus. Microbiology 117: 327–338. https://doi.org/10.1099/00221287-117-2-327 doi: 10.1099/00221287-117-2-327
    [108] Morin E, Kohler A, Baker AR, et al. (2012) Genome sequence of the button mushroom Agaricus bisporus reveals mechanisms governing adaptation to a humic-rich ecological niche. PNAS 109: 17501–17506. https://doi.org/10.1073/pnas.1206847109 doi: 10.1073/pnas.1206847109
    [109] Baars JJP, Scholtmeijer K, Sonnenberg ASM, et al. (2020) Critical factors involved in primordia building in Agaricus bisporus: A review. Molecules 25: 2984. https://doi.org/10.3390/molecules25132984 doi: 10.3390/molecules25132984
    [110] Cai WM, Yao H, Feng WL, et al. (2009) Microbial community structure of casing soil during mushroom growth. Pedosphere 19: 446–452. https://doi.org/10.1016/S1002-0160(09)60137-5 doi: 10.1016/S1002-0160(09)60137-5
    [111] Zarenejad F, Yakhchali B, Rasooli I (2012) Evaluation of indigenous potent mushroom growth promoting bacteria (MGPB) on Agaricus bisporus production. World J Microbiol Biotechnol 28: 99–104. https://doi.org/10.1007/s11274-011-0796-1 doi: 10.1007/s11274-011-0796-1
    [112] Masaphy S, Levanon D, Tchelet R, et al. (1987) Scanning electron microscope studies of interactions between Agaricus bisporus (Lang) Sing hyphae and bacteria in casing soil. Appl Environ Microbiol 53: 1132–1137. https://doi.org/10.1128/aem.53.5.1132-1137.1987 doi: 10.1128/aem.53.5.1132-1137.1987
    [113] McGee CHF (2018) Microbial ecology of the Agaricus bisporus mushroom cropping process. Appl Microbiol Biotechnol 102: 1075–1083. https://doi.org/10.1007/s00253-017-8683-9 doi: 10.1007/s00253-017-8683-9
    [114] Siyoum NA, Surridge K, Korsten L (2010) Bacterial profiling of casing materials for white button mushrooms (Agaricus bisporus) using denaturing gradient gel electrophoresis. S Afr J Sci 106: 9. https://hdl.handle.net/10520/EJC97074
    [115] Ban GH, Kim BK, Kim SR, et al. (2022) Bacterial microbiota profiling of oyster mushrooms (Pleurotus ostreatus) based on cultivation methods and distribution channels using high-throughput sequencing. Int J Food Microbiol 382: 109917. https://doi.org/10.1016/j.ijfoodmicro.2022.109917 doi: 10.1016/j.ijfoodmicro.2022.109917
    [116] Lee CK, Haque MA, Choi BR, et al. (2015) Molecular diversity of endobacterial communities in edible part of King oyster mushroom (Pleurotus eryngii) based on 16S rRNA. Korean J Microbiol 51: 148–155. https://doi.org/10.7845/kjm.2015.4086 doi: 10.7845/kjm.2015.4086
    [117] Xiang QJ, Luo LH, Liang YH, et al. (2017) The diversity, growth promoting abilities and antimicrobial activities of bacteria isolated from the fruiting body of Agaricus bisporus. Pol J Microbiol 66: 201–207. https://doi.org/10.5604/01.3001.0010.7837 doi: 10.5604/01.3001.0010.7837
    [118] Kaiser C, Kilburn MR, Clode PL, et al. (2015) Exploring the transfer of recent plant photosynthates to soil microbes: mycorrhizal pathway vs direct root exudation. New Phytol 205: 1537–1551. https://doi.org/10.1111/nph.13138 doi: 10.1111/nph.13138
    [119] Ballhausen MB, van Veen JA, Hundscheid M, et al. (2015) Methods for baiting and enriching fungusfeeding (mycophagous) rhizosphere bacteria. Front Microbiol 6: 1416. https://doi.org/10.3389/fmicb.2015.01416 doi: 10.3389/fmicb.2015.01416
    [120] Ballhausen MB, de Boer W (2016) The sapro-rhizosphere: carbon flow from saprotrophic fungi into fungus-feeding bacteria. Soil Biol Biochem 102: 14–17. https://doi.org/10.1016/j.soilbio.2016.06.014 doi: 10.1016/j.soilbio.2016.06.014
    [121] Moebius N, Üzüm Z, Dijksterhuis J, et al. (2014) Active invasion of bacteria into living fungal cells. eLife 3: e03007. https://doi.org/10.7554/eLife.03007 doi: 10.7554/eLife.03007
    [122] Bellettini MB, Bellettini S, Fiorda FA, et al. (2018) Diseases and pests noxious to Pleurotus spp. mushroom crops. Revista Argentina de Microbiología 50: 216–226. https://doi.org/10.1016/j.ram.2017.08.007 doi: 10.1016/j.ram.2017.08.007
    [123] Chakraborty B, Archana TS (2021) Diseases of mushrooms: A threat to the mushroom cultivation in India. Pharma Innovation J 10: 702–712.
