Objectives: The aim of this narrative review of the literature was to synthesize and comment the mechanisms of action of avocado/soybean unsaponifiable mixture (ASU-E, Piascledine®300) on articular tissues involved in the OA pathogenesis. Materials and methods: The search was performed in Pubmed and Scopus between January 1981 and December 2016. Keywords used were—any field—(Cartilage OR Bone OR Synovium) AND Avocado AND Soybean. 32 articles out-off 35 found have been considered. The review has included eleven in vitro and animal studies investigating Avocado Soybean Unsaponifiables (ASU) from Laboratoires Expanscience (Piascledine®300) used separately or in combination. Only research articles published in English and French have been taken into account. Results: ASU-E stimulated proteoglycans synthesis in chondrocytes cultures and counteracted the effects of IL-1 on metalloproteases and inflammatory mediators. Some of these effects were associated with inhibition of NF-kB nuclear translocation and stimulation of TGF-synthesis. ASU-E also positively modulated the altered phenotype of OA subchondral bone osteoblasts and reduced the production of collagenases by synovial cells. Conclusions: ASU-E has positive effects on the metabolic changes of synovium, subchondral bone and cartilage which are the main tissues involved in the pathophysiology of OA. These findings contribute to explain the beneficial effects of ASU-E in clinical trials.
Citation: Yves Edgard Henrotin. Avocado/Soybean Unsaponifiables (Piacledine®300) show beneficial effect on the metabolism of osteoarthritic cartilage, synovium and subchondral bone: An overview of the mechanisms[J]. AIMS Medical Science, 2018, 5(1): 33-52. doi: 10.3934/medsci.2018.1.33
[1] | Wenya Shi, Xinpeng Yan, Zhan Huan . Faster free pseudoinverse greedy block Kaczmarz method for image recovery. Electronic Research Archive, 2024, 32(6): 3973-3988. doi: 10.3934/era.2024178 |
[2] | Ranran Li, Hao Liu . On global randomized block Kaczmarz method for image reconstruction. Electronic Research Archive, 2022, 30(4): 1442-1453. doi: 10.3934/era.2022075 |
[3] | Yimou Liao, Tianxiu Lu, Feng Yin . A two-step randomized Gauss-Seidel method for solving large-scale linear least squares problems. Electronic Research Archive, 2022, 30(2): 755-779. doi: 10.3934/era.2022040 |
[4] | Yun Ni, Jinqing Zhan, Min Liu . Topological design of continuum structures with global stress constraints considering self-weight loads. Electronic Research Archive, 2023, 31(8): 4708-4728. doi: 10.3934/era.2023241 |
[5] | Jun Guo, Yanchao Shi, Weihua Luo, Yanzhao Cheng, Shengye Wang . Exponential projective synchronization analysis for quaternion-valued memristor-based neural networks with time delays. Electronic Research Archive, 2023, 31(9): 5609-5631. doi: 10.3934/era.2023285 |
[6] | Yanlong Zhang, Rui Zhang, Li Wang . Oblique impact dynamic analysis of wedge friction damper with Dankowicz dynamic friction. Electronic Research Archive, 2024, 32(2): 962-978. doi: 10.3934/era.2024047 |
[7] | Dongmei Yu, Yifei Yuan, Yiming Zhang . A preconditioned new modulus-based matrix splitting method for solving linear complementarity problem of $ H_+ $-matrices. Electronic Research Archive, 2023, 31(1): 123-146. doi: 10.3934/era.2023007 |
[8] | Haoqing Wang, Wen Yi, Yannick Liu . Optimal assignment of infrastructure construction workers. Electronic Research Archive, 2022, 30(11): 4178-4190. doi: 10.3934/era.2022211 |
[9] | Yu Wang . Bi-shifting semantic auto-encoder for zero-shot learning. Electronic Research Archive, 2022, 30(1): 140-167. doi: 10.3934/era.2022008 |
[10] | Yaguo Guo, Shilin Yang . Projective class rings of the category of Yetter-Drinfeld modules over the $ 2 $-rank Taft algebra. Electronic Research Archive, 2023, 31(8): 5006-5024. doi: 10.3934/era.2023256 |
Objectives: The aim of this narrative review of the literature was to synthesize and comment the mechanisms of action of avocado/soybean unsaponifiable mixture (ASU-E, Piascledine®300) on articular tissues involved in the OA pathogenesis. Materials and methods: The search was performed in Pubmed and Scopus between January 1981 and December 2016. Keywords used were—any field—(Cartilage OR Bone OR Synovium) AND Avocado AND Soybean. 32 articles out-off 35 found have been considered. The review has included eleven in vitro and animal studies investigating Avocado Soybean Unsaponifiables (ASU) from Laboratoires Expanscience (Piascledine®300) used separately or in combination. Only research articles published in English and French have been taken into account. Results: ASU-E stimulated proteoglycans synthesis in chondrocytes cultures and counteracted the effects of IL-1 on metalloproteases and inflammatory mediators. Some of these effects were associated with inhibition of NF-kB nuclear translocation and stimulation of TGF-synthesis. ASU-E also positively modulated the altered phenotype of OA subchondral bone osteoblasts and reduced the production of collagenases by synovial cells. Conclusions: ASU-E has positive effects on the metabolic changes of synovium, subchondral bone and cartilage which are the main tissues involved in the pathophysiology of OA. These findings contribute to explain the beneficial effects of ASU-E in clinical trials.
Fractional differential equations (FDEs) appeared as an excellent mathematical tool for, modeling of many physical phenomena appearing in various branches of science and engineering, such as viscoelasticity, statistical mechanics, dynamics of particles, etc. Fractional calculus is a recently developing work in mathematics which studies derivatives and integrals of functions of fractional order [26].
The most used fractional derivatives are the Riemann-Liouville (RL) and Caputo derivatives. These derivatives contain a non-singular derivatives but still conserves the most important peculiarity of the fractional operators [1,2,10,11,23,24]. Atangana and Baleanu described a derivative with a generalized Mittag-leffler (ML) function. This derivative is often called the Atangana-Baleanu (AB) fractional derivative. The AB-derivative in the senses of Riemman-Liouville and Caputo are denoted by ABR-derivative and ABC-derivative, respectively.
The AB fractional derivative is a nonlocal fractional derivative with nonsingular kernel which is connected with various applications [3,5,6,8,9,13,14,15,16]. Using the advantage of the non-singular ML kernal present in the AB fractional derivatives, operators, many authors from various branches of applied mathematics have developed and studied mathematical models involving AB fractional derivatives [18,22,29,30,31,32,35,36,37].
Mohamed et al. [25] considered a system of multi-derivatives for Caputo FDEs with an initial value problem, examined the existence and uniqueness results and obtained numerical results. Sutar et al. [32,33] considered multi-derivative FDEs involving the ABR derivative and examined existence, uniqueness and dependence results. Kucche et al. [12,19,20,21,34] enlarged the work of multi-derivative fractional differential equations involving the Caputo fractional derivative and studied the existence, uniqueness and continuous dependence of the solution.
Inspired by the preceding work, we perceive the multi-derivative nonlinear neutral fractional integro-differential equation with AB fractional derivative of the Riemann-Liouville sense of the problem:
$ dVdȷ+⋆0Dδȷ[V(ȷ)−x(ȷ,y(ȷ))]=φ(ȷ,V(ȷ),∫ȷ0K(ȷ,θ,V(θ))dθ,∫T0χ(ȷ,θ,V(θ))dθ),ȷ∈I $
|
(1.1) |
$ \mathcal{V}\left(0\right) = \mathcal{V}_{0} \in \mathscr{R}, $ | (1.2) |
where $ ^{\star}_{0} D^{\delta}_{\jmath} $ denotes the ABR fractional derivative of order $ \delta\in(0, 1) $, and $ \varphi \in \mathscr{C}(\mathscr{I} \times \mathscr{R} \times \mathscr{R} \times \mathscr{R}, \mathscr{R}) $ is a non-linear function. Let $ \mathcal{P}_{1}\mathcal{V}(\jmath) = \int^{\jmath}_{0}\mathcal{K}(\jmath, \theta, \mathcal{V}(\theta))d\theta $ and $ \mathcal{P}_{2}\mathcal{V}(\jmath) = \int^{T}_{0}\chi(\jmath, \theta, \mathcal{V}(\theta))d\theta $. Now, (1.1) becomes,
$ dVdȷ+⋆0Dδȷ[V(ȷ)−x(ȷ,y(ȷ))]=φ(ȷ,V(ȷ),P1V(ȷ),P2V(ȷ)),ȷ∈I, $
|
(1.3) |
$ V(0)=V0∈R. $
|
(1.4) |
In this work, we derive a few supplemental results using the characteristics of the fractional integral operator $ \varepsilon^{\alpha}_{\delta, \eta, \mathcal{V}; c+} $. The existence results are obtained by Krasnoselskii's fixed point theorem and the uniqueness and data dependence results are obtained by the Gronwall-Bellman inequality.
Definition 2.1. [14] The Sobolev space $ H^{\mathfrak{q}}(X) $ is defined as $ H^{\mathfrak{q}}\left(X\right) = \left\{\varphi\in L^{2}\left(X\right):D^{\beta}\varphi\in L^{2}(X), \forall \left|\beta\right|\leq \mathfrak{q}\right\}. $ Let $ \mathfrak{q}\in[1, \infty) $ and $ X $ be open, $ X\subset\mathbb{R} $.
Definition 2.2. [11,17] The generalized ML function $ E^{\alpha}_{\delta, \beta}\left(u\right) $ for complex $ \delta, \beta, \alpha $ with Re$ (\delta) > 0 $ is defined by
$ Eαδ,β(u)=∞∑t=0(α)tα(δt+β)utt!, $
|
and the Pochhammer symbol is $ (\alpha)_{t} $, where $ (\alpha)_{0} = 1, (\alpha)_{t} = \alpha(\alpha+1)...(\alpha+t-1), $ $ t = 1, 2...., $ and $ E^{1}_{\delta, \beta}\left(u\right) = E_{\delta, \beta}\left(u\right), E^{1}_{\delta, 1}\left(u\right) = E_{\delta}\left(u\right). $
Definition 2.3. [4] The ABR fractional derivative of $ \mathcal{V} $ of order $ \delta $ is
$ ⋆0Dδȷ[V(ȷ)−x(ȷ,y(ȷ))]=B(δ)1−δddȷ∫ȷ0Eδ[−δ1−δ(ȷ−θ)δ]V(θ)dθ, $
|
where $ \mathcal{V} \in H^{1}(0, 1) $, $ \delta \in(0, 1) $, $ B(\delta) > 0 $. Here, $ E_{\delta} $ is a one parameter ML function, which shows $ B(0) = B(1) = 1 $.
Definition 2.4. [4] The ABC fractional derivative of $ \mathcal{V} $ of order $ \delta $ is
$ ⋆0Dδȷ[V(ȷ)−x(ȷ,y(ȷ))]=B(δ)1−δ∫ȷ0Eδ[−δ1−δ(ȷ−θ)δ]V′(θ)dθ, $
|
where $ \mathcal{V} \in H^{1}(0, 1) $, $ \delta \in(0, 1) $, and $ B(\delta) > 0 $. Here, $ E_{\delta} $ is a one parameter ML function, which shows $ B(0) = B(1) = 1 $.
Lemma 2.5. [4] If $ L\left\{g(\jmath); b\right\} = \bar{G}(b) $, then $ L\left\{^{\star}_{0}D^{\delta}_{\jmath}g(\jmath); b\right\} = \frac{B(\delta)}{1-\delta}\frac{b^{\delta}\bar{G}(b)}{b^{\delta}+\frac{\delta}{1-\delta}}. $
Lemma 2.6. [26] $ L\left[\jmath^{m\delta+\beta-1}E^{(m)}_{\delta, \beta}\left(\pm a\jmath^{\delta}\right); b\right] = \frac{m!b^{\delta-\beta}}{\left(b^{\delta}\pm a\right)^{m+1}}, E^{m}(\jmath) = \frac{d^{m}}{d\jmath^{m}}E(\jmath). $
Definition 2.7. [17,27] The operator $ \varepsilon^{\alpha}_{\delta, \eta, \mathcal{V}; c+} $ on class $ L(m, n) $ is
$ (εαδ,η,V;c+)[V(ȷ)−x(ȷ,y(ȷ))]=∫t0(ȷ−θ)α−1Eαδ,η[V(ȷ−θ)δ]Θ(θ)dθ,ȷ∈[c,d], $
|
where $ \delta, \eta, \mathcal{V}, \alpha\in \mathbb{C}\left(Re(\delta), Re(\eta) > 0\right) $, and $ n > m $.
Lemma 2.8. [17,27] The operator $ \varepsilon^{\alpha}_{\delta, \eta, \mathcal{V}; c+} $ is bounded on $ C[m, n] $, such that $ \left\|\left(\varepsilon^{\alpha}_{\delta, \eta, \mathcal{V}; c+}\right)[\mathcal{V}(\jmath)-x(\jmath, y(\jmath))]\right\| \leq \mathcal{P} \left\|\Theta\right\|, $ where
$ P=(n−m)Re(η)∞∑t=0|(α)t||α(δt+η)|[Re(δ)t+Re(η)]|V(n−m)Re(δ)|tt!. $
|
Here, $ \delta, \eta, \mathcal{V}, \alpha\in \mathbb{C}\left(Re(\delta), Re(\eta) > 0\right) $, and $ n > m $.
Lemma 2.9. [17,27] The operator $ \varepsilon^{\alpha}_{\delta, \eta, \mathcal{V}; c+} $ is invertible in the space $\textrm{L}(m, n) $ and $ \varphi \in \textrm{L}(m, n) $ its left inversion is given by
$ ([εαδ,η,V;c+]−1)[V(ȷ)−x(ȷ,y(ȷ))]=(Dη+ςc+ε−αδ,η,V;c+)[V(ȷ)−x(ȷ,y(ȷ))],ȷ∈(m,n], $
|
where $ \delta, \eta, \mathcal{V}, \alpha\in \mathbb{C}\left(Re(\delta), Re(\eta) > 0\right) $, and $ n > m $.
Lemma 2.10. [17,27] Let $ \delta, \eta, \mathcal{V}, \alpha\in \mathbb{C}\left(Re(\delta), Re(\eta) > 0\right), n > m $ and suppose that the integral equation is
$ ∫ȷ0(ȷ−θ)α−1Eαδ,η[V(ȷ−θ)δ]Θ(θ)dθ=φ(ȷ),ȷ∈(m,n], $
|
is solvable in the space $ \textrm{L}(m, n) $.Then, its unique solution $ \Theta(\jmath) $ is given by
$ Θ(ȷ)=(Dη+ςc+ε−αδ,η,V;c+)[V(ȷ)−x(ȷ,y(ȷ))],ȷ∈(m,n]. $
|
Lemma 2.11. [7] (Krasnoselskii's fixed point theorem) Let $ A $ be a Banach space and $ X $ be bounded, closed, convex subset of $ A $. Let $ \mathscr{F}_{1}, \mathscr{F}_{2} $ be maps of S into $ A $ such that $ \mathscr{F}_{1}\mathcal{V}+\mathscr{F}_{2}\varphi \in X $ $ \forall $ $ \mathcal{V}, \varphi \in U $. The equation $ \mathscr{F}_{1}\mathcal{V}+\mathscr{F}_{2}\mathcal{V} = \mathcal{V} $ has a solution on S, and $ \mathscr{F}_{1} $, $ \mathscr{F}_{2} $ is a contraction and completely continuous.
Lemma 2.12. [28] (Gronwall-Bellman inequality) Let $ \mathcal{V} $ and $ \varphi $ be continuous and non-negative functions defined on $ \mathscr{I} $. Let $ \mathcal{V}(\jmath)\leq \mathcal{A}+\int^{\jmath}_{a}\varphi(\theta)\mathcal{V}(\theta)d\theta, \jmath \in \mathscr{I} $; here, $ \mathcal{A} $ is a non-negative constant.
$ V(ȷ)≤Aexp(∫ȷaφ(θ)dθ),ȷ∈I. $
|
In this part, we need some fixed-point-techniques-based hypotheses for the results:
$ ({\rm{H1}}) $ Let $ \mathcal{V} \in C\left[0, T\right] $, function $ \varphi \in \left(C[0, T]\times \mathscr{R} \times \mathscr{R} \times \mathscr{R}, \mathscr{R} \right) $ is a continuous function, and there exist $ +^{ve} $ constants $ \zeta _{1}, \zeta_{2} $ and $ \zeta $. $ \left\|\varphi(\jmath, \mathcal{V}_{1}, \mathcal{V}_{2}, \mathcal{V}_{3})-\varphi(\jmath, \varphi_{1}, \varphi_{2}, \varphi_{3})\right\|\leq \zeta_{1}\left(\left\|\mathcal{V}_{1}-\varphi_{1}\right\|+\left\|\mathcal{V}_{2}-\varphi_{2}\right\|+\left\|\mathcal{V}_{3}-\varphi_{3}\right\|\right) $ for all $ \mathcal{V}_{1}, \mathcal{V}_{2}, \mathcal{V}_{3}, \varphi_{1}, \varphi_{2}, \varphi_{3} $ in $ Y $, $ \zeta _{2} = max_{\mathcal{V} \in \mathscr{R}}\left\|f(\jmath, 0, 0, 0)\right\| $, and $ \zeta = max\left\{ \zeta _{1}, \zeta _{2}\right\} $.
$ ({\rm{H2}}) $ $ \mathcal{P}_{1} $ is a continuous function, and there exist $ +^{ve} $ constants $ \mathscr{C}_{1}, \mathscr{C}_{2} $ and $ \mathscr{C} $. $ \left\|\mathcal{P}_{1}(\jmath, \theta, \mathcal{V}_{1})-\mathcal{P}_{1}(\jmath, \theta, \varphi_{1})\right\| \leq \mathscr{C}_{1} \left(\left\|\mathcal{V}_{1}-\varphi_{1}\right\|\right) \forall \, \mathcal{V}_{1}, \varphi_{1} $ in $ Y $, $ \mathscr{C}_{2} = max_{(\jmath, \theta) \in D}\left\|\mathcal{P}_{1}(\jmath, \theta, 0)\right\| $, and $ \mathscr{C} = max\left\{ \mathscr{C} _{1}, \mathscr{C} _{2} \right\} $.
$ ({\rm{H3}}) $ $ \mathcal{P}_{2} $ is a continuous function and there are $ +^{ve} $ constants $ \mathcal{D}_{1}, \mathcal{D}_{2} $ and $ \mathcal{D} $. $ \left\|\mathcal{P}_{2}(\jmath, \theta, \mathcal{V}_{1})-\mathcal{P}_{2}(\jmath, \theta, \varphi_{1})\right\| \leq \mathcal{D}_{1} \left(\left\|\mathcal{V}_{1}-\varphi_{1}\right\|\right) $ for all $ \mathcal{V}_{1}, \varphi_{1} $ in $ Y $, $ \mathcal{D}_{2} = max_{(\jmath, \theta) \in D}\left\|\mathcal{P}_{2}(\jmath, \theta, 0)\right\| $ and $ \mathcal{D} = max\left\{ \mathcal{D} _{1}, \mathcal{D} _{2} \right\} $.
$ ({\rm{H4}}) $ Let $ x \in c[0, I] $, function $ u \in (c[0, I] \times \mathscr{R}, \mathscr{R}) $ is a continuous function, and there is a $ +^{ve} $ constant $ k > 0 $, such that $ \left\|u(\jmath, x)-u(\jmath, y)\right\|\leq k \left\| x-y \right\| $. Let $ Y = C[\mathscr{R}, X] $ be the set of continuous functions on $ \mathscr{R} $ with values in the Banach space $ X $.
Lemma 2.13. If $ {\bf{(H_2)}} $ and $ {\bf{(H_3)}} $ are satisfied the following estimates, $ \left\|\mathcal{P}_{1}\mathcal{V}(\jmath)\right\|\leq \jmath(\mathscr{C}_{1}\left\|\mathcal{V}\right\|+\mathscr{C} _{2}), \left\|\mathcal{P}_{1}\mathcal{V}(\jmath)-\mathcal{P}_{1}\varphi(\jmath)\right\|\leq \mathscr{C}\jmath\left\|\mathcal{V}-\varphi\right\| $, and $ \left\|\mathcal{P}_{2}\mathcal{V}(\jmath)\right\|\leq \jmath(\mathcal{D}_{1}\left\|\mathcal{V}\right\|+\mathcal{D} _{2}), \left\|\mathcal{P}_{2}\mathcal{V}(\jmath)-\mathcal{P}_{2}\varphi(\jmath)\right\|\leq \mathcal{D}\jmath\left\|\mathcal{V}-\varphi\right\| $.
Theorem 3.1. The function $ \varphi \in \mathscr{C}\left(\mathscr{I} \times \mathscr{R} \times \mathscr{R} \times \mathscr{R}, \mathscr{R}\right) $ and $ \mathcal{V}\in\mathscr{C}(\mathscr{I}) $ is a solution for the problem of Eqs (1.3) and (1.4), iff $ \mathcal{V} $ is a solution of the fractional equation
$ V(ȷ)=V0−B(δ)1−δ∫ȷ0Eδ[−δ1−δ(ȷ−θ)δ][V(ȷ)−x(ȷ,y(ȷ))]dθ+∫ȷ0φ(θ,V(θ),P1V(θ),P2V(θ))dθ,ȷ∈I. $
|
(3.1) |
Proof. (1) By using Definition 2.3 and Eq (1.3), we get
$ ddȷ(V(ȷ)+B(δ)1−δ∫ȷ0Eδ[−δ1−δ(ȷ−θ)δ][V(ȷ)−x(ȷ,y(ȷ))]dθ)=φ(ȷ,V(ȷ),P1V(ȷ),P2V(ȷ)). $
|
Integrating both sides of the above equation with limits $ 0 $ to $ \jmath $, we get
$ V(ȷ)+B(δ)1−δ∫ȷ0Eδ[−δ1−δ(ȷ−θ)δ][V(ȷ)−x(ȷ,y(ȷ))]dθ−V(0)=∫ȷ0φ(θ,V(θ),P1V(θ),P2V(θ))dθ,ȷ∈I. $
|
Conversely, with differentiation on both sides of Eq (3.1) with respect to $ \jmath $, we get
$ dVdȷ+B(δ)1−δddȷ∫ȷ0Eδ[−δ1−δ(ȷ−θ)δ][V(ȷ)−x(ȷ,y(ȷ))]dθ=φ(ȷ,V(ȷ),P1V(ȷ),P2V(ȷ)),ȷ∈I. $
|
Using Definition 2.3, we get Eq (1.3) and substitute $ \jmath = 0 $ in Eq (3.1), we get Eq (1.4).
Proof. (2) In Equation (1.3), taking the Laplace Transform on both sides, we get
$ L[V′(ȷ);b]+L[⋆0Dδȷ;b][V(ȷ)−x(ȷ,y(ȷ))]=L[φ(ȷ,V(ȷ),P1V(ȷ),P2V(ȷ));b]. $
|
Now, using the Laplace Transform formula for the AB fractional derivative of the RL sense, as given in Lemma 2.5, we get
$ bˉX(b)−[V(ȷ)−x(ȷ,y(ȷ))]−V(0)+B(δ)1−δbδˉX(b)bδ+δ1−δ=ˉG(b), $
|
$ \bar{X}(b) = \left[\mathcal{V}(\jmath); b\right] $ and $ \bar{G}(b) = L\left[\varphi\left(\jmath, \mathcal{V}\left(\jmath\right), P_{1}\mathcal{V}(\jmath), P_{2}\mathcal{V}(\jmath)\right); b\right]. $ Using Eq (1.4), we get
$ ˉX(b)=V01b−B(δ)1−δbδ−1ˉX(b)bδ+δ1−δ[V(ȷ)−x(ȷ,y(ȷ))]+1bˉG(b). $
|
(3.2) |
In Eq (3.2) applying the inverse Laplace Transform on both sides using Lemma 2.6 and the convolution theorem, we get
$ L−1[ˉX(b);ȷ]=V0L−1[1b;ȷ]−B(δ)1−δ(L−1[bδ−1bδ+δ1−δ][V(ȷ)−x(ȷ,y(ȷ))]∗L−1[ˉX(b);ȷ])+L−1[ˉG(b);ȷ]∗L−1[1b;ȷ]=V0−B(δ)1−δ(Eδ[−δ1−δȷδ][V(ȷ)−x(ȷ,y(ȷ))])+φ(ȷ,V(ȷ),P1V(ȷ),P2V(ȷ))=V0−B(δ)1−δ∫ȷ0Eδ[−δ1−δ(ȷ−θ)δ][V(ȷ)−x(ȷ,y(ȷ))]dθ+∫ȷ0φ(θ,V(θ),P1V(θ),P2V(θ))dθ.V(ȷ)=V0−B(δ)1−δ∫ȷ0Eδ[−δ1−δ(ȷ−θ)δ][V(ȷ)−x(ȷ,y(ȷ))]dθ+∫ȷ0φ(θ,V(θ),P1V(θ),P2V(θ))dθ. $
|
(3.3) |
Theorem 3.2. Let $ \delta\in(0, 1) $. Define the operator $ \mathscr{F} $ on $ \mathscr{C}(\mathscr{I}) $:
$ (FV)(ȷ)=V0−B(δ)1−δ(ε1δ,1,−δ1−δ;0+)[V(ȷ)−x(ȷ,y(ȷ))],V∈C(I). $
|
(3.4) |
$(A)$ $ \mathscr{F} $ is a bounded linear operator on $ \mathscr{C}(\mathscr{I}) $.
$(B)$ $ \mathscr{F} $ satisfying the hypotheses.
$(C)$ $ \mathscr{F}(X) $ is equicontinuous, and $ X $ is a bounded subset of $ \mathscr{C}(\mathscr{I}) $.
$(D)$ $ \mathscr{F} $ is invertible, function $ \varphi\in \mathscr{C}(\mathscr{I}) $, and the operator equation $ \mathscr{F}\mathcal{V} = \varphi $ has a unique solution in $ \mathscr{C}(\mathscr{I}) $.
Proof. (A) From Definition 2.7 and Lemma 2.8, the fractional integral operator $ \varepsilon^{1}_{\delta, 1, \frac{-\delta}{1-\delta}; 0^{+}} $ is a bounded linear operator on $ \mathscr{C}(\mathscr{I}) $, such that
$ ‖ε1δ,1,−δ1−δ;0+‖‖[V(ȷ)−x(ȷ,y(ȷ))]‖≤P‖V‖,ȷ∈I,where $
|
$ P=T∞∑n=0(1)nα(δn+1)(δn+1)|−δ1−δTδ|nn!=T∞∑n=0(δ1−δ)nTδnα(δn+2)=TEδ,2(δ1−δTδ), $
|
and we have
$ ‖FV‖=|B(δ)1−δ|‖ε1δ,1,−δ1−δ;0+‖‖[V(ȷ)−x(ȷ,y(ȷ))]‖≤PB(δ)1−δ‖V‖,∀V∈C(I). $
|
(3.5) |
Thus, $ \mathscr{F}\mathcal{V} = \varphi $ is a bounded linear operator on $ \mathscr{C}(\mathscr{I} $).
(B) We consider $ \mathcal{V}, \varphi\in \mathscr{C}(\mathscr{I}) $. By using linear operator $ \mathscr{F} $ and bounded operator $ \varepsilon^{1}_{\delta, 1, \frac{-\delta}{1-\delta}; 0^{+}} $, for any $ \jmath \in \mathscr{I} $,
$ |(FV)(ȷ)−(Fφ)(ȷ)|=|F(V−φ)[V(ȷ)−x(ȷ,y(ȷ))]|≤B(δ)1−δ‖(ε1δ,1,−δ1−δ;0+V−φ)[V(ȷ)−x(ȷ,y(ȷ))]‖≤PB(δ)1−δ‖V−φ‖. $
|
Where, $ P = TE_{\delta, 2}\left(\frac{\delta}{1-\delta}T^{\delta}\right) $, then the operator $ \mathscr{F} $ is satisfied the hypotheses with constant $ P\frac{B(\delta)}{1-\delta} $.
(C) Let $ U = \left\{\mathcal{V}\in \mathscr{C}(\mathscr{I}) : \left\|\mathcal{V}\right\|\leq R\right\} $ be a bounded and closed subset of $ \mathscr{C}(\mathscr{I}) $, $ \mathcal{V}\in U $, and $ \jmath_{1}, \jmath_{2}\in \mathscr{I} $ with $ \jmath_{1}\leq \jmath_{2} $.
$ |(FV)(ȷ1)−(FV)(ȷ2)|=|B(δ)1−δ(ε1δ,1,−δ1−δ;0+)[V(ȷ1)−u(l1,x(l))]−B(δ)1−δ(ε1δ,1,−δ1−δ;0+)[V(ȷ2)−u(l2,x(l))]|≤B(δ)1−δ|∫ȷ10{Eδ[−δ1−δ(ȷ1−θ)δ]−Eδ[−δ1−δ(ȷ2−θ)δ]}[V(ȷ)−x(ȷ,y(ȷ))]dθ|+B(δ)1−δ|∫ȷ2ȷ1Eδ[−δ1−δ(ȷ2−θ)δ][V(ȷ)−x(ȷ,y(ȷ))]dθ|≤B(δ)1−δ∞∑n=0|(−δ1−δ)n|1α(nδ+1)∫ȷ10|(ȷ1−θ)nδ−(ȷ2−θ)nδ||[V(ȷ)−x(ȷ,y(ȷ))]|dθ+B(δ)1−δ∞∑n=0|(−δ1−δ)n|1α(nδ+1)∫ȷ2ȷ1|(ȷ2−θ)nδ||[V(ȷ)−x(ȷ,y(ȷ))]|dθ≤LB(δ)1−δ∞∑n=0(δ1−δ)n1α(nδ+1)∫ȷ10(ȷ2−θ)nδ−(ȷ1−θ)nδdθ+LB(δ)1−δ∞∑n=0(δ1−δ)n1α(nδ+1)∫ȷ2ȷ1(ȷ2−θ)nδdθ≤RB(δ)1−δ∞∑n=0(δ1−δ)n1α(nδ+1){−(ȷ2−ȷ1)nδ+1+ȷnδ+12−ȷnδ+11+(ȷ2−ȷ1)nδ+1}≤RB(δ)1−δ∞∑n=0(δ1−δ)n1α(nδ+2){ȷnδ+12−ȷnδ+11}|(FV)(ȷ1)−(FV)(ȷ2)|≤RB(δ)1−δ∞∑n=0(δ1−δ)n1α(nδ+2){ȷnδ+12−ȷnδ+11}. $
|
(3.6) |
Hence, if $ \left|\jmath_{1}-\jmath_{2}\right|\rightarrow 0 $ then $ \left|(\mathscr{F}\mathcal{V})(\jmath_{1})-(\mathscr{F}\mathcal{V})(\jmath_{2})\right|\rightarrow 0. $
$ \therefore $ $ (\mathscr{F}\mathcal{V}) $ is equicontinuous on $ \mathscr{I}. $
(D) By Lemmas 2.9 and 2.10, $ \varphi\in \mathscr{C}(\mathscr{I}) $, and we get
$ (ε1δ,1,−δ1−δ;0+)−1[V(ȷ)−x(ȷ,y(ȷ))]=(D1+β0+ε−1δ,β,−δ1−δ;0+)[V(ȷ)−x(ȷ,y(ȷ))],ȷ∈(m,n). $
|
(3.7) |
By Eqs (3.4) and (3.5), we have
$ (F−1)[V(ȷ)−x(ȷ,y(ȷ))]=(B(δ)1−δε1δ,1,−δ1−δ;0+)−1[V(ȷ)−x(ȷ,y(ȷ))]=1−δB(δ)(D1+β0+ε−1δ,β,−δ1−δ;0+)[V(ȷ)−x(ȷ,y(ȷ))],ȷ∈(m,n), $
|
where $ \beta \in \mathbb{C} $ with $ Re(\beta) > 0 $. This shows $ \mathscr{F} $ is invertible on $ \mathscr{C}(\mathscr{I}) $ and
$ (FV)[V(ȷ)−x(ȷ,y(ȷ))]=[V(ȷ)−x(ȷ,y(ȷ))],ȷ∈I, $
|
has the unique solution,
$ V(ȷ)=(F−1[V(ȷ)−x(ȷ,y(ȷ))])=1−δB(δ)(D1+β0+ε−1δ,β,−δ1−δ;0+)[V(ȷ)−x(ȷ)),y(ȷ))],ȷ∈(m,n). $
|
(3.8) |
Theorem 4.1. Let $ \varphi \in \mathscr{C}\left(\mathscr{I}\times \mathscr{R} \times \mathscr{R} \times \mathscr{R}, \mathscr{R} \right) $. Then, the ABR derivative $ ^{\star}_{0}D^{\delta}_{\jmath}[\mathcal{V}(\jmath)-x(\jmath, y(\jmath))] = \varphi\left(\jmath, \mathcal{V}\left(\jmath\right), \mathcal{P}_{1}\mathcal{V}(\jmath), \mathcal{P}_{2}\mathcal{V}(\jmath)\right), \jmath \in \mathscr{I} $, is solvable in $ \mathscr{C}(\mathscr{I} $), and the solution in $ \mathscr{C}(\mathscr{I}) $ is
$ V(ȷ)=1−δB(δ)(D1+β0+ε−1δ,β,−δ1−δ;0+)[V(ȷ)−x(ȷ,y(ȷ))],ȷ∈I, $
|
(4.1) |
where $ \beta\in \mathbb{C}, Re(\beta) > 0 $, and $ \hat{\varphi}(\jmath) = \int^{\jmath}_{0}\varphi\left(\theta, \mathcal{V}\left(\theta\right), \mathcal{P}_{1}\mathcal{V}(\theta), \mathcal{P}_{2}\mathcal{V}(\theta)\right)d\theta, \jmath \in \mathscr{I} $.
Proof. The corresponding fractional equation of the ABR derivative
$ ⋆0Dδȷ[V(ȷ)−x(ȷ,y(ȷ))]=φ(ȷ,V(ȷ),P1V(ȷ),P2V(ȷ)),ȷ∈I, $
|
is given by
$ B(δ)1−δ∫ȷ0Eδ[−δ1−δ(ȷ−θ)δ][V(ȷ)−x(ȷ,y(ȷ))]dθ=∫ȷ0φ(θ,V(θ),P1V(θ),P2V(θ))dθ,ȷ∈I. $
|
Using operator $ \mathscr{F} $ of Eq (3.4), we get
$ (FV)(s)=∫ȷ0φ(θ,V(θ),P1V(θ),P2V(θ))dθ=ˆφ(ȷ),ȷ∈I. $
|
(4.2) |
Equations (3.7) and (4.2) are solvable, and we get
$ V(ȷ)=1−δB(δ)(D1+β0+ε−1δ,β,−δ1−δ;0+)[V(ȷ)−x(ȷ,y(ȷ))],ȷ∈I;β∈C,Re(β)>0. $
|
(4.3) |
Theorem 4.2. Let $ \varphi \in \mathscr{C}\left(\mathscr{I}\times {R \times R \times R}, \mathscr{R}\right) $ satisfy $ {\bf{(H_1)}} $–$ {\bf{(H_3)}} $ with $ L = \sup_{\jmath\in \mathscr{I}}\omega(\jmath), $ where $ \omega(\jmath) = \zeta(1+\mathscr{C}\jmath+\mathcal{D}T) $, if $ L = \min\left\{1, \frac{1}{2T}\right\} $. Then problem of (1.3) and (1.4) has a solution in $ \mathscr{C}(\mathscr{I}) $ provided
$ 2B(δ)TEδ,2(δ1−δ)Tδ1−δ≤1. $
|
(4.4) |
Proof. Define
$ R=‖V0‖+NφT1−LT−B(δ)TEδ,2(δ1−δ)Tδ1−δ, $
|
where $ N_{\varphi} = \sup_{\jmath\in \mathscr{I}}\left\|\varphi(\jmath, 0, 0, 0)\right\|. $ Let $ U = \left\{\mathcal{V}\in \mathscr{C}(\mathscr{I}):\left\|\mathcal{V}\right\|\leq R\right\} $. Consider $ \mathscr{F}_{1}:X\rightarrow A $ and $ \mathscr{F}_{2}:X\rightarrow A $ given as
$ (F1V)(ȷ)=V0+∫ȷ0φ(θ,V(θ),P1V(θ),P2V(θ))dθ,ȷ∈I,(F2V)(ȷ)=−(F)[V(ȷ)−x(ȷ,y(ȷ))],ȷ∈I. $
|
Let $ \mathcal{V} = \mathscr{F}_{1}\mathcal{V}+\mathscr{F}_{2}\mathcal{V}, \mathcal{V}\in \mathscr{C}(\mathscr{I}) $ is the fractional Eq (3.1) to the problems (1.3) and (1.4).
Hence, the operators $ \mathscr{F}_{1} $ and $ \mathscr{F}_{2} $ satisfy the Krasnoselskii's fixed point theorem.
Step (ⅰ) $ \mathscr{F}_{1} $ is a contraction.
By $ {\bf{(H_1)}} $–$ {\bf{(H_3)}} $ on $ \varphi $, $ \forall $ $ \mathcal{V}, \varphi\in \mathscr{C}(\mathscr{I}) $ and $ \jmath\in \mathscr{I} $,
$ |F1V(ȷ)−F2φ(ȷ)|≤ω(ȷ)|V(ȷ)−φ(ȷ)|≤R‖V−φ‖. $
|
(4.5) |
This gives, $ \left\|\mathscr{F}_{1}\mathcal{V}-\mathscr{F}_{2}\varphi\right\|\leq RT\left\|\mathcal{V}-\varphi\right\|, \mathcal{V}, \varphi\in \mathscr{C}(\mathscr{I}). $
Step (ⅱ) $ \mathscr{F}_{2} $ is completely continuous. By using Theorem 3.3 and Ascoli-Arzela theorem, $ \mathscr{F}_{2} = -\mathscr{F} $ is completely continuous.
Step (ⅲ) $ \mathscr{F}_{1}\mathcal{V}+\mathscr{F}_{2}\varphi\in U $, for any $ \mathcal{V}, \varphi\in U $, using Theorem 3.3, we obtain
$ ‖(F1V+F2φ)(ȷ)‖≤‖(F1V)(ȷ)‖+‖(F2φ)(ȷ)‖≤‖V0‖+∫ȷ0‖φ(θ,V(θ),P1V(θ),P2V(θ))‖dθ+‖ε1δ,1,−δ1−δ;0+φ‖≤‖V0‖+∫ȷ0‖φ(θ,V(θ),P1V(θ),P2V(θ))‖dθ+B(δ)1−δTEδ,2(δ1−δTδ)‖φ‖≤‖V0‖+∫ȷ0‖φ(θ,V(θ),P1V(θ),P2V(θ))−φ(θ,0,0,0)‖dθ+∫ȷ0‖φ(θ,0,0,0)‖dθ+B(δ)1−δTEδ,2(δ1−δTδ)L≤‖V0‖+∫ȷ0ζ(‖V‖+Cȷ‖V‖+DT‖V‖)dθ+Nφ∫ȷ0dθ+B(δ)1−δTEδ,2(δ1−δTδ)L≤‖V0‖+ζ(1+Cȷ+DT)∫ȷ0‖V‖dθ+Nφ∫ȷ0dθ+B(δ)1−δTEδ,2(δ1−δTδ)L≤‖V0‖+ω(ȷ)R∫ȷ0dθ+Nφ∫ȷ0dθ+B(δ)1−δTEδ,2(δ1−δTδ)L≤‖V0‖+LRT+NφT+B(δ)1−δTEδ,2(δ1−δTδ)L. $
|
(4.6) |
By definition of $ R $, we get
$ ‖V0‖+NφT=L(1−RT+B(δ)TEδ,2(δ1−δTδ)1−δ). $
|
(4.7) |
Using the Eq (4.5) in (4.7), we get condition of Eq (4.4).
$ ‖(F1V+F2φ)(ȷ)‖≤L(2B(δ)TEδ,2(δ1−δ)Tδ1−δ),ȷ∈I. $
|
(4.8) |
$ \therefore\; \left\|(\mathscr{F}_{1}\mathcal{V}+\mathscr{F}_{2}\varphi)(\jmath)\right\|\leq L, \jmath\in \mathscr{I}. $ This gives, $ \mathscr{F}_{1}\mathcal{V}+\mathscr{F}_{2}\varphi\in U $, $ \forall\; \mathcal{V}, \varphi\in X. $
From Steps (ⅰ)–(ⅲ), all the conditions of Lemma 2.11 follow.
Theorem 4.3. By Theorem 4.2, the Eqs (1.3) and (1.4) have a unique solution in $ \mathscr{C}(\mathscr{I}). $
Proof. (1) The problems (1.3) and (1.4) have an operator equation form as:
$ (ε1δ,1,−δ1−δ;0+)[V(ȷ)−x(ȷ,y(ȷ))]=ˆφ(ȷ),ȷ∈I, $
|
(4.9) |
where,
$ ˆφ(ȷ)=1−δB(δ)(V0−V(ȷ)+∫ȷ0φ(θ,V(θ),P1V(θ),P2V(θ))dθ),ȷ∈I. $
|
By Theorem 4.2, Eq (4.7) is solvable in $ \mathscr{C}(\mathscr{I}) $, by Lemma 2.10 we get a unique solution of Eqs (1.3) and (1.4),
$ V(ȷ)=(D1+β0+ε−1δ,β,−δ1−δ;0+)[V(ȷ)−x(ȷ,y(ȷ))],V∈C(I). $
|
Proof. (2) Let $ \mathcal{V}, \varphi $ be solutions of Eqs (1.3) and (1.4). By fractional integral operators and $ {\bf{(H_1)}} $–$ {\bf{(H_3)}}, $ we find, for any $ \jmath\in \mathscr{I} $,
$ |V(ȷ)−φ(ȷ)|≤|B(δ)1−δ(ε1δ,1,−δ1−δ;0+(V−φ))[V(ȷ)−x(ȷ,y(ȷ))]|+∫ȷ0|φ(θ,V(θ),P1V(θ),P2V(θ))−φ(θ,φ(θ),P1φ(θ),P2φ(θ))|dθ≤|B(δ)1−δ∫ȷ0Eδ[−δ1−δ(ȷ−θ)δ](V(θ)−φ(θ))dθ|+∫ȷ0ζ(|V(θ)−φ(θ)|+C|V(θ)−φ(θ)|+D|V(θ)−φ(θ)|)dθ≤B(δ)1−δ∫ȷ0Eδ(|−δ1−δTδ|)|V(θ)−φ(θ)|dθ+∫ȷ0ζ(1+C+D)|V(θ)−φ(θ)|dθ≤B(δ)1−δ∫ȷ0Eδ(δ1−δTδ)|V(θ)−φ(θ)|dθ+∫ȷ0[V(ȷ)−x(ȷ,y(ȷ))]|V(θ)−φ(θ)|dθ≤∫ȷ0[B(δ)1−δEδ(δ1−δTδ)+[V(ȷ)−x(ȷ,y(ȷ))]]|V(θ)−φ(θ)|dθ|V(ȷ)−φ(ȷ)|≤∫ȷ0[B(δ)1−δEδ(δ1−δTδ)+[V(ȷ)−x(ȷ,y(ȷ))]]|V(θ)−φ(θ)|dθ. $
|
(4.10) |
Theorem 5.1. By Theorem 4.2, if $ \mathcal{V}(\jmath) $ is a solution of Eqs (1.3) and (1.4), then
$ |V(ȷ)|≤{|V0|+NφT}exp(∫ȷ0[B(δ)1−δEδ(δ1−δTδ)+[V(ȷ)−x(ȷ,y(ȷ))]]dθ),ȷ∈I, $
|
(5.1) |
where, $ N_{\varphi} = \sup_{\jmath\in \mathscr{I}}\left|\varphi(\jmath, 0, 0, 0)\right|. $
Proof. If $ \mathcal{V}(\jmath) $ is a solution of Eqs (1.3) and (1.4), for all $ \jmath\in \mathscr{I}, $
$|V(ȷ)|≤|V0|−B(δ)1−δ∫ȷ0Eδ(|−δ1−δ(ȷ−θ)δ|)|V(θ)|dθ+∫ȷ0|φ(θ,V(θ),P1V(θ),P2V(θ))|dθ $
|
$ ≤|V0|−B(δ)1−δ∫ȷ0Eδ(δ1−δ(ȷ−θ)δ)|V(θ)|dθ+∫ȷ0|φ(θ,V(θ),P1V(θ),P2V(θ))−φ(θ,0,0,0)|dθ+∫ȷ0|φ(θ,0,0,0)|dθ≤|V0|−B(δ)1−δ∫ȷ0Eδ(δ1−δTδ)|V(θ)|dθ+∫ȷ0ζ(|V(θ)|+C|V(θ)|+D|V(θ)|)dθ+Nφȷ≤|V0|−B(δ)1−δ∫ȷ0Eδ(δ1−δTδ)|V(θ)|dθ+∫ȷ0ζ(1+C+D)|V(ȷ)|dθ+NφT≤|V0|−B(δ)1−δ∫ȷ0Eδ(δ1−δTδ)|V(θ)|dθ+∫ȷ0[V(ȷ)−x(ȷ,y(ȷ))]|V(θ)|dθ+NφT≤{|V0|+NφT}+∫ȷ0[B(δ)1−δEδ(δ1−δTδ)+[V(ȷ)−x(ȷ,y(ȷ))]]|V(θ)|dθ. $
|
By Lemma 2.12, we get
$ |V(ȷ)|≤{|V0|+NφT}exp(∫ȷ0[B(δ)1−δEδ(δ1−δTδ)+[V(ȷ)−x(ȷ,y(ȷ))]]dθ),ȷ∈I. $
|
(5.2) |
We discuss data dependence results for the problem
$ dφdȷ+⋆0Dδȷ[V(ȷ)−x(ȷ,y(ȷ))]=˜φ(ȷ,φ(ȷ),P1φ(ȷ),P2φ(ȷ)),ȷ∈I, $
|
(6.1) |
$ φ(0)=φ0∈R. $
|
(6.2) |
Theorem 6.1. Equation (4.2) holds, and $ \xi_{k} > 0, $ where $ k = 1, 2 $ are real numbers such that,
$ |V0−φ0|≤ξ1,|φ(ȷ,V(ȷ),P1V(ȷ),P2V(ȷ))−˜φ(ȷ,φ(ȷ),P1φ(ȷ),P2φ(ȷ))|≤ξ2,ȷ∈I. $
|
(6.3) |
$ \varphi(\jmath) $ is a solution of ABR fractional derivative Eqs (6.1) and (6.2), and $ \mathcal{V}(\jmath) $ is a solution of Eqs (1.3) and (1.4).
Proof. Let $ \mathcal{V}, \varphi $ are the solution of Eqs (1.3) and (1.4), (6.1) and (6.2) respectively. We find for any
$ |V(ȷ)−φ(ȷ)|≤|V0−φ0|+B(δ)1−δ∫ȷ0Eδ(|−δ1−δ(ȷ−θ)δ|)|V(θ)−φ(θ)|dθ+∫ȷ0|φ(θ,V(θ),P1V(θ),P2V(θ))−˜φ(s,φ(θ),P1φ(θ),P2φ(θ))|dθ≤|V0−φ0|+B(δ)1−δ∫ȷ0Eδ(|−δ1−δ(ȷ−θ)δ|)|V(θ)−φ(s)|dθ+∫ȷ0|φ(θ,V(θ),P1V(θ),P2V(θ))−φ(θ,φ(θ),P1φ(θ),P2φ(θ))|dθ+∫ȷ0|φ(θ,V(θ),P1V(θ),P2V(θ))−˜φ(θ,φ(θ),P1φ(θ),P2φ(θ))|dθ≤ξ1+B(δ)1−δ∫ȷ0Eδ(δ1−δTδ)|V(θ)−φ(θ)|dθ+∫ȷ0ζ(|V(θ)−φ(θ)|+C|V(θ)−φ(θ)|+D|V(θ)−φ(θ)|)dθ+ξ2∫ȷ0dθ≤ξ1+B(δ)1−δ∫ȷ0Eδ(δ1−δTδ)|V(θ)−φ(θ)|dθ+∫ȷ0ζ(1+C+D)|V(θ)−φ(θ)|dθ+ξ2ȷ≤ξ1+B(δ)1−δ∫ȷ0Eδ(δ1−δTδ)|V(θ)−φ(θ)|dθ+∫ȷ0[V(ȷ)−x(ȷ,y(ȷ))]|V(θ)−φ(θ)|dθ+ξ2T|V(ȷ)−φ(ȷ)|≤ξ1+ξ2T+∫ȷ0[B(δ)1−δEδ(δ1−δTδ)+[V(ȷ)−x(ȷ,y(ȷ))]]|V(ȷ)−φ(θ)|dθ. $
|
By Lemma 2.12, we get
$ |V(ȷ)−φ(ȷ)|≤(ξ1+ξ2T)exp(∫ȷ0[B(δ)1−δEδ(δ1−δTδ)+[V(ȷ)−x(ȷ,y(ȷ))]]dθ),ȷ∈I. $
|
(6.4) |
Let any $ \lambda, \lambda_{0}\in \mathscr{R} $ and
$ dVdȷ+⋆0Dδȷ[V(ȷ)−x(ȷ,y(ȷ))]=Θ(ȷ,V(ȷ),P1V(ȷ),P2V(ȷ),λ),ȷ∈I, $
|
(7.1) |
$ V(0)=V0∈R. $
|
(7.2) |
$ dVdȷ+⋆0Dδȷ[V(ȷ)−x(ȷ,y(ȷ)]=Θ(ȷ,V(ȷ),P1V(ȷ),P2V(ȷ),λ0),ȷ∈I, $
|
(7.3) |
$ V(0)=V0∈R. $
|
(7.4) |
Theorem 7.1. Let the function $ \Theta $ satisfy Theorem 4.2. Suppose there exists $ \omega, u \in \mathscr{C}(\mathscr{I}, \mathscr{R}^{+}) $ such that,
$ |Θ(ȷ,V,P1V,P2V,λ)−Θ(ȷ,φ,P1φ,P2φ,λ)|≤ω(ȷ)|V−φ|,|Θ(ȷ,V,P1V,P2V,λ)−Θ(ȷ,V,P1V,P2V,λ0)|≤u(ȷ)|λ−λ0|. $
|
If $ \mathcal{V}_{1}, \mathcal{V}_{2} $ are the solutions of Eqs (7.1) and (7.3), then
$ |V1(ȷ)−V2(ȷ)|≤PT|λ−λ0|exp(∫ȷ0[B(δ)1−δEδ(−δ1−δTδ)+[V(ȷ)−x(ȷ,y(ȷ))]]dθ),ȷ∈I, $
|
(7.5) |
where $ \mathcal{P} = \sup_{\jmath \in \mathscr{I}}u(\jmath). $
Proof. Let, for any $ \jmath\in \mathscr{I} $,
$ |V1(ȷ)−V2(ȷ)|≤B(δ)1−δ|∫ȷ0Eδ[−δ1−δ(ȷ−θ)δ](V2(θ)−V1(θ)dθ)|+∫ȷ0|Θ(θ,V1(θ),P1V1(θ),P2V1(θ),λ)−Θ(θ,V2(θ),P1V2(θ),P2V2(θ),λ0)|dθ≤B(δ)1−δ∫ȷ0Eδ(|−δ1−δ(ȷ−θ)δ|)|V1(θ)−V2(θ)|dθ+∫ȷ0|Θ(θ,V1(θ),P1V1(θ),P2V1(θ),λ)−Θ(θ,V2(θ),P1V2(θ),P2V2(θ),λ)|dθ+∫ȷ0|Θ(θ,V2(θ),P1V2(θ),P2V2(θ),λ)−Θ(θ,V2(θ),P1V2(θ),P2V2(θ),λ0)|dθ≤B(δ)1−δ∫ȷ0Eδ(δ1−δ(ȷ−θ)δ)|V1(θ)−V2(θ)|dθ+∫ȷ0ζ(|V1(θ)−V2(θ)|+C|V1(θ)−V2(θ)|+D|V1(θ)−V2(θ)|)dθ+∫ȷ0u(θ)|λ−λ0|dθ≤B(δ)1−δ∫ȷ0Eδ(δ1−δTδ)|V1(θ)−V2(θ)|dθ+∫ȷ0ζ(1+C+D)|V1(θ)−V2(θ)|dθ+Pȷ|λ−λ0|≤B(δ)1−δ∫ȷ0Eδ(δ1−δTδ)|V1(θ)−V2(θ)|dθ+∫ȷ0[V(ȷ)−x(ȷ,y(ȷ))]|V1(θ)−V2(θ)|dθ+PT|λ−λ0|≤∫ȷ0[B(δ)1−δEδ(δ1−δTδ)+[V(ȷ)−x(ȷ,y(ȷ))]]|V1(θ)−V2(θ)|dθ+PT|λ−λ0|. $
|
By Lemma 2.12,
$ |V1(ȷ)−V2(ȷ)|≤PT|λ−λ0|exp(∫ȷ0[B(δ)1−δEδ(δ1−δTδ)+[V(ȷ)−x(ȷ,y(ȷ))]]dθ),ȷ∈I. $
|
(7.6) |
Consider a nonlinear ABR fractional derivative with neutral integro-differential equations of the form:
$ dVdȷ+⋆0D12ȷ[V(ȷ)−x(ȷ,y(ȷ))]=φ(ȷ,V(ȷ),P1V(ȷ),P2V(ȷ)),ȷ∈I=[0,2], $
|
(8.1) |
$ V(0)=1∈R. $
|
(8.2) |
$ \varphi:(\mathscr{I}\times \mathscr{R}\times \mathscr{R}\times \mathscr{R})\rightarrow \mathscr{R} $ is a continuous nonlinear function such that,
$ φ(ȷ,V(ȷ),P1V(ȷ),P2V(ȷ))=|V(ȷ)|+13+M(ȷ)+N(ȷ),ȷ∈I, $
|
and
$ M(ȷ)=B(12){ȷE12,2(−ȷ12)+E12(−ȷ12)−ȷ−1},N(ȷ)=B(12){E12,2(−ȷ12)+ȷE12(−ȷ12)−1}. $
|
We observe that for all $ \mathcal{V}, \varphi\in \mathscr{R} $ and $ \jmath\in \mathscr{I}, $
$ |φ(ȷ,V,P1V,P2V)−φ(ȷ,φ,P1φ,P2φ)|=|(|V(ȷ)|+13+M(ȷ)+N(ȷ))−(|φ(ȷ)|+13+M(ȷ)+N(ȷ))|≤13|V−φ|. $
|
(8.3) |
The function $ \varphi $ satisfies $ (H_{1}) $–$ (H_{4}) $ with constant $ \frac{1}{3} $. From Theorem 4.2, we have $ \delta = \frac{1}{2} $ and T = 2 which is substitute in Eq (4.2), and we get
$ B(12)<18E12,2(212). $
|
(8.4) |
If the function $ B(\delta) $ satisfies Eq (8.4), then Eqs (8.1) and (8.2) have a unique solution.
$ V(ȷ)=ȷ3+1,ȷ∈[0,2]. $
|
(8.5) |
In this research article, we explored multi-derivative nonlinear neutral fractional integro-differential equations involving the ABR fractional derivative. The elementary results of the existence, uniqueness and dependence solution on various data are based on the Prabhakar fractional integral operator $ \varepsilon^{\alpha}_{\delta, \eta, \mathcal{V}; c+} $ involving a generalized ML function. The existence results are obtained by Krasnoselskii's fixed point theorem, and the uniqueness and data dependence results are obtained by the Gronwall-Bellman inequality with continuous functions.
The research on Existence and data dependence results for neutral fractional order integro-differential equations by Khon Kaen University has received funding support from the National Science, Research and Innovation Fund.
The authors declare no conflict of interest.
[1] |
Kraus V, Blanco F, Englund M, et al. (2015) Call for standardized definitions of osteoarthritis and risk stratification for clinical trials and clinical use. Osteoarthr Cartil 23: 1233–1241. doi: 10.1016/j.joca.2015.03.036
![]() |
[2] |
Pesesse L, Sanchez C, Delcour JP, et al. (2013) Consequences of chondrocyte hypertrophy on osteoarthritic cartilage: potential effect on angiogenesis. Osteoarthr Cartil 21: 1913–1923. doi: 10.1016/j.joca.2013.08.018
![]() |
[3] |
Berenbaum F (2013) Osteoarthritis as an inflammatory disease (osteoarthritis is not osteoarthrosis!). Osteoarthr Cartil 21: 16–21. doi: 10.1016/j.joca.2012.11.012
![]() |
[4] |
Henrotin Y, Pesesse L, Lambert C (2014) Targeting the synovial angiogenesis as a novel treatment approach to osteoarthritis. Ther Adv Musculoskeletal Dis 6: 20–34. doi: 10.1177/1759720X13514669
![]() |
[5] | Henrotin Y, Pesesse L, Sanchez C (2012) Subchondral bone and osteoarthritis: biological and cellular aspects. Osteoporosis Int 23: 47–51. |
[6] |
Sanchez C, Pesesse L, Gabay O, et al. (2012) Regulation of subchondral bone osteoblast metabolism by cyclic compression. Arthritis Rheumatol 64: 1193–1203. doi: 10.1002/art.33445
![]() |
[7] |
Sanchez C, Deberg M, Bellahcène A,et al. (2008) Phenotypic characterization of osteoblasts from the sclerotic zones of osteoarthritic subchondral bone. Arthritis Rheumatol 58: 442–455. doi: 10.1002/art.23159
![]() |
[8] |
Pesesse L, Sanchez C, Henrotin Y (2011) Osteochondral plate angiogenesis: a new treatment target in osteoarthritis. Jt Bone Spine 78: 144–149. doi: 10.1016/j.jbspin.2010.07.001
![]() |
[9] | Rahmati M, Mobasheri A (2016) Mozafari M. Inflammatory mediators in osteoarthritis: A critical review of the state-of-the-art, current prospects, and future challenges. Bone 85: 81–90. |
[10] |
Bertuglia A, Lacourt M, Girard C, et al. (2016) Osteoclasts are recruited to the subchondral bone in naturally occurring post-traumatic equine carpal osteoarthritis and may contribute to cartilage degradation. Osteoarthr Cartilage 24: 555–566. doi: 10.1016/j.joca.2015.10.008
![]() |
[11] | Sanchez C, Gabay O, Salvat C, et al. (2009) Mechanical loading highly increases IL-6 production and decreases OPG expression by osteoblasts. Osteoarthritis Cartilage 7: 473–481. |
[12] | Henrotin Y, Pesesse L, Sanchez C (2009) Subchondral bone in osteoarthritis physiopathology: state-of-the art and perspectives. Biomed Mater Eng 19: 311–316. |
[13] | Hügle T, Geurts J (2017) What drives osteoarthritis?-synovial versus subchondral bone pathology. Rheumatology (Oxford) 56: 1461–1471. |
[14] | Veronese N, Trevisan C, De Rui M, et al. (2015) Osteoarthritis increases the risk of cardiovascular diseases in the elderly: The progetto veneto anziano study. Arthritis Rheumatol 68: 1136–1144. |
[15] |
Eymard F, Parsons C, Edwards MH, et al. (2015) Diabetes is a risk factor for knee osteoarthritis progression. Osteoarthr Cartilage 23: 851–859. doi: 10.1016/j.joca.2015.01.013
![]() |
[16] | da Costa BR, Reichenbach S, Keller N, et, al. (2017) Effectiveness of non-steroidal anti-inflammatory drugs for the treatment of pain in knee and hip osteoarthritis: a network meta-analysis. Lancet 387: 2093–2105. |
[17] | Roberts E, Delgado Nunes V, Buckner S, et al. (2016) Paracetamol: not as safe as we thought? A systematic literature review of observational studies. Ann Rheum Dis 75: 552–559. |
[18] |
Pavelka K, Coste P, Géher P, et al. (2010) Efficacy and safety of Piascledine 300 versus chondroitin sulfate in a 6 months treatment plus 2 months observation in patients with osteoarthritis of the knee. Clin Rheumatol 29: 659–670. doi: 10.1007/s10067-010-1384-8
![]() |
[19] | Appelboom T, Schuermans J, Verbruggen G, et al. (2001) Symptoms modifying effect of avocado/soybean unsaponifiables (ASU) in knee osteoarthritis. A double blind, prospective, placebo-controlled study. Acta Rheumatol Scand 30: 242–247. |
[20] |
Maheu E, Mazières B, Valat JP, et al. (1998) Symptomatic efficacy of avocado/soybean unsaponifiables in the treatment of osteoarthritis of the knee and hip: a prospective, randomized, double-blind, placebo-controlled, multicenter clinical trial with a six-month treatment period and a two-month followup demonstrating a persistent effect. Arthritis Rheumatol 41: 81–91. doi: 10.1002/1529-0131(199801)41:1<81::AID-ART11>3.0.CO;2-9
![]() |
[21] | Blotman F, Maheu E, Wulwik A, et al. (1997) Efficacy and safety of avocado/soybean unsaponifiables in the treatment of symptomatic osteoarthritis of the knee and hip. A prospective, multicenter, three-month, randomized, double-blind, placebo-controlled trial. Rev Rhum Engl Ed 64: 825–834. |
[22] |
Christensen R, Bartels EM, Astrup A, et al. (2008) Symptomatic efficacy of avocado-soybean unsaponifiables (ASU) in osteoarthritis (OA) patients: a meta-analysis of randomized controlled trials. Osteoarthritis Cartilage 16: 399–408. doi: 10.1016/j.joca.2007.10.003
![]() |
[23] |
Maheu E, Cadet C, Marty M, et al. (2014) Randomised, controlled trial of avocado-soybean unsaponifiable (Piascledine) effect on structure modification in hip osteoarthritis: the ERADIAS study. Ann Rheum Dis 73: 376–384. doi: 10.1136/annrheumdis-2012-202485
![]() |
[24] |
Zhang W, Doherty M, Arden N, et al. (2005) EULAR evidence based recommendations for the management of hip osteoarthritis: report of a task force of the EULAR Standing Committee for International Clinical Studies Including Therapeutics (ESCISIT). Ann Rheum Dis 64: 669–681. doi: 10.1136/ard.2004.028886
![]() |
[25] |
McAlindon T, Bannuru R, Sullivan M, et al. (2014) OARSI guidelines for the non-surgical management of knee osteoarthritis. Osteoarthr Cartilage 22: 363–388. doi: 10.1016/j.joca.2014.01.003
![]() |
[26] |
Msika P, Baudoin C, Saunois A, et al. (2008) Avocado/Soybean unsaponifiable, ASU EXPANSCIENCETM, are strictly different from the nutraceutical products claiming ASU appellation. Osteoarthr Cartilage 16: 1275–1276. doi: 10.1016/j.joca.2008.02.017
![]() |
[27] |
Henrotin Y (2008) Avocado/soybean unsaponifiable (ASU) to treat osteoarthritis: a clarification. Osteoarthritis Cartilage 16: 1118–1119. doi: 10.1016/j.joca.2008.01.010
![]() |
[28] | Rancurel A (1985) Parfums, cosmétiques, Arômes 61: 91. |
[29] |
Farines M, Soulier J, Rancurel A, et al. (1995) Influence of avocado oil processing on the nature of some unsaponifiable constituents. J Am Oil Chem Soc 72: 473–476. doi: 10.1007/BF02636092
![]() |
[30] | Baillet A (1995) Pharmaceutical expert report. Courbevoie, France: Pharmascience, 1995 (unpublished data). |
[31] | Mauviel A, Daireaux M, Hartman DJ, et al. (1989) Effets des insaponifiables d'avocat/soja (PIAS) sur la production de collagène par des cultures de synoviocytes, chondrocytes articulaires et fibroblastes dermiques. Rev Rhum 56: 207–213. |
[32] | Mauviel A, Loyau G, Pujol JP (1991) Effets des insaponifiables d'avocat/soja (Piascledine) sur l'activité collagénolytique de cultures de synoviocytes rhumatoides humains et de chondrocytes articulaires de lapin traités par l'interleukine-1. Rev Rhum 58: 241–248. |
[33] | Harmand MF (1985) Etude de fraction des insaponifiables d'avocat et de soja sur les cultures de chondrocytes articulaires. Gaz Med Fr 92: 1–3. |
[34] |
Henrotin Y, Labasse A, Jaspar JM, et al. (1998) Effects of three avocado/soybean unsaponifiable mixtures on metalloproteinases, cytokines and prostaglandin E2 production by human articular chondrocytes. Clin. Rheumatol 17: 31–39. doi: 10.1007/BF01450955
![]() |
[35] | Henrotin Y, Sanchez C, Deberg MA, et al. (2003) Avocado/soybean unsaponifiables increase aggrecan synthesis and reduce catabolic and proinflammatory mediator production by human osteoarthritic chondrocytes. J. Rheumatol 30: 1825–1834 |
[36] |
Gabay O, Gosset M, Levy A, et al. (2008) Stress-induced signaling pathways in hyalin chondrocytes: inhibition by Avocado-Soybean Unsaponifiables (ASU). Osteoarthr Cartilage 16: 373–384. doi: 10.1016/j.joca.2007.06.016
![]() |
[37] |
Boumediene K, Felisaz N, Bogdanowicz P, et al. (1999) Avocado/soya unsaponifiables enhance the expression of transforming growth factor beta1 and beta2 in cultured articular chondrocytes. Arthritis Rheumatol 42: 148–156. doi: 10.1002/1529-0131(199901)42:1<148::AID-ANR18>3.0.CO;2-U
![]() |
[38] |
Campbell IK, Wojta J, Novak U, et al. (1994) Cytokine modulation of plasminogen activator inhibitor-1 (PAI-1) production by human articular cartilage and chondrocytes: down-regulation by tumor necrosis factora. Biochim Biophys Acta 1226: 277–285. doi: 10.1016/0925-4439(94)90038-8
![]() |
[39] | Khayyal MT, el-Ghazaly MA (1998) The possible "chondroprotective" effect of the unsaponifiable constituents of avocado and soya in vivo. Drugs Exp Clin Res 24: 41–50. |
[40] |
Boileau C, Martel-Pelletier J, Caron J, et al. (2009) Protective effects of total fraction of avocado/soybean unsaponifiables on the structural changes in experimental dog osteoarthritis: inhibition of nitric oxide synthase and matrix metalloproteinase-13. Arthritis Res Ther 11: 41. doi: 10.1186/ar2649
![]() |
[41] |
Jaberi, F, Tahami, M, Torabinezhad S, et al. (2012) The healing effect of soybean and avocado mixture on knee cartilage defects in a dog animal model. Comp. Clin Pathol 21: 661–666. doi: 10.1007/s00580-010-1152-9
![]() |
[42] |
Altinel L, Saritas ZK, Kose KC, et al. (2007) Treatment with unsaponifiable extracts of avocado and soybean increases TGF-beta1 and TGF-beta2 levels in canine joint fluid. Tohoku J Exp Med 211: 181–186. doi: 10.1620/tjem.211.181
![]() |
[43] | Cake M, Read R, Guillou B, et al. (2008) Modification of articular cartilage and subchondral bone pathology in an ovine meniscectomy model of osteoarthritis by avocado and soya unsaponifiables (ASU). Osteoarthr Cartilage 8: 404–411. |
[44] |
Cinelli M, Guiducci S, Del Rosso A, et al. (2006) Piascledine modulates the production of VEGF and TIMP-1 and reduces the invasiveness of rheumatoid arthritis synoviocytes. Scand J Rheumatol 35: 346–350. doi: 10.1080/03009740600709865
![]() |
[45] | Henrotin Y, Deberg M, Crielaard JM, et al. (2006) Avocado/soybean unsaponifiables prevent the inhibitory effect of osteoarthritic subchondral osteoblasts on aggrecan and type II collagen synthesis by chondrocytes. J Rheumatol 33: 1668–1678. |
[46] | Sanchez C, Deberg M, Piccardi N, et al. (2005) Osteoblasts from the sclerotic subchondral bone downregulate aggrecan but upregulate metalloproteinases expression by chondrocytes. This effect is mimicked by interleukin-6, -1beta and oncostatin M pre-treated non-sclerotic osteoblasts. Osteoarthr Cartilage 13: 979–987. |
[47] | Sanchez C, Deberg M, Piccardi N, et al. (2004) Interleukin-1, interleukin-6 and oncostatin M stimulate normal subchondral osteoblast to induce cartilage degradation. Osteoarthr Cart 12: S98. |
[48] |
Andriamanalijaona R, Benateau H, Barre PE, et al. (2006) Effect of interleukin-1beta on transforming growth factor-beta and bone morphogenetic protein-2 expression in human periodontal ligament and alveolar bone cells in culture: modulation by avocado and soybean unsaponifiables. J Periodontol 77: 1156–1166. doi: 10.1902/jop.2006.050356
![]() |
[49] | Day JS, van der Linden JC, Bank RA, et al. (2004) Adaptation of subchondral bone in osteoarthritis. Biorheology 41: 359–368. |
[50] |
Westacott CI, Webb GR, Warnock MG, et al. (1997) Alteration of cartilage metabolism by cells from osteoarthritic bone. Arthritis Rheumatol 40: 1282–1291. doi: 10.1002/1529-0131(199707)40:7<1282::AID-ART13>3.0.CO;2-E
![]() |
[51] |
Hilal G, Massicotte F, Martel-Pelletier J, et al. (2001) Endogenous prostaglandin E2 and insulin-like growth factor 1 can modulate the levels of parathyroid hormone receptor in human osteoarthritic osteoblasts. J Bone Miner Res 16: 713–721. doi: 10.1359/jbmr.2001.16.4.713
![]() |
[52] |
Hilal G, Martel-Pelletier J, Pelletier JP, et al. (1999) Abnormal regulation of urokinase plasminogen activator by insulin-like growth factor 1 in human osteoarthritic subchondral osteoblasts. Arthritis Rheumatol 42: 2112–2122. doi: 10.1002/1529-0131(199910)42:10<2112::AID-ANR11>3.0.CO;2-N
![]() |
[53] |
Massicotte F, Fernandes JC, Martel-Pelletier J, et al. (2006) Modulation of insulin-like growth factor 1 levels in human osteoarthritic subchondral bone osteoblasts. Bone 38: 333–341. doi: 10.1016/j.bone.2005.09.007
![]() |
[54] |
Hilal G, Martel-Pelletier J, Pelletier JP, et al. (1998) Osteoblast-like cells from human subchondral osteoarthritic bone demonstrate an altered phenotype in vitro: possible role in subchondral bone sclerosis. Arthritis Rheumatol 41: 891–899. doi: 10.1002/1529-0131(199805)41:5<891::AID-ART17>3.0.CO;2-X
![]() |
[55] | Harris SE, Bonewald LF, Harris MA, et al. (1994) Effects of transforming growth factor on bone nodule formation and expression of bone morphogenetic protein 2, osteocalcin, osteopontin, alkaline phosphatase, and type I collagen mRNA in long-term cultures of fetal rat calvarial osteoblasts. J Bone Miner Res 9: 855–863. |
1. | Andreas Frommer, Daniel B. Szyld, On the convergence of randomized and greedy relaxation schemes for solving nonsingular linear systems of equations, 2023, 92, 1017-1398, 639, 10.1007/s11075-022-01431-7 | |
2. | Yansheng Su, Deren Han, Yun Zeng, Jiaxin Xie, On greedy multi-step inertial randomized Kaczmarz method for solving linear systems, 2024, 61, 0008-0624, 10.1007/s10092-024-00621-0 |