Citation: Paul Bracken. A geometric formulation of Lax integrability for nonlinear equationsin two independent variables[J]. AIMS Mathematics, 2017, 2(4): 610-621. doi: 10.3934/Math.2017.4.610
[1] | W. Boothby, An Introduction to Differentiable Manifolds and Riemannian Geometry, Academic Press, NY, 1975. |
[2] | P. Bracken, Integrability and Prolongation Structure for a Generalized Korteweg-de Vries Equation, Pacific J. Math., 2, (2009), 293-302. |
[3] | P. Bracken, A Geometric Interpretation of Prolongation by Means of Connections, J. Math. Phys., 51, (2010), 113502. |
[4] | P. Bracken, Geometric Approaches to Produce Prolongations for Nonlinear Partial Differential Equations, Int. J. Geom. Methods M., 10, (2013), 1350002. |
[5] | P. Bracken, An Exterior Differential System for a Generalized Korteweg-de Vries Equation and its Associated Integrability, Acta Appl. Math., 95, (2007), 223-231. |
[6] | S. S. Chern, W. H. Chen and K. S. Lam, Lectures on Differential Geometry, World Scientific, Singpore, 1999. |
[7] | C. S. Gardner, J. M. Greene, M. D. Kruskal and R. M. Muira, A method for solving the Korteweg-de Vries equation, Phys. Rev. Lett., 19, (1967), 1095-1097. |
[8] | P. D. Lax, Integrals of Nonlinear Equations of Evolution and Solitary Waves, Commun. Pur. Appl. Math., 21 (1968), 467-490. |
[9] | J. M. Lee, Manifolds and Differential Geometry, AMS Graduate Studies in Mathematics, vol. 107, Providence, RI, 2009. |
[10] | C.-Q. Su, Y. Tian Gao, X. Yu, L. Xue and Yu-Jia Shen, Exterior differential expression of the (1+1)-dimensional nonlinear evolution equation with Lax integrability, J. Math. Anal. Appl., 435, (2016), 735-745. |
[11] | H. D. Wahlquist and F. B. Estabrook, Bäcklund Transformation for Solutions of the Korteweg-de Vries Equation, Phys. Rev. Lett., 31 (1973), 1386-1390. |
[12] | H. D. Wahlquist and F. B. Estabrook, Prolongation structures of nonlinear evolution equations, J. Math. Phys., 16, (1975), 1-7. |
[13] | H. D. Wahlquist and F. B. Estabrook, Prolongation structures of nonlinear evolution equations, J. Math. Phys., 17, (1976), 1293-1297. |