    [124] Suarez C, Ratering S, Weigel V, et al. (2020) Isolation of bacteria at different points of Pleurotus ostreatus cultivation and their influence in mycelial growth. Microbiol Res 234: 126393. https://doi.org/10.1016/j.micres.2019.126393 doi: 10.1016/j.micres.2019.126393
    [125] Wang Q, Guo MP, Xu RP, et al. (2019) Transcriptional changes on blight fruiting body of Flammulina velutipes caused by two new bacterial pathogens. Front Microbiol 10: 2845. https://doi.org/10.3389/fmicb.2019.02845 doi: 10.3389/fmicb.2019.02845
    [126] Ye LN, Guo MP, Ren PF, et al. (2018) First report of a cross-kingdom pathogenic bacterium, Achromobacter xylosoxidans isolated from stipe-rot Coprinus comatus. Microbiol Res 207: 249–255. https://doi.org/10.1016/j.micres.2017.12.009 doi: 10.1016/j.micres.2017.12.009
    [127] Kredics L, Hatvani L, Henrietta A, et al. (2022) Trichoderma green mould disease of cultivated mushrooms, In: Amaresan N, Sankaranarayanan A, Dwivedi MK, Druzhinina IS (Eds.), Advances in Trichoderma biology for agricultural applications, Cham: Springer, 559–606.
    [128] Lin X, Sun DW (2019) Research advances in browning of button mushroom (Agaricus bisporus): Affecting factors and controlling methods. Trends Food Sci Technol 90: 63–75. https://doi.org/10.1016/j.tifs.2019.05.007 doi: 10.1016/j.tifs.2019.05.007
    [129] Berendsen RL, Kalkhove SIC, Lugones LG, et al. (2012) Effects of fluorescent Pseudomonas spp. isolated from mushroom cultures on Lecanicillium fungicola. Biol Control 63: 210–221. https://doi.org/10.1016/j.biocontrol.2012.07.012 doi: 10.1016/j.biocontrol.2012.07.012
    [130] Tajalipour S, Hassanzadeh N, Jolfaee HK, et al. (2014) Biological control of mushroom brown blotch disease using antagonistic bacteria. Biocontrol Sci Technol 24: 473–484. https://doi.org/10.1080/09583157.2013.873113 doi: 10.1080/09583157.2013.873113
    [131] Milijašević-Marčić S, Stepanović M, Todorović B, et al. (2017) Biological control of green mould on Agaricus bisporus by a native Bacillus subtilis strain from mushroom compost. Eur J Plant Pathol 148: 509–519. https://doi.org/10.1007/s10658-016-1107-3 doi: 10.1007/s10658-016-1107-3
    [132] Šantrić L, Potočnik I, Radivojević L, et al. (2018) Impact of a native Streptomyces flavovirens from mushroom compost on green mold control and yield of Agaricus bisporus. J Environ Sci Health B 53: 677–684. https://doi.org/10.1080/03601234.2018.1474559 doi: 10.1080/03601234.2018.1474559
    [133] Aslani MA, Harighi B, Abdollahzadeh J (2018) Screening of endofungal bacteria isolated from wild growing mushrooms as potential biological control agents against brown blotch and internal stipe necrosis diseases of Agaricus bisporus. Biol Control 119: 20–26. https://doi.org/10.1016/j.biocontrol.2018.01.006 doi: 10.1016/j.biocontrol.2018.01.006
    [134] Fernandes MS, Kerkar S (2019) Halotolerant Bacillus sp. as a source of antifungal agents against major mushroom pathogens. JMBFS 8: 1125–1129. https://doi.org/10.15414/jmbfs.2019.8.5.1125-1129 doi: 10.15414/jmbfs.2019.8.5.1125-1129
    [135] Pandin C, Le Coq D, Deschamp J, et al. (2018) Complete genome sequence of Bacillus velezensis QST713: A biocontrol agent that protects Agaricus bisporus crops against the green mould disease. J Biotechnol 278: 10–19. https://doi.org/10.1016/j.jbiotec.2018.04.014 doi: 10.1016/j.jbiotec.2018.04.014
    [136] Pandin C, Védie R, Rousseau T, et al. (2018) Dynamics of compost microbiota during the cultivation of Agaricus bisporus in the presence of Bacillus velezensis QST713 as biocontrol agent against Trichoderma aggressivum. Biol Control 127: 39–54. https://doi.org/10.1016/j.biocontrol.2018.08.022 doi: 10.1016/j.biocontrol.2018.08.022
    [137] Kosanovic D, Dyas M, Grogan H, et al. (2021) Differential proteomic response of Agaricus bisporus and Trichoderma aggressivum f. europaeum to Bacillus velezensis supernatant. Eur J Plant Pathol 160: 397–409. https://doi.org/10.1007/s10658-021-02252-5 doi: 10.1007/s10658-021-02252-5
    [138] Hermenau R, Kugel S, Komor AJ, et al. (2020) Helper bacteria halt and disarm mushroom pathogens by linearizing structurally diverse cyclolipopeptides. PNAS 117: 23802–23806. https://doi.org/10.1073/pnas.2006109117 doi: 10.1073/pnas.2006109117
    [139] Ghasemi S, Harighi B, Azizi A, et al. (2020) Reduction of brown blotch disease and tyrosinase activity in Agaricus bisporus infected by Pseudomonas tolaasii upon treatment with endofungal bacteria. Physiol Mol Plant Pathol 110: 101474. https://doi.org/10.1016/j.pmpp.2020.101474 doi: 10.1016/j.pmpp.2020.101474
    [140] Velázquez-Cedeño M, Farnet AM, Mata G, et al. (2008) Role of Bacillus spp. in antagonism between Pleurotus ostreatus and Trichoderma harzianum in heat-treated wheat-straw substrates. Bioresour Technol 99: 6966–6973. https://doi.org/10.1016/j.biortech.2008.01.022 doi: 10.1016/j.biortech.2008.01.022
    [141] Yurkov A, Krüger D, Begerow D, et al. (2012) Basidiomycetous yeasts from Boletales fruiting bodies and their interactions with the mycoparasite Sepedonium chrysospermum and the host fungus Paxillus. Microb Ecol 63: 295–303. https://doi.org/10.1007/s00248-011-9923-7 doi: 10.1007/s00248-011-9923-7
    [142] Kües U, Khonsuntia W, Subba S, et al. (2018) Volatiles in communication of Agaricomycetes, In: Anke T, Schüfflerpp A (Eds.), Physiology and genetics, Cham: Springer, 149–212. https://doi.org/10.1007/978-3-319-71740-1_6
    [143] Bu S, Munir S, He PF, et al. (2021) Bacillus subtilis L1-21 as a biocontrol agent for postharvest gray mold of tomato caused by Botrytis cinerea. Biol Control 157: 104568. https://doi.org/10.1016/j.biocontrol.2021.104568 doi: 10.1016/j.biocontrol.2021.104568
    [144] Wang SY, Herrera-Balandrano DD, Wang YX, et al. (2022) Biocontrol ability of the Bacillus amyloliquefaciens Group, B. amyloliquefaciens, B. velezensis, B. nakamurai, and B. siamensis, for the management of fungal postharvest diseases: A review. J Agric Food Chem 70: 6591–6616. https://doi.org/10.1021/acs.jafc.2c01745 doi: 10.1021/acs.jafc.2c01745
    [145] Llarena-Hernandez RC, Alonso-López A, Hernández-Rosas F, et al. (2019) Aerobic fermentation prior to pasteurization produces a selective substrate for cultivation of the mushroom Pleurotus pulmonarius. Biotechnol, Agron, Soc Environ 23: 165–173. https://doi.org/10.25518/1780-4507.18106 doi: 10.25518/1780-4507.18106
    [146] Sbrana C, Agnolucci M, Bedini S, et al. (2002) Diversity of culturable bacterial populations associated to Tuber borchii ectomycorrhizas and their activity on T. borchii mycelial growth. FEMS Microbiol Lett 211: 195–201. https://doi.org/10.1111/j.1574-6968.2002.tb11224.x doi: 10.1111/j.1574-6968.2002.tb11224.x
    [147] Jadhav AC, Shinde DB, Nadre SB, et al. (2014) Quality improvement of casing material and yield in milky mushroom (Calocybe indica) by using biofertilizers and different substrates. Proceedings of 8th international conference on mushroom biology and mushroom products (ICMBMP8), 359–364.
    [148] Kadam P, Narute T K, Shrivastava S, et al. (2017) Effect of liquid biofertilizers on the yield of button mushroom. J Mycopathological Res 55: 135–141. https://www.cabdirect.org/cabdirect/abstract/20173278440
    [149] Torres-Ruiz E, Sánchez JE, Guillén-Navarro GK, et al. (2016) Microbial promoters of mycelial growth, fruiting and production of Pleurotus ostreatus. Sydowia 68: 151–161. https://doi.org/10.12905/0380.sydowia68-2016-0151 doi: 10.12905/0380.sydowia68-2016-0151
    [150] Barron GL (1988) Microcolonies of bacteria as a nutrient source for lignicolous and other fungi. Can J Bot 66: 2505–2510. https://doi.org/10.1139/b88-340 doi: 10.1139/b88-340
    [151] Khalili HR, Olfati JA, Fallah A. (2013) Plant growth promoting rhizobacteria affect button mushroom yield and quality. South west J Hortic Biol Environ 4: 83–99. http://biozoojournals.ro/swjhbe/v4n2/01_swjhbe_v4n2_Khalili.pdf
    [152] Eren E (2022) The effect of plant growth promoting rhizobacteria (PGPRs) on yield and some quality parameters during shelf life in white button mushroom (Agaricus bisporus L.). J Fungi 8: 1016. https://doi.org/10.3390/jof8101016 doi: 10.3390/jof8101016
    [153] Ebadi A, Alikhani HA, Rashtbari M (2012) Effect of plant growth-promoting bacteria (PGPR) on the morpho physiological properties of button mushroom Agaricus bisporus in two different culturing beds. Int Res J Basic Appl Sci 3: 203–212.
    [154] Zhang CH, Zhang G, Wen YM, et al. (2019) Pseudomonas sp. UW4 acdS gene promotes primordium initiation and fruiting body development of Agaricus bisporus. World J Microb Biotechnol 35: 163. https://doi.org/10.1007/s11274-019-2741-7 doi: 10.1007/s11274-019-2741-7
    [155] Noble R, Dobrovin-Pennington A, Hobbs PJ, et al. (2009) Volatile C8 compounds and pseudomonads influence primordium formation of Agaricus bisporus. Mycologia 101: 583–591. https://doi.org/10.3852/07-194 doi: 10.3852/07-194
    [156] Young LS, Chu JN, Young CC (2012) Beneficial bacterial strains on Agaricus blazei cultivation. Pesq Agropec Bras 47: 815–821. https://doi.org/10.1590/S0100-204X2012000600012 doi: 10.1590/S0100-204X2012000600012
    [157] Young LS, Chu JN, Hameed A, et al. (2013) Cultivable mushroom growth‑promoting bacteria and their impact on Agaricus blazei productivity. Pesq Agropec Bras 48: 636–644. https://doi.org/10.1590/S0100-204X2013000600009 doi: 10.1590/S0100-204X2013000600009
    [158] Angelis S, Novak AC, Sydney EB, et al. (2012) Co-culture of microalgae, cyanobacteria, and macromycetes for exopolysaccharides production: Process preliminary optimization and partial characterization. Appl Biochem Biotechnol 167: 1092–1106. https://doi.org/10.1007/s12010-012-9642-7 doi: 10.1007/s12010-012-9642-7
    [159] Kang YM, Cho KM (2014) Identification of auxin from Pseudomonas sp. P7014 for the rapid growth of Pleurotus eryngii mycelium. Korean J Microbiol 50: 15–21. https://doi.org/10.7845/KJM.2014.3076 doi: 10.7845/KJM.2014.3076
    [160] Chen F, Xiong SJ, Gandla ML, et al. (2022) Spent mushroom substrates for ethanol production–Effect of chemical and structural factors on enzymatic saccharification and ethanolic fermentation of Lentinula edodes-pretreated hardwood. Bioresour Technol 347: 126381. https://doi.org/10.1016/j.biortech.2021.126381 doi: 10.1016/j.biortech.2021.126381
    [161] Cho YS, Kim JS, Crowley DE, et al. (2003) Growth promotion of the edible fungus Pleurotus ostreatus by fluorescent pseudomonads. FEMS Microbiol Lett 218: 271–276. https://doi.org/10.1016/S0378-1097(02)01144-8 doi: 10.1016/S0378-1097(02)01144-8
    [162] Tsivileva O, Shaternikov A, Ponomareva E (2022) Edible mushrooms could take advantage of the growth-promoting and biocontrol potential of Azospirillum. Proc Latv Acad Sci, Sect B 76: 211–217. https://doi.org/10.2478/prolas-2022-0032 doi: 10.2478/prolas-2022-0032
    [163] Kim MK, Math RK, Cho KM, et al. (2008) Effect of Pseudomonas sp. P7014 on the growth of edible mushroom Pleurotus eryngii in bottle culture for commercial production. Bioresour Technol 99: 3306–3308. https://doi.org/10.1016/j.biortech.2007.06.039 doi: 10.1016/j.biortech.2007.06.039
    [164] Torres-Ruiz E, Sánchez JE, Guillén-Navarro GK, et al. (2016) Microbial promoters of mycelial growth, fruiting and production of Pleurotus ostreatus. Sydowia 68: 151–161. https://doi.org/10.12905/0380.sydowia68-2016-0151 doi: 10.12905/0380.sydowia68-2016-0151
    [165] Kumari S, Naraian R (2020) Enhanced growth and yield of oyster mushroom by growth-promoting bacteria Glutamicibacter arilaitensis MRC119. J Basic Microbiol 61: 45–54. https://doi.org/10.1002/jobm.202000379 doi: 10.1002/jobm.202000379
    [166] Febriansyah E, Saskiawan I, Mangunwardoyo W, et al. (2018) Potency of growth promoting bacteria on mycelial growth of edible mushroom Pleurotus ostreatus and its identification based on 16S rDNA analysis. AIP Conf Proc 2002: 020023. https://doi.org/10.1063/1.5050119 doi: 10.1063/1.5050119
    [167] Sun SJ, Li F, Xu X, et al. (2020) Study on the community structure and function of symbiotic bacteria from different growth and developmental stages of Hypsizygus marmoreus. BMC Microbiol 20: 311. https://doi.org/10.1186/s12866-020-01998-y doi: 10.1186/s12866-020-01998-y
    [168] Sun SJ, Liu YC, Weng CH, et al. (2020) Cyclic dipeptides mediating quorum sensing and their biological effects in Hypsizygus marmoreus. Biomolecules 10: 298. https://doi.org/10.3390/biom10020298 doi: 10.3390/biom10020298
    [169] Jemsi WS, Aryantha L (2017) Potential MGPB in optimizing paddy straw mushroom (Volvariella volvacea WW-08). Microbiol Indones 11: 46–54 https://doi.org/10.5454/mi.11.2.2 doi: 10.5454/mi.11.2.2
    [170] Sari IJ, Aryantha INP (2021) Screening and identification of mushrooms growth promoting bacteria on straw mushrooms (Volvariella volvacea). JTBB 6: 60618. https://doi.org/10.22146/jtbb.60618 doi: 10.22146/jtbb.60618
    [171] Loshchinina EA (2011) Influence of external factors of bacterial, indole and selenorganic nature on the growth and development of the xylotrophic basidiomycete Lentinus edodes. PhD thesis, Institute of Biochemistry and Physiology of Plants and Microorganisms RAS.
    [172] Hua ZY, Liu TR, Han PJ, et al. (2022) Isolation, genomic characterization, and mushroom growth-promoting effect of the first fungus-derived Rhizobium. Front Microbiol 13: 947687. https://doi.org/10.3389/fmicb.2022.947687 doi: 10.3389/fmicb.2022.947687
    [173] Oh SY, Kim M, Eimes JA, et al. (2018) Effect of fruiting body bacteria on the growth of Tricholoma matsutake and its related molds. PLoS One 13: e0190948. https://doi.org/10.1371/journal.pone.0190948 doi: 10.1371/journal.pone.0190948
    [174] Shirokikh AA, Popyvanov DV, Shirokikh IG (2022) Effects of isolated from Myxomycetes bacteria on the cultivation of the edible medicinal mushroom Hericium erinaceus. Mikologiya Fitopatologiya 56: 45–51. https://doi.org/10.31857/S0026364822010111 doi: 10.31857/S0026364822010111
    [175] Napitupulu TP, Ayudhya SPN, Aimi T, et al. (2022) Mycelial growth-promoting potential of extracellular metabolites of Paraburkholderia spp. isolated from Rhizopogon roseolus sporocarp. J Pure Appl Microbiol 16: 1154–1166. https://doi.org/10.22207/JPAM.16.2.43 doi: 10.22207/JPAM.16.2.43
    [176] Deveau A, Bonito G, Uehling J, et al. (2018) Bacterial–fungal interactions: Ecology, mechanisms and challenges. FEMS Microbiol Rev 42: 335–352. https://doi.org/10.1093/femsre/fuy008 doi: 10.1093/femsre/fuy008
    [177] McMeekin D (2000) Indole-3-acetic acid, glucose, and inoculum influence the formation and distribution of basidiocarps of Pholiota malicola in culture. Mycologia 92: 772–776. https://doi.org/10.2307/3761434 doi: 10.2307/3761434
    [178] Isikhuemhen OS, Vaugnas-Ward K (2005) Spore germination and breeding pattern in Grifóla frondosa (Dicks.: Fr.) S.F. Gray. Int J Med Mushrooms 7: 414. https://doi.org/10.1615/IntJMedMushrooms.v7.i3.570 doi: 10.1615/IntJMedMushrooms.v7.i3.570
    [179] Mukhopadhyay R, Chatterjee S, Chatterjee BP, et al. (2005) Enhancement of biomass production of edible mushroom Pleurotus sajor-caju grown in whey by plant growth hormones. Process Biochem 40: 1241–1244. https://doi.org/10.1016/j.procbio.2004.05.006 doi: 10.1016/j.procbio.2004.05.006
    [180] Liu K, Xiao X, Wang JL, et al. (2017) Polyphenolic composition and antioxidant, antiproliferative, and antimicrobial activities of mushroom Inonotus sanghuang. LWT-Food Sci Technol 82: 154–161. https://doi.org/10.1016/j.lwt.2017.04.041 doi: 10.1016/j.lwt.2017.04.041
    [181] Jin CW, Ye YQ, Zheng SJ (2013) An underground tale: contribution of microbial activity to plant iron acquisition via ecological processes. Ann Bot 113: 7–18. https://doi.org/10.1093/aob/mct249 doi: 10.1093/aob/mct249
    [182] Kügler S, Cooper RE, Wegner CE, et al. (2019) Ironorganic matter complexes accelerate microbial iron cycling in an iron-rich fen. Sci Total Environ 646: 972–988. https://doi.org/10.1016/j.scitotenv.2018.07.258 doi: 10.1016/j.scitotenv.2018.07.258
    [183] Ma YJ, Zheng LP, Wang JW (2019) Bacteria associated with shiraia fruiting bodies Influence fungal production of hypocrellin A. Front Microbiol 10: 2023. https://doi.org/10.3389/fmicb.2019.02023 doi: 10.3389/fmicb.2019.02023
    [184] Pion M, Spangenberg JE, Simon A, et al. (2013) Bacterial farming by the fungus Morchella crassipes. Proc R Soc B: 280: 20132242. https://doi.org/10.1098/rspb.2013.2242 doi: 10.1098/rspb.2013.2242
    [185] Savelieva DN, Kamzolkina OV (2009) Cultivation of some species from genus Pleurotus with epiphytic yeasts. Mikologiya Fitopatologiya 43: 45–51.
    [186] Novoselova DN (2011) Co-cultivation of species of the genus Pleurotus (Fr.) P.KUMM with yeast. PhD thesis, Lomonosov Moscow State University.
    [187] Novoselova DN, Kamzolkina OV (2012) Co-cultivation of Pleurotus species with yeasts. In: Andres S, Baumann N (Eds.), Mushrooms: Types, properties and nutrition, New York: Nova Science Publishers Inc, 269–284.
    [188] Novoselova DN, Kamzolkina OV (2011) Cocultivation of Pleurotus ostreatus (Jacq.) P. Kumm. with yeasts. Moscow Univ Biol Sci Bull 66: 102–105. https://doi.org/10.3103/S0096392511030060
    [189] Kamzolkina OV, Novoselova DN, D'jakov MJ, et al. (2012) Method for growing edible Pleurotus fungi. Patent RU 2442823.
    [190] Ibragimova SI, Tikhonova OV, Tolstikhina TE, et al. (2012) Hydrolysis of Saccharomyces cerevisiae cell wall by enzyme complexes from basidial mushrooms. Biotekhnologiya Russ 6: 53–60.
    [191] Mazheika IS, Kamzolkina OV (2021) Does macrovesicular endocytosis occur in fungal hyphae? Fungal Biol Rev 38: 1–8. https://doi.org/10.1016/j.fbr.2021.07.001 doi: 10.1016/j.fbr.2021.07.001
    [192] Morales DP, Robinson AJ, Pawlowski AC, et al. (2022) Advances and challenges in fluorescence in situ hybridization for visualizing fungal endobacteria. Front Microbiol 13: 892227. https://doi.org/10.3389/fmicb.2022.892227 doi: 10.3389/fmicb.2022.892227
    [193] Wang HL, Yu GL, Li P, et al. (2009) Overproduction of Trametes versicolor laccase by making glucose starvation using yeast. Enzyme Microb Technol 45: 146–149. https://doi.org/10.1016/j.enzmictec.2009.04.003 doi: 10.1016/j.enzmictec.2009.04.003
    [194] Kumar A, Arora S, Jain KK, et al. (2019) Metabolic coupling in the co-cultured fungal-yeast suite of Trametes ljubarskyi and Rhodotorula mucilaginosa leads to hypersecretion of laccase isozymes. Fungal Biol 123: 913–926. https://doi.org/10.1016/j.funbio.2019.09.013 doi: 10.1016/j.funbio.2019.09.013
    [195] Zhang XM, Tang DX, Li QQ, et al. (2021) Complex microbial communities inhabiting natural Cordyceps militaris and the habitat soil and their predicted functions. Antonie Van Leeuwenhoek 114: 465–477. https://doi.org/10.1007/s10482-021-01534-6 doi: 10.1007/s10482-021-01534-6
    [196] Pent M, Bahram M, Põldmaa K (2020) Fruitbody chemistry underlies the structure of endofungal bacterial communities across fungal guilds and phylogenetic groups. ISME J 14: 2131–2141. https://doi.org/10.1038/s41396-020-0674-7 doi: 10.1038/s41396-020-0674-7
    [197] Yu GH, Sun YM, Han HY, et al. (2021) Coculture, an efficient biotechnology for mining the biosynthesis potential of macrofungi via interspecies interactions. Front Microbiol 12: 663924. https://doi.org/10.3389/fmicb.2021.663924 doi: 10.3389/fmicb.2021.663924
    [198] Van Overbeek LS, Saikkonen K (2016) Impact of bacterial–fungal Interactions on the colonization of the endosphere. Trends in Plant Sci 21: 230–242. https://doi.org/10.1016/j.tplants.2016.01.003 doi: 10.1016/j.tplants.2016.01.003
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3394) PDF downloads(224) Cited by(1)

Article outline

Figures and Tables

Figures(1)  /  Tables(6)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog