Citation: José M Peña, Ana I de Castro, Jorge Torres-Sánchez, Dionisio Andújar, Carolina San Martín, José Dorado, César Fernández-Quintanilla, Francisca López-Granados. Estimating tree height and biomass of a poplar plantation with image-based UAV technology[J]. AIMS Agriculture and Food, 2018, 3(3): 313-326. doi: 10.3934/agrfood.2018.3.313
[1] | European Union (2009) Directive No. 2009/28/EC of the European Parliament and of the Council of April 23, 2009, on the promotion of the use of energy from renewable sources and amending and subsequently repealing Directives No. 2001/77/EC and No. 2003/30/EC. |
[2] | Sixto H, Cañellas I, van Arendonk J, et al. (2015) Growth potential of different species and genotypes for biomass production in short rotation in Mediterranean environments. For Ecol Manage 354: 291–299. doi: 10.1016/j.foreco.2015.05.038 |
[3] | Ríos-Saucedo JC, Acuña-Carmona E, Cancino-Cancino J, et al. (2016) Allometric equations commonly used for estimating shoot biomass in short-rotation wood energy species: A review. Rev Chapingo Ser Cienc For Ambiente 22: 193–202. |
[4] | Yu N, Li L, Schmitz N, et al. (2016) Development of methods to improve soybean yield estimation and predict plant maturity with an unmanned aerial vehicle based platform. Remote Sens Environ 187: 91–101. doi: 10.1016/j.rse.2016.10.005 |
[5] | Du M, Noguchi N (2017) Monitoring of wheat growth status and mapping of wheat yield's within-field spatial variations using color images acquired from UAV-camera system. Remote Sens 9: 289. doi: 10.3390/rs9030289 |
[6] | de Castro AI, Torres-Sánchez J, Peña JM, et al (2018) An automatic random forest-OBIA algorithm for early weed mapping between and within crop rows using UAV imagery. Remote Sens 10: 285. doi: 10.3390/rs10020285 |
[7] | Nex F, Remondino F (2014) UAV for 3D mapping applications: A review. Appl Geomat 6: 1–15. doi: 10.1007/s12518-013-0120-x |
[8] | Iqbal K, Abdul Salam R, Osman A, et al. (2007) Underwater image enhancement using an integrated colour model. IAENG Int J Comput Sci 34: 2. |
[9] | Jiménez-Brenes FM, López-Granados F, de Castro AI, et al (2017) Quantifying pruning impacts on olive tree architecture and annual canopy growth by using UAV-based 3D modelling. Plant Methods 13: 55. doi: 10.1186/s13007-017-0205-3 |
[10] | Malambo L, Popescu SC, Murray SC, et al. (2018) Multitemporal field-based plant height estimation using 3D point clouds generated from small unmanned aerial systems high-resolution imagery. Int J Appl Earth Obs Geoinformation 64: 31–42. doi: 10.1016/j.jag.2017.08.014 |
[11] | Bendig J, Bolten A, Bennertz S, et al. (2014) Estimating biomass of barley using crop surface models (CSMs) derived from UAV-based RGB imaging. Remote Sens 6: 10395–10412. doi: 10.3390/rs61110395 |
[12] | Tilly N, Aasen H, Bareth G (2015) Fusion of plant height and vegetation indices for the estimation of barley biomass. Remote Sens 7: 11449–11480. |
[13] | Stanton C, Starek MJ, Elliott N, et al. (2017) Unmanned aircraft system-derived crop height and normalized difference vegetation index metrics for sorghum yield and aphid stress assessment. J Appl Remote Sens 11: 026035. doi: 10.1117/1.JRS.11.026035 |
[14] | Comba L, Gay P, Primicerio J, et al. (2015) Vineyard detection from unmanned aerial systems images. Comput Electron Agric 114: 78–87. doi: 10.1016/j.compag.2015.03.011 |
[15] | Torres-Sánchez J, López-Granados F, Serrano N, et al. (2015) High-throughput 3-D monitoring of agricultural-tree plantations with unmanned aerial vehicle (UAV) technology. PLoS one 10: e0130479. doi: 10.1371/journal.pone.0130479 |
[16] | de Castro AI, Maja JM, Owen J, et al. (2018) Experimental approach to detect water stress in ornamental plants using sUAS-imagery. In: Autonomous Air and Ground Sensing Systems for Agricultural Optimization and Phenotyping III. International Society for Optics and Photonics, 106640N. |
[17] | Gatziolis D, Lienard JF, Vogs A, et al. (2015) 3D tree dimensionality assessment using photogrammetry and small unmanned aerial vehicles. PLoS one 10: e0137765. doi: 10.1371/journal.pone.0137765 |
[18] | Wallace L, Lucieer A, Malenovský Z, et al. (2016) Assessment of forest structure using two uav techniques: A comparison of airborne laser scanning and structure from motion (SfM) point clouds. Forests 7: 62. doi: 10.3390/f7030062 |
[19] | San Martín C, Andújar D, Fernández-Quintanilla C, et al. (2016) Spatio-temporal dynamics of Sorghum halepense in poplar short-rotation coppice under several vegetation management systems. For Ecol Manage 379: 37–49. |
[20] | Torres-Sánchez J, López-Granados F, De Castro AI, et al. (2013) Configuration and specifications of an unmanned aerial vehicle (UAV) for early site specific weed management. PLoS one 8: e58210. doi: 10.1371/journal.pone.0058210 |
[21] | Mesas-Carrascosa FJ, Torres-Sánchez J, Clavero-Rumbao I, et al. (2015) Assessing optimal flight parameters for generating accurate multispectral orthomosaicks by UAV to support site-specific crop management. Remote Sens 7: 12793–12814. doi: 10.3390/rs71012793 |
[22] | Mesas-Carrascosa FJ, Rumbao IC, Torres-Sánchez J, et al. (2017) Accurate ortho-mosaicked six-band multispectral UAV images as affected by mission planning for precision agriculture proposes. Int J Remote Sens 38: 2161–2176. doi: 10.1080/01431161.2016.1249311 |
[23] | de Castro AI, Jiménez-Brenes FM, Torres-Sánchez J, et al. (2018) 3-D characterization of vineyards using a novel UAV imagery-based OBIA procedure for precision viticulture applications. Remote Sens 10: 584. |
[24] | Herve C, Ceulemans R (1996) Short-rotation coppiced vs non-coppiced poplar: A comparative study at two different field sites. Biomass Bioenergy 11: 139–150. doi: 10.1016/0961-9534(96)00028-1 |
[25] | Schaefer MT, Lamb DW (2016) A combination of plant NDVI and LiDAR measurements improve the estimation of pasture biomass in tall fescue (Festuca arundinacea var. Fletcher). Remote Sens 8: 109. doi: 10.3390/rs8020109 |
[26] | Pádua L, Vanko J, Hruška J, et al. (2017) UAS, sensors, and data processing in agroforestry: A review towards practical applications. Int J Remote Sens 38: 2349–2391. doi: 10.1080/01431161.2017.1297548 |
[27] | Weiss M, Baret F (2017) Using 3D point clouds derived from UAV RGB imagery to describe vineyard 3D macro-structure. Remote Sens 9: 111. doi: 10.3390/rs9020111 |
[28] | Zarco-Tejada PJ, Diaz-Varela R, Angileri V, et al. (2014) Tree height quantification using very high resolution imagery acquired from an unmanned aerial vehicle (UAV) and automatic 3D photo-reconstruction methods. Eur J Agron 55: 89–99. doi: 10.1016/j.eja.2014.01.004 |
[29] | Kattenborn T, Sperlich M, Bataua K, et al. (2014) Automatic single palm tree detection in plantations using UAV-based photogrammetric point clouds. In: The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Zurich, Switzerland, 139–144. |
[30] | Moeckel T, Dayananda S, Nidamanuri RR, et al. (2018) Estimation of vegetable crop parameter by multi-temporal UAV-borne images. Remote Sens 10: 805. doi: 10.3390/rs10050805 |
[31] | Madec S, Baret F, de Solan B, et al. (2017) High-throughput phenotyping of plant height: Comparing unmanned aerial vehicles and ground LiDAR estimates. Front Plant Sci 8: 2002. doi: 10.3389/fpls.2017.02002 |
[32] | Torres-Sánchez J, López-Granados F, Borra-Serrano I, et al. (2018) Assessing UAV-collected image overlap influence on computation time and digital surface model accuracy in olive orchards. Precis Agric 19: 115–133. doi: 10.1007/s11119-017-9502-0 |