
Citation: Alexis Erich S. Almocera, Sze-Bi Hsu, Polly W. Sy. Extinction and uniform persistence in a microbial food web with mycoloop: limiting behavior of a population model with parasitic fungi[J]. Mathematical Biosciences and Engineering, 2019, 16(1): 516-537. doi: 10.3934/mbe.2019024
[1] | Jean-Jacques Kengwoung-Keumo . Competition between a nonallelopathic phytoplankton and an allelopathic phytoplankton species under predation. Mathematical Biosciences and Engineering, 2016, 13(4): 787-812. doi: 10.3934/mbe.2016018 |
[2] | Saswati Biswas, Pankaj Kumar Tiwari, Yun Kang, Samares Pal . Effects of zooplankton selectivity on phytoplankton in an ecosystem affected by free-viruses and environmental toxins. Mathematical Biosciences and Engineering, 2020, 17(2): 1272-1317. doi: 10.3934/mbe.2020065 |
[3] | Jean-Jacques Kengwoung-Keumo . Dynamics of two phytoplankton populations under predation. Mathematical Biosciences and Engineering, 2014, 11(6): 1319-1336. doi: 10.3934/mbe.2014.11.1319 |
[4] | He Liu, Chuanjun Dai, Hengguo Yu, Qing Guo, Jianbing Li, Aimin Hao, Jun Kikuchi, Min Zhao . Dynamics induced by environmental stochasticity in a phytoplankton-zooplankton system with toxic phytoplankton. Mathematical Biosciences and Engineering, 2021, 18(4): 4101-4126. doi: 10.3934/mbe.2021206 |
[5] | Yuanpei Xia, Weisong Zhou, Zhichun Yang . Global analysis and optimal harvesting for a hybrid stochastic phytoplankton-zooplankton-fish model with distributed delays. Mathematical Biosciences and Engineering, 2020, 17(5): 6149-6180. doi: 10.3934/mbe.2020326 |
[6] | Lin Chen, Xiaotian Wu, Yancong Xu, Libin Rong . Modelling the dynamics of Trypanosoma rangeli and triatomine bug with logistic growth of vector and systemic transmission. Mathematical Biosciences and Engineering, 2022, 19(8): 8452-8478. doi: 10.3934/mbe.2022393 |
[7] | Kazuo Yamazaki, Xueying Wang . Global stability and uniform persistence of the reaction-convection-diffusion cholera epidemic model. Mathematical Biosciences and Engineering, 2017, 14(2): 559-579. doi: 10.3934/mbe.2017033 |
[8] | Mostafa Adimy, Abdennasser Chekroun, Claudia Pio Ferreira . Global dynamics of a differential-difference system: a case of Kermack-McKendrick SIR model with age-structured protection phase. Mathematical Biosciences and Engineering, 2020, 17(2): 1329-1354. doi: 10.3934/mbe.2020067 |
[9] | Rafael Bravo de la Parra, Ezio Venturino . A discrete two time scales model of a size-structured population of parasitized trees. Mathematical Biosciences and Engineering, 2024, 21(9): 7040-7066. doi: 10.3934/mbe.2024309 |
[10] | Zhiwei Huang, Gang Huang . Mathematical analysis on deterministic and stochastic lake ecosystem models. Mathematical Biosciences and Engineering, 2019, 16(5): 4723-4740. doi: 10.3934/mbe.2019237 |
It is important to determine survivors, which ultimately shape an ecosystem. However, answering this fundamental question depends on what we consider in a food web. There are studies on ecosystems that incorporate a different concept, like epidemics [10,11] and allelopathy [8].
Our work considers a microbial food web in the presence of parasitic fungi (e.g., chytrids). The importance of parasites in food webs has been emphasized in the literature; see [5,6,7]. According to a review paper [15] by Sommer et al, researchers have only recently considered parasites as one of the main drivers for phytoplankton succession. This review highlights the theory of mycoloop, a food chain conceived by Kagami and her team to explain the transfer of energy from large phytoplankton (Asterionella) to zooplankton (Daphnia) via parasitic fungi [1,2,3,4].
In this paper, we consider the following chemostat model based on Figure 1, where
{N(t)=[I−qN(t)]−[aSPS(t)+aLPL(t)]N,N(0)>0,S(t)=[aSN(t)−bZ(t)−q]PS(t),PS(0)≥0,L(t)=[aLN(t)−βF(t)−q]PL(t),PL(0)≥0,F(t)=[fFβPL(t)−γZ(t)−q]F(t),F(0)≥0,Z(t)=[ePbPS(t)+eFγF(t)−(q+mZ)]Z(t),Z(0)≥0. | (1.1) |
The parameters of this model are described in Table 1.
Parameter | Description |
| Input amount of phosphorus (nutrient level) |
| Input concentration of nutrient |
| Washout rate |
| Zooplankton mortality rate, |
besides washout rate | |
| Nutrient affinity of phytoplankton |
| Infectivity constant of fungi |
| Zooplankton clearance rate for small phytoplankton |
| Zooplankton clearance rate for fungi |
| Gross growth efficiency (GGE) of zooplankton from fungi |
| GGE of zooplankton from small phytoplankton |
| GGE of fungi from its host |
Miki, Takimoto and Kagami formulated system (1.1) in their paper [9] and performed a local (steady-state) analysis to investigate the roles of parasitic fungi. We assume
We focus on global dynamics and the limiting behavior of the solution
φ(t)=(N(t),PS(t),PL(t),F(t),Z(t)) |
as
Let
X:={x=(N,PS,PL,F,Z):N>0,PS≥0,PL≥0,F≥0,Z≥0}. |
It is easy to show the state space
The rest of this paper is organized as follows. In Section 2, we establish that our model is dissipative, from which the nutrient uniformly persists regardless of the input
First we show that our model system (1.1) is dissipative, as stated in the following theorem.
Theorem 2.1. Each solution of system (1.1) in
lim supt→∞[N(t)+PS(t)+PL(t)+F(t)fF+Z(t)max{eP,fFeF}]≤N(0). | (2.1) |
Proof. Let
u=N+PS+PL+FfF+cZ. |
It follows that
u(t)≤N(0)+[u(0)−N(0)]exp(−qt) | (2.2) |
for all
Theorem 2.2. The nutrient
Proof. Observe that
N≥I−qN−max(aS,aL)(PS+PL)N≥I−qN−max(aS,aL)(N(0)+ϵ)N≥I−(q+max(aS,aL)(N(0)+ϵ))N,t≥Tϵ. |
Hence
The ecologically relevant equilibrium points lie in the state space
λS=qaS,λL=qaL. |
From [14], our basic assumption is
(H)0<λS<λL<Iq. |
That is, we assume phytoplankton species of small size,
When
{dNdt=I−qN−aSPSN−aLPLN,dPSdt=aSPSN−bZPS−qPS,dPLdt=aLNPL−qPL,dZdt=ePbPSZ−(q+mZ)Z | (3.1) |
and its food web is shown in Figure 2.
The conditions for the global stability of the equilibrium points of system (3.1) are stated in the next theorem.
Theorem 3.1. Let
N⋆=Iq+aSP⋆S,P⋆S=q+mZePb. |
For system (3.1), the following statements hold:
(i) If
(ii) If
(iii) If
Proof. The statements are established as follows:
(ⅰ) We introduce the Lyapunov function given by
V=∫NλSξ−λSξdξ+c1∫PS^PSξ−^PSξdξ+c2PL+c3Z, |
where
∙V=(N−λS)(IN−q−aSPS−aLPL)+c1(PS−^PS)(aSN−bZ−q)+c2PL(aLN−q)+c3Z(ePbPS−(q+mZ))=(N−λS)(IN−IλS−aS(PS−^PS)−aLPL)+c1(PS−^PS)(aS(N−λS)−bZ)+c2PL(aL(N−λS)−aL(λL−λS))+c3Z(ePb(PS−^PS)−((q+mZ)−ePb^PS)). |
Choose
q+mZePb=P⋆S>^PS=I−qλSaSλS⇔I−qλS<aSλSP⋆S⇔N⋆<λS, |
it follows that
∙V=−I(N−λS)2NλS−PLaL(λL−λS)−1eP((q+mZ)−ePb^PS)Z≤0. |
Therefore, LaSalle's invariance principle implies that
(ⅱ)Note that
V=∫NN⋆ξ−N⋆ξdξ+∫PSP⋆Sξ−P⋆Sξdξ+PL+1eP∫ZZ⋆ξ−Z⋆ξdξ. |
We obtain
∙V=(N−N⋆)[IN−IN⋆−aS(PS−P⋆S)−aLPL]+(PS−P⋆S)[aS(N−N⋆)−b(Z−Z⋆)]+PL(aL(N−N⋆)−(q−aLN⋆))+1eP(Z−Z⋆)(ePb(PS−P⋆S))=−I(N−N⋆)2NN⋆−PL(q−aLN⋆)≤0, |
by using the equivalent expression
λL>N⋆⇔q−aLN⋆>0. |
Hence, by LaSalle's invariance principle,
(ⅲ) We construct the following Lyapunov function:
V=∫NNCξ−NCξdξ+∫PSPCSξ−PCSξdξ+∫PLPCLξ−PCLξdξ+1eP∫ZZCξ−ZCξdξ, |
where
NC=λL,PCS=q+mZePb=P⋆SPCL=1aL(INC−q−aSP⋆S)ZC=1b(aSNC−q). |
From the assumptions that
∙V=(N−NC)[IN−INC−aS(PS−PCS)−aL(PL−PCL)]+(PS−PCS)[aS(N−NC)−b(Z−ZC)]+(PL−PCL)(aL(N−NC))+1eP(Z−ZC)(ePb(PS−PCS))=−I(N−NC)2NNC≤0. |
We conclude from the invariance principle that
As a consequence of the above theorem, we obtain the following equivalent expressions:
N⋆<λS⇔I<λS(q+aSP⋆S)=q(λS+P⋆S)λS<N⋆<λL⇔λS(q+aSP⋆S)<I<λL(q+aSP⋆S)⇔q(λS+P⋆S)<I<q(λL+λLλSP⋆S)λL<N⋆<Iq⇔λL(q+aSP⋆S)<I⇔q(λL+λLλSP⋆S)<I |
Letting
(ⅰ) if
(ⅱ) if
(ⅲ) if
The global stability of equilibrium points of system (3.1) is depicted in Figure 3.
We consider the case that
{N=I−qN−aSPSN−aLPLN,S=[aSN−q]PS,L=(aLN−βF−q)PL,F=(fFβPL−q)F,N(0)>0,PS(0)>0,PL(0)>0,F(0)>0 | (3.2) |
and its food web is presented in Figure 4.
From hypothesis
Theorem 3.2. Under assumption
For the case when
{dNdt=I−qN−aLPLN,dPLdt=aLNPL−βFPL−qPL,dFdt=fFβPLF−γZF−qF,dZdt=eFγFZ−(q+mZ)F,N(0)>0,PL(0)>0,F(0)>0,Z(0)>0 | (3.3) |
with the corresponding food web provided in Figure 5.
Using the same Lyapunov functions
Theorem 3.3. Let hypothesis
(i) If
(ii) If
(iii) If
Taking
From Section 3, there are seven distinct boundary equilibrium points of system (1.1) listed below :
E0=(N(0),0,0,0,0),ES=(λS,N(0)−λS,0,0,0),N(0)>λS,ESZ=(N⋆,P⋆S,0,0,Z⋆),N(0)>λS+P⋆S,ESLZ=(λL,P⋆S,~PL,0,˜Z),N(0)>λL+λLλSP⋆S,EL=(λL,0,N(0)−λL,0,0),N(0)>λL,ELF=(ˉN,0,ˉL,ˉF,0),N(0)>λL(1+aLfFβ),ELFZ=(ˆN,0,^PL,ˆF,ˆZ),N(0)>λL(1+aLfFβ)(1+βeFγ(1+mZq)), | (4.1) |
where
N⋆=Iq+aSP⋆S,P⋆S=q+mZePb,Z⋆=aSN⋆−qb>0,~PL=Iq−λL−aSaLP⋆S>0,˜Z=1b(aSλL−q)>0,ˉN=Iq+aLˉL,ˉL=qfFβ,ˉF=aLˉN−qβ>0,ˆF=q+mZγeF,ˆN=βˆF+qaL,ˆZ=fFβ^PL−qγ>0,^PL=I−qˆNaLˆN>0. | (4.2) |
Next we discuss the local asymptotic stability of the boundary equilibrium points in (4.1) with respect to system (1.1). Obviously
For the stability of
1FF(t)|ES=fFβPL−γZ−q=−q<0,1ZZ(t)|ES=ePb(N(0)−λS)−(q+mZ)<0,1PLL(t)|ES=aLλS−q<0 | (4.3) |
and all of the eigenvalues of the Jacobian matrix of system (1.1) at
For the stability of
1PLL|ESZ=aLN⋆−q<0,1FF|ESZ=−γZ⋆−q<0. | (4.4) |
Thus, if
For the stability of
1FF|ESLZ=fˉFβ~PL−γ˜Z−q<0. | (4.5) |
Therefore,
For the stability of
1PSS|EL=aSλL−q>0,1FF|EL=fFβ(N(0)−λL)−q<01ZZ|EL=−(q+mZ)<0. | (4.6) |
We conclude that
For the stability of
1PSS|ELF=aSˉN−q>0,1ZZ|ELF=eFγˉF−(q+mZ)>0 |
For the stability of
1PSS|ELFZ=aSˆN−bˆZ−q. | (4.7) |
Hence
A summary of the results on the asymptotic stability of boundary equilibrium points of system (1.1) is provided in Table 2.
Existence | Locally asymptotically stable if | |
| always | |
| under | |
| | |
| | |
| under | |
| | |
| | |
Now we present some extinction results in the next theorem.
Theorem 4.1. Suppose
(i) If
(ii) If
Proof. (ⅰ) Introduce the Lyapunov function
V=∫NλSξ−λSξdξ+c1∫PSN(0)−λSξ−(N(0)−λS)ξdξ+c2PL+c3F+c4Z. |
Choose
∙V=(N−λS)(IN−IλS−aS(PS−(N(0)−λS))−aLPL)+(PS−(N(0)−λS))(aS(N−λS)−bZ)+PL(aL(N−λS)−βF+(aLλS−q))+eFePF(fPβPL−γZ−q)+1ePZ(ePb(PS−(N(0)−λS))+eFγF+(ePb(N(0)−λS)−(q+mZ)))=(N−λS)(IN−IλS)+PL(aLλS−q)−eFePqF+PLF(−β+fFβeFeP)+Z(ePb(N(0)−λS)−(q+mZ))≤0. |
It folows from the invariance principle that
(ⅱ) Define the Lyapunov function by
V=∫NN⋆ξ−N⋆ξdξ+c1∫PSP⋆Sξ−P⋆Sξdξ+c2PL+c3F+c4∫ZZ⋆ξ−Z⋆ξdξ. |
Let
∙V=(N−N⋆)(IN−IN⋆−aS(PS−P⋆S)−aLPL)+(PS−P⋆S)(aS(N−N⋆)−b(Z−Z⋆))+(aL(N−N⋆)−βF+(aLN⋆−q))PL+eFeP(fFβPL−γ(Z−Z⋆)+(−γZ⋆−q))F+1eP(Z−Z⋆)(ePb(PS−P⋆S)+eFγF+ePbP⋆S−(q+mZ))=(N−N⋆)(IN−IN⋆)+FPL(−βc2+fFβeFeP)+(aLN⋆−q)PL+eFeP(−γZ⋆−q)F≤0. |
By invariance principle,
Remark 4.2: From our numerical simulation results, we conjecture that the equilibria
In this section, we determine conditions for the species in system (1.1) to coexist by applying the theory of uniform persistence of Butler, Freedman and Waltman [12,13,16]. Since the boundary dynamics for
Consider the operation diagram in Figure 3 and the case that
fFβ~PL−γ˜Z−q>0, | (5.1) |
where
Lemma 5.1 below shows that inequality (5.1) is equivalent to
I>λL(q+aLP⋆S)+aLfFβλL(γaSb(λL−λS)+q)=I2. | (5.2) |
Next, we consider the operation diagram in Figure 6 and the case that
I>IPS2=λL(1+aSfFβ)(q+βePγ(q+mZ)). |
Similarly, the equation for
aSˆN−bˆZ−q>0, | (5.3) |
where
In Lemma 5.1, we also prove that inequality (5.3) is equivalent to
I<I3=λL(q+βˆF)(1+aLfFβ)+(βˆF+q)1fFβ((λLλS−1)q+λLλSβˆF)γb. | (5.4) |
We state the lemma below.
(i) Inequalities (5.1) and (5.2) are equivalent.
(ii) Inequalities (5.3) and (5.4) are equivalent.
(iii) If
Proof. (ⅰ) Equivalence is established by substituting
1FdFdt|ESLZ=fFβ~PL−γ˜Z−q>0⇔~PL>γfFβ˜Z+qfFβ⇔1aL(IλL−q−aSP⋆S)>γfFβ˜Z+qfFβ⇔I>λL(q+aSP⋆S+aL(γfFβ˜Z+qfFβ))⇔I>λL(q+aSP⋆S)+aLfFβλL(γaSb(λL−λS)+q)=I2. |
This proves (ⅰ).
(ⅱ) First note that
1PSdPSdt|ELFZ=aSˆN−bˆZ−q>0⇔aSˆN−q>bˆZ=bfFβ^PL−qγ⇔γbfFβ(aSˆN−q+bqγ)>^PL=IaLˆN−λL⇔λL+γbfFβ(aSˆN−q+bqγ)>IaLˆN⇔I<aLˆN(λL+γbfFβ(aSˆN−q+bqγ))=I3. |
Using the equalities
aLˆN=βˆF+qandaSˆN−q=aS(ˆN−λS)=aS((λL−λS)+βˆFaL), |
we express
I3=(βˆF+q)(λL+γbfFβ(aS(λL−λS)+aSβˆFaL+bqγ)). |
Next, by the equivalence
q=λLaL<γb(aS(λL−λS)+aSaLβˆF+bqγ)⇔1+aLfFβ<1+γbfFβ(aS(1−λSλL)+aSaL1λLβˆF+bqγ1λL), |
it follows that
(ⅲ) Expanding
I2=λLq+λLaSq+mZePbqfFβγaSb(λL−λS)+q2fFβ, |
and
I3=βq+mZγeFλL+βq+mZγeFγbfFβaS(λL−λS)+βq+mZγeFγbfFβasaLβq+mZγeF+βq+mZγeFqfFβ+qλL+γbfFβqaS(λL−λS)+qaSβaLq+mZγeF+bγq2γbfFβ. |
If
We establish the coexistence of species in the next theorem wherein the proof follows directly from the above lemma.
Theorem 5.2. The following statements hold:
(i) If
(ii) If
Using the parameter values
When
{dNdt=I−qN−aSPSN−aLPLN,dPSdt=aSNPS−bZPS−qPS,dPLdt=aLNPL−βFPL−qPL,dFdt=fFβPLF−qF,dZdt=ePbPSZ−(q+mZ)Z | (6.1) |
and its food web is shown in Figure 9.
Theorem 6.1. Let
(i) If
(ii) If
(iii) If
(iv) If
Let
(ⅰ) If
(ⅱ) If
(ⅲ) If
(ⅳ) If
The global stability of system (6.1) is given in Figure 10.
Proof. (ⅰ) Note that
V=∫NλSξ−λSξdξ+∫PSP⋆Sξ−P⋆Sξdξ+PL+1fFF+1ePZ. |
Then
∙V=(N−λS)[IN−IλS−aS(PS−P⋆S)−aLPL]+(PS−P⋆S)[aS(N−λS)−bZ]+PL[aL(N−λS)−(q−aLλS)−βF]+1fFF(fFβPL−q)+1ePZ[ePb(PS−P⋆S)−[(q+mZ)−ePbP⋆S]]=−(N−λS)2NλS−qfFF−((q+mZ)−ePbP⋆S)1ePZ−(q−aLλS)PL≤0, |
from the assumption
(ⅱ) Note that
V=∫NN⋆ξ−N⋆ξdξ+∫PSPCSξ−P∗Sξdξ+PL+1fPF+1eP∫ZZ⋆ξ−Z⋆ξdξ. |
Then, by the assumptions
∙V=(N−N⋆)[IN−IN⋆−aS(PS−P⋆S)−aLPL]+(PS−P⋆S)[aS(N−N⋆)−b(Z−Z⋆)]+PL(aL(N−N⋆)−βF−(q−aLN⋆))+1fFF(fFβPL−q)+1eP(Z−Z⋆)[ePb(PS−P⋆S)−[(q+mZ)−ePbP⋆S]]=−(N−N⋆)2NN⋆−(q−aLN⋆)PL−qfFF≤0. |
Therefore
(ⅲ) Define the Lyapunov function
V=∫NλLξ−λLξdξ+∫PSP⋆Sξ−P⋆Sξdξ+∫PLP⋆Lξ−P⋆Lξdξ+1fFF+1eP∫ZˆZξ−ˆZξdξ. |
Then
∙V=(N−λL)[IN−IλL−aS(PS−P⋆S)−aL(PL−P⋆L)]+(PS−P⋆S)[aS(N−λL)−b(Z−ˆZ)]+(PL−P⋆L)(aL(N−λL)−βF)+1fFF(fFβ(PL−P⋆L)−(q−fFβP⋆L))+1eP(Z−ˆZ)(ePb(PS−P⋆S))=−I(N−λL)2NλL−1fF(q−fFβP⋆L). |
Using the assumptions
q−fFβP⋆L>0⇔qfFβ=PCL>P⋆L⇔PCL>I−qλL−aSP⋆SλLaLλL⇔(q+aSP⋆S+aLPCL)λL>I⇔λL>NC=Iq+aSP⋆S+aLPCL, |
we have
(ⅳ) Observe that the assumptions
V=∫NNCξ−NCξdξ+∫PSPCSξ−PCSξdξ+∫PLPCLξ−PCLξdξ+1fF∫FFCξ−FCξdξ+1eP∫ZZCξ−ZCξdξ, |
we obtain
∙V=(N−NC)[IN−INC−aS(PS−PCS)−aL(PL−PCL)]+(PS−PCS)[aS(N−NC)−b(Z−ZC)]+(PL−PCL)(aL(N−NC)−β(F−FC))+1fF(F−FC)(fFβ(PL−PCL))+1eP(Z−ZC)(ePb(PS−PCS))=−I(N−NC)2NNC≤0. |
Therefore it follows from invariance principle that
In this paper, we study an aquatic ecosystem with five species : a single nutrient resource
Now we discuss the role played by parasitic fungi in the coexistence of species in the food web. Recall that, in the absence of parasitic fungi, from Figure 3, coexistence of species occurs when
IF2<˜I3<I2<I3, |
where
IF2=q(λL+λLλSP⋆S),P⋆S=q+mZePb˜I3=λLq+aSP⋆SλL+aLqfFβλL=IF2+aLqfFβλLI2=λL(q+aSP⋆S)+aLfFβλL(q+γaSb(λL−λS))I3=˜I3+aLfFβλLγaSb(λL−λS). |
In view of the above, the best case for the coexistence of species of the food web is when
Finally, we note that in [9] the authors discuss the role of parasitic fungi in zooplankton biomass at steady states. Their conclusion is that the presence of an
The first author would like to acknowledge the financial support of the Department of Science and Technology-Science Education Institute (DOST-SEI), through the Accelerated Science and Technology Human Resource Development Program-National Science Consortium (ASTHRDP-NSC). The second author acknowledges the support of Ministry of Science and Technology (MOST), Taiwan and National Center of Theoretical Science, Taiwan.
The authors declare there is no conflict of interest.
[1] | M. Kagami, A. de Bruin, B. W. Ibelings and E. Van Donk, Parasitic chytrids: their effects on phytoplankton communities and food web dynamics, Hydrobiologia, 578 (2007): 113–129. |
[2] | M. Kagami, N. R. Helmsing and E. Van Donk, Parasitic chytrids could promote copepod survival by mediating material transfer from inedible diatoms, Hydrobiologia, 659 (2011): 49–54. |
[3] | M. Kagami, T. Miki and G. Takimoto, Mycoloop: chytrids in aquatic food webs, Front. Microbiol., 5 (2014): 166. |
[4] | M. Kagami, E. von Elert, B. W. Ibelings, A. de Bruin and E. Van Donk, The parasitic chytrid, zygorhizidium, facilitates the growth of the cladoceran zooplankter, daphnia, in cultures of the inedible alga, asterionella, Proceedings of the Royal Society of London B: Biological Science, 274 (2007): 1561–1566. |
[5] | A. M. Kuris, R. F. Hechinger, J. C. Shaw, K. L. Whitney, L. Aguirre-Macedo, C. A. Boch, A. P. Dobson, E. J. Dunham, B. L. Fredensborg, T. C. Huspeni, J. Lorda, L. Mababa, F. T. Mancini, A. B. Mora, M. Pickering, N. L. Talhouk, M. E. Torchin and K. D. Lafferty, Ecosystem energetic implications of parasite and free-living biomass in three estuaries, Nature, 454 (2008): 515. |
[6] | K. D. Lafferty, S. Allesina, M. Arim, C. J. Briggs, G. De Leo, A. P. Dobson, J. A. Dunne, P. T. J. Johnson, A. M. Kuris, D. J. Marcogliese, N. D. Martinez, J. Memmott, P. A. Marquet, J. P. McLaughlin, E. A. Mordecai, M. Pascual, R. Poulin, D. W. Thieltges, Parasites in food webs: the ultimate missing links, Ecol. Lett., 11 (2008): 533–546. |
[7] | D. J. Marcogliese and D. K. Cone, Food webs: a plea for parasites, Trends Ecol. Evol., 12 (1997): 320–325. |
[8] | I. P. Martines, H. V. Kojouharov and J. P. Grover, A chemostat model of resource competition and allelopathy, Appl. Math. Comput., 215 (2009): 573–582. |
[9] | T. Miki, G. Takimoto and M. Kagami, Roles of parasitic fungi in aquatic food webs: a theoretical approach, Freshwater Biol., 56 (2011): 1173–1183. |
[10] | C. J. Rhodes and A. P. Martin, The influence of viral infection on a plankton ecosystem undergoing nutrient enrichment, J. Theor. Biol., 265 (2010): 225–237. |
[11] | B. K. Singh, J. Chattopadhyay and S. Sinha, The role of virus infection in a simple phytoplankton zooplankton system, J. Theor. Biol., 231 (2004): 153–166. |
[12] | H. L. Smith and H. R. Thieme, Dynamical systems and population persistence, volume 118, American Mathematical Society, 2011. |
[13] | H. L. Smith and P. Waltman, The theory of the chemostat: dynamics of microbial competition, volume 13, Cambridge university press, 1995. |
[14] | R. E. H. Smith and J. Kalff, Size-dependent phosphorus uptake kinetics and cell quota in phytoplankton, J. Phycol., 18 (1982): 275–284. |
[15] | U. Sommer, R. Adrian, L. D. S. Domis, J. J. Elser, U. Gaedke, B. Ibelings, E. Jeppesen, M. L¨urling, J. C. Molinero, W. M. Mooij, E. van Donk and M. Winder, Beyond the plankton ecology group (peg) model: mechanisms driving plankton succession, Annu. Rev. Ecol. Evol. Syst., 43 (2012): 429–448. |
[16] | H. R. Thieme, Persistence under relaxed point-dissipativity (with application to an endemic model), SIAM J. Math. Anal., 24 (1993): 407–435. |
1. | Thijs Frenken, Takeshi Miki, Maiko Kagami, Dedmer B. Van de Waal, Ellen Van Donk, Thomas Rohrlack, Alena S. Gsell, The potential of zooplankton in constraining chytrid epidemics in phytoplankton hosts, 2020, 101, 0012-9658, 10.1002/ecy.2900 | |
2. | K Yoneya, T Miki, S Van den Wyngaert, HP Grossart, M Kagami, Non-random patterns of chytrid infections on phytoplankton host cells: mathematical and chemical ecology approaches, 2021, 87, 0948-3055, 1, 10.3354/ame01966 | |
3. | Joren Wierenga, Mridul K. Thomas, Ravi Ranjan, Bas W. Ibelings, Complex effects of chytrid parasites on the growth of the cyanobacterium Planktothrix rubescens across interacting temperature and light gradients, 2022, 2, 2730-6151, 10.1038/s43705-022-00178-5 | |
4. | Ming Chen, Honghui Gao, Jimin Zhang, Mycoloop: Modeling phytoplankton–chytrid–zooplankton interactions in aquatic food webs, 2024, 368, 00255564, 109134, 10.1016/j.mbs.2023.109134 |
Parameter | Description |
| Input amount of phosphorus (nutrient level) |
| Input concentration of nutrient |
| Washout rate |
| Zooplankton mortality rate, |
besides washout rate | |
| Nutrient affinity of phytoplankton |
| Infectivity constant of fungi |
| Zooplankton clearance rate for small phytoplankton |
| Zooplankton clearance rate for fungi |
| Gross growