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Abstract: Poplar is considered one of the forest crops with greatest potential for lignocellulose 
production, so rapid and non-destructive measurements of tree growth (in terms of height and 
biomass) is essential to estimate productivity of poplar plantations. As an alternative to tedious and 
costly manual sampling of poplar trees, this study evaluated the ability of UAV technology to 
monitor a one-year-old poplar plantation (with trees 4.3 meters high, on average), and specifically, to 
assess tree height and estimate dry biomass from spectral information (based on the Normalized 
Difference Vegetation Index, NDVI) and Digital Surface Models (DSM). We used an UAV flying 
at 100 m altitude over an experimental poplar plantation of 95 × 60 m2 (3350 trees approx.), and 
collected remote sensing images with a conventional visible-light camera for the generation of the 
DSM and a multi-spectral camera for the calculation of NDVI. Prior to the DSM generation, several 
adjustments of image enhancement were tested, which improved DSM accuracy by 19–21%. Next, 
UAV-based data (i.e., tree height, NDVI, and the result of fusing these variables) were evaluated with 
a validation set of 48 tree-rows by applying correlation and linear regression analysis. Correlation between 
actual and DSM-based tree heights was acceptable (R2 = 0.599 and RMSE = 0.21 cm), although DSM did 
not detect the narrow apexes in the top of the poplar trees (1 m length, on average), which led to 
notable underestimates. Linear regression equations for tree dry biomass showed the highest 
correlation with NDVI × Tree-height (R2 = 0.540 and RMSE = 0.23 kg/m2) and the lowest 
correlation with NDVI (R2 = 0.247 and RMSE = 0.29 kg/m2). The best results were used to 
determine the distribution of the trees according to their dry biomass, providing information about 
potential productivity of the entire poplar plantation by applying a fast and non-destructive 
procedure. 

http://www.aimspress.com/article/10.3934/agrfood.2018.3.172
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1. Introduction 

The production of lignocellulosic biomass obtained from forest crops is a primary source of 
renewable energy to meet the current energy targets of European legislation [1]. Among the tree 
species, poplar is considered to have great potential for biomass production because its rapid growth, 
broad genetic base, ease of vegetative propagation, and ability to regrow after cutting [2]. 
Conventional methods for calculating dry biomass of poplar trees by non-destructive methods use 
empirical equations related to tree height, and eventually trunk dimensions, which require manual 
measurements of the trees that are costly due to tedious fieldwork and generally inaccurate due to 
human errors during field measurements and the uncertainty inherent in their empirical nature [3]. 

Currently, Unmanned Aerial Vehicles (UAV) technology is an alternative to the manual 
collection of crop data, offering information on variables and factors affecting crop development and 
productivity with relatively shorter time and lower cost [4–6]. Together with the spectral information 
contained in the remote sensing images taken with very high spatial resolution (<10 cm/pixel), UAVs 
also allow the generation of a Digital Surface Model (DSM) with three-dimensional (3D) crop 
information, which is obtained as a result of applying a Structure from Motion (SfM) technique [7]. 
The SfM algorithm works by matching equal pairs of points located on overlapping images, so 
correct generation of the DSM depends on the quality of the UAV images and the ease of detecting 
such points, which could be improved by optimizing the values of image contrast, saturation and 
brightness [8]. 

The DSM reflects the irregular geometry of the crop and provides detailed information on crop 
dimensions, opening up new opportunities to monitor crop growth if the measurements are available 
over time [9,10]. Among the data that can be obtained from the DSM, plant or tree height is an 
indicator of crop vigor and, either alone or in combination with certain vegetation indices (e.g., the 
Normalized Difference Vegetation Index, NDVI), is considered a good predictor of crop biomass and 
yield [11–13]. 

Previous research has reported successful applications of UAV-based monitoring of horticultural 
crops [14–16] and forest structures [17,18], although its application to poplar has not been 
investigated so far. Therefore, this paper evaluated the use of UAV-based images in a poplar 
plantation with two main objectives: (a) to assess tree heights from DSMs generated with images 
collected with a conventional visible-light camera, and (b) to estimate crop dry biomass by 
combining DSM-based height data and NDVI information obtained with a multispectral camera. An 
additional objective was to determine the influence of different enhancement adjustments applied to 
the original UAV images on the DSM quality and on its accuracy of tree height estimations. The 
ultimate goal was to propose a rapid, non-destructive and relatively accurate procedure for 
monitoring the size and biomass of hundreds of poplar trees using an innovative technology. 
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2. Materials and method 

2.1. Study area and description of the poplar plantation 

This investigation was carried out in a poplar plantation located at La Poveda experimental farm 
in Arganda del Rey, Madrid (Spain), with central coordinates 458,460 m X and 4,463,260 m Y (UTM 
system, zone 30 N, datum WGS84). This farm is flat and its soil has a sandy-loam texture. The 
climate in this region is Mediterranean Continental with cold winters and hot summers (mean daily 
temperature 13.5 ºC), and an annual cumulative rainfall of 400 mm. The poplar plantation was 
established on April 2013 in an area of 5700 m2 (95 m length and 60 m width), as part of a broad 
research program focused to study the adaptation of this crop to different management strategies [19], 
in which obtaining measurements of tree height and crop biomass is essential. The poplar trees were 
planted in high-density at 3 m apart and 0.5 m between trees, in a block design made up of 4 blocks 
and 19 tree-rows in each block, resulting in a density of 6666 tree/ha (Figure 1). 

 

Figure 1. Field photograph of the experimental poplar plantation on the day of the UAV flights. 

2.2. UAV-based system and acquisition of remote sensing images 

The UAV used to take the images was a quadricopter MD4-1000 (microdrones GmbH, Siegen, 
Germany) with vertical take-off and landing, payload of 1.25 kg, and with ability for autonomous 
flights during 40–45 minutes following a route previously programmed (Figure 2). The images were 
acquired on October 2013 at 100 m flight altitude with forward overlapping of 80% and side 
overlapping of 60%. Two different cameras were mounted separately in the UAV. A conventional 
visible-light camera, model Olympus PEN E-PM1 (Olympus Corporation, Tokyo, Japan), which 
acquired 12-megapixel images in Red-Green-Blue (RGB) color, and a multi-spectral camera, model 
Tetracam mini-MCA-6 (Tetracam Inc., Chatsworth, CA, USA), which acquired 1.3-megapixel 
images composed of six individual digital channels with center wavelengths at B (450 nm), G (530 nm), 
R (670 and 700 nm), R edge (740 nm) and near-infrared (NIR, 780 nm). The spatial resolution 
obtained with each camera was 3.8 cm and 5.6 cm, respectively. The former camera was used to 
generate the DSM of the poplar plantation with 3D information of the trees, while the latter camera 
was used to obtain the NDVI values of the poplar trees by using the R and NIR bands (Eq 1). 
Detailed information about the UAV-based system and the influence of flight configuration on image 
quality is reported in [20–22]. 
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NDVI = (NIR−Red)/(NIR+Red)        (1) 

 

Figure 2. The UAV with the multi-spectral camera flying towards the poplar plantation. 

2.3. Image processing and generation of geo-spatial products 

The remote sensing images collected with both cameras were separately processed in order to 
generate a unique mosaicked image of the entire plantation, with spectral (from the multi-spectral 
camera) and 3D information (from the DSM obtained with the RGB camera) of the poplar trees (Figure 3). 
The mosaicking process was carried out with the Agisoft PhotoScan Professional Edition 
software (Agisoft LLC, St. Petersburg, Russia), by applying three consecutive phases of alignment 
of the overlapping images, construction of the field geometry, and generation of the ortho-image, the 
point cloud and the DSM with the SfM technique [18]. For the task of geo-referencing, six ground 
control points located in the corners and center of the poplar plantation were used, whose coordinates 
were taken with a GPS device after the UAV flight. The multi-spectral ortho-images had the R and 
NIR spectral bands for the calculation of an NDVI image, while the DSM is a polygon mesh adjusted 
to the raw point cloud and that represented the tree crowns. We used the most rigorous settings for 
the process of DSM generation (i.e., using the features “Face count: High”, “Point classes: All”), 
which resulted to a good adjustment of the polygon mesh to the upper envelope of the point cloud 
with minimal differences between both products. These geo-spatial products were exported to the 
image analysis software eCognition Developer versión 9 (Trimble GeoSpatial, Munich, Germany), 
which was used to calculate the tree dimensions (i.e., area, height and volume) and the average 
NDVI value of every tree in the poplar plantation by applying a customized object-based image 
analysis (OBIA) algorithm adapted to this investigation from the procedure developed in [15,23]. 
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Figure 3. UAV-based geo-spatial product of the poplar plantation created by combining 
the DSM from the RGB camera and the color-infrared ortho-mosaic image from the 
multi-spectral camera. 

Additionally, six different settings of green saturation, brightness and contrast were applied to 
the original RGB images with the objective of increasing image enhancement (Table 1). These 
operations were proposed after a preliminary study in which we observed a general improvement of 
the DSM if the original UAV images are previously enhanced. These adjustments were performed 
before image mosaicking with the Adobe Photoshop software (Adobe Systems, San Jose, CA, USA). 

Table 1. Settings tested for image enhancement applied to the original RGB images. The 
value 0 corresponded to the original images. 

Adjustment Green Saturation (%) Brightness (%) Contrast (%) 
0 - - - 
1 100 80 - 
2 100 × 2 80 × 2 - 
3 100 80 100 
4 100 - 100 
5 - - 100 
6 100 - - 

2.4. Evaluation of the UAV-based system and data analysis 

In order to validate the measurements of the UAV-based system, non-destructive manual 
sampling of tree heights and dry biomass was performed in a number of trees spaced apart from the 
edges of each block. The tree heights were measured on-ground with a ruler, and dry biomass was 
estimated with an allometric equation (Eq 2) commonly used for estimating shoot biomass in poplar 
species by combining trunk diameter at breast height squared by total tree height [3,24]. The 
validation set was composed of 48 tree-rows, with 20 trees each row. The experimental design is 
schematized in the figure 4 and the descriptive statistics of the validation trees is shown in the Table 2. 
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Biomass = a (Trunk-Diameter)2
 Tree-Height      (2) 

 

Figure 4. Graphical scheme of the poplar plantation and the position of the tree-rows 
used for validation. 

Table 2. Descriptive statistics of the validation trees. 

Statistic Tree height (m) Trunk Diameter (cm) Dry Biomass (kg/m2) 
Min 3.00 2.30 0.35 
Max 6.95 7.30 7.94 
Mean 4.27 4.15 1.68 
Std. Dev. 0.58 0.72 0.83 

DSM accuracy in defining the tree-row structure was assessed by comparing the real tree 
heights observed in the validation tree-rows and the heights estimated by the DSMs obtained from 
each adjustment defined in the Table 1. The DSM estimations were considered correct if the 
differences with the actual heights were less than 1 m, thus eliminating the errors associated with the 
thin apex of the upper part of the trees that was not detected by the DSM in most cases. These thin 
apexes provide little biomass to the trees and therefore do not influence the overall biomass 
estimations. Also, DMS estimations lower than half of the actual tree heights were considered 
incorrect and the rest were considered underestimated. 

The DSM that reported best results in the previous evaluation was then selected to compute and 
map the tree dimensions (in height and volume) of the entire plantation. These data were joined to 
the NDVI values of every poplar tree reported by the multi-spectral ortho-mosaicked image. Each 
individual variable and the fusion of NDVI with height and volume, separately, were studied with the 
objective of establishing linear regression models for estimating tree height and crop biomass at the 
scale of tree-rows. 
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The results were shown in scatter plots and evaluated based on their root mean square 
error (RMSE) and their coefficient of determination (R2). Data analysis was conducted with the 
statistical software JMP version 10 software (SAS Institute Inc., Cary, NC, USA). 

3. Results and discussion 

3.1. Evaluation of the DSM according to the image enhancement adjustment 

Image enhancement previous to the generation of the DSM provided better estimations of actual 
tree heights in all the cases in comparison to the use of the original untreated images (Table 3), 
increasing the accuracy from 65% (settings 0, no image enhancement) to values between 84% 
(settings 1 and 3) and 86% (settings 2 and 4). As example, height profiles of a transverse line passing 
through the poplar plantation show the several DSM reconstructions as a result of applying each 
adjustment (Figure 5). Differences between the accuracy reached in each adjustment were minimal, 
so it cannot be concluded with the recommendation of any specific settings, although the high 
improvement of the DSM as a result of applying an image enhancement procedure prior to the 
mosaic was notable. 

Table 3. DSM accuracy according to the image enhancement settings applied to the UAV images 

Adjustment Accuracy (%) 
Incorrect Under-estimated Correct 

0 9 26 65 
1 0 15 84 
2 0 14 86 
3 0 15 84 
4 0 14 86 
5 0 15 85 

 

Figure 5. Height profiles showing the several DSM reconstructions as a result of 
applying each image enhancement adjustment. 
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3.2. UAV-based estimations of row-tree heights and crop biomass 

The DSM generated with the image-enhancement settings number 4 was finally selected to 
compute the tree heights and volumes of the entire plantation, which were also used to estimate crop 
biomass in combination with the NDVI data obtained from the multi-spectral image. First, we 
compare the DSM-based height estimations to the on-ground height measurements of the 48 
validation tree-rows and obtained that both variables were correlated with a R2 of 0.599, although 
DSM data generally underestimated actual heights 1–2 m on average. As noted above, the reason 
was because the DSM did not detect the fine apexes at the top of the trees, which on the contrary, 
were considered in the on-ground validation measurements. Therefore, due to the typical structure of 
the poplar trees, increasing DSM-based measurements with the average length of the apex (1 meter 
in this case) gave a better predictor of the actual tree height, with a RMSE of 0.21 m (Figure 6). 

Next, linear regression equations were developed to study the ability of the UAV-based system 
to estimate poplar tree dry biomass (Table 4). The best results were obtained with the fusion of 
NDVI data and tree height estimations (NDVI * Height), which yielded a R2 of 0.540 and a RMSE of 
0.23 kg/m2 (Figure 7a), which was better than the results reported with height data alone (R2 = 0.446, 
RMSE = 0.25 kg/m2) (Figure 7b). It was also noticed that regressions that included the volume 
variable produced poorer results than expected (Figure 7c,d), perhaps due to errors associated to the 
DSM reconstruction of the tree crowns, which consequently, caused inconsistent measurements of 
tree volume. On-ground validation of tree volume measurements is complex and we did not include 
this validation in our investigation, so further studies are needed to support these results. 

 

Figure 6. Scatter plot and linear regression of UAV-based estimations of tree heights and 
the actual tree heights. 
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Table 4. Linear regression equations of the UAV-based data (i.e., NDVI, tree height and 
tree volume) against crop dry biomass. Scatter plots of the equations 1 to 4 are shown in 
the Figures 7a to 7d, respectively. 

Regression equation R2 
RMSE 
(kg/m2) 

Biomass = 0.01 + 0.52 (NDVI * Height) 0.540 0.23 
Biomass = −0.14 + 0.74 Height 0.446 0.25 
Biomass = 0.89 + 0.48 (NDVI * Volume) 0.417 0.26 
Biomass = 0.92 + 0.30 Volume 0.344 0.27 

Biomass = −1.08 + 4.08 NDVI 0.247 0.29 

 

Figure 7. Scatter plots and linear regressions for estimating poplar dry biomass from 
UAV-based estimations: (a) NDVI * Poplar height, (b) Poplar height, (c) NDVI * Poplar 
volume, (d) Poplar volume. 

Previous investigations have reported the good performance of fusing NDVI and crop height to 
estimate crop biomass [12,25], as these variables are good indicators of canopy density and tree size, 
respectively. However, NDVI showed a low correlation to crop biomass in our experiment (R2 = 0.247), 
although this index improved the performance of DSM-based tree height as estimator of crop 
biomass about 20%. The spatial pattern of NDVI values (Figure 8a) were generally different from 
that of DSM-based tree heights (Figure 8b), as NDVI was higher in the northern parts of each block, 
while distribution of tree heights was balanced in all the four blocks, although the trees were 
generally higher in the center of the plantation, particularly in blocks 2 and 3. The result of 
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combining both variables marked the trees with the highest values of NDVI and height, and therefore 
with the highest dry biomass, which were located on the left side of block 3 and in a small area of 
blocks 2 and 4 (Figure 8c). The low values observed at the edges of the plantation were attributed to 
errors in DSM reconstruction rather than on-ground measurements or model estimations. 

 

Figure 8. Variability of NDVI values, (a) DSM-based tree heights, (b) and modeled dry 
biomass, (c) in the entire poplar plantation. 
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Our results are in line with those obtained in other research on woody crops, although accuracy 
varies according to the type of crop and the structure of the plantation [26]. For example, [23,27] in 
vineyard, [15,28] in olive orchards and [29] in palm trees modeled the irregular architecture of the 
tree crowns with UAV technology and derived the tree heights, and the tree volume in some cases, 
with low errors in the range of a few centimeters (RMSE between 9.8 cm and 59.0 cm). Additionally, 
the DSM data alone or in combination with spectral information (generally, with the NDVI) were also 
used to retrieve crop biomass. In annual crops, [30] in eggplant, tomato, and cabbage crops and [11] in 
barley used UAV imagery to assess crop height during different growth stages with a very high 
accuracy (maximum R2 of 0.97 and of 0.92, respectively) and, by applying machine learning 
methods or regression models with these UAV-based height data, respectively, retrieved crop 
biomass variability (R2 of 0.88–0.95 and of 0.31–0.72, respectively). Despite the good results, [11] 
reported same problems due to crop lodging during senescence stages. Similar conclusions were 
reached by [31] in a phenotyping experiment in wheat, who also pointed out that UAV-based crop 
measurements are often underestimated due to the limited penetration capacity of the SfM technique 
and the coarse spatial resolution of UAV imagery in comparison to several crop details. Other factors 
that affected DSM quality (and consequently, estimations of tree dimensions and crop biomass) were 
crop movement due to wind [11] and specifications on UAV flight configuration regarding to image 
overlapping [32], UAV flight altitude [15], and flight modes [21]. All these factors probably had a 
significant influence on our experiment, as the tree apexes and part of the lateral branching were not 
detected correctly, resulting in moderate results in computing tree height and volume, respectively. It 
should also be noted that manual measurements are often an approximation of the exact size of the 
trees based on a visual estimate and therefore often have a margin of error. In this sense, the 
objective of obtaining a high correlation (in terms of high R2 or low RMSE) between manual and 
UAV measurements is not the perfect solution, although it does provide very valuable information on 
the capability of the UAV to obtain measurements similar to those that would be obtained on the ground. 

4. Conclusions 

This paper demonstrated the capability of UAV technology to monitor poplar plantation at 
the field scale. Regression equations for estimating tree heights and biomass achieved 
acceptable correlations (R2 of 0.599 and 0.540, respectively) and low errors (RMSE of 0.21 cm 
and 0.23 kg/m2, respectively), In total, we obtained UAV-based data (NDVI and tree dimensions) of 
the entire plantation (about 3350 poplar trees) with relatively low effort (i.e., 2 hours approximately) in 
comparison to the work needed for conventional manual measurements. However, further studies are 
needed in other fields and crop conditions, as well in several years to confirm transferability and to 
limit the above-mentioned uncertainties. 
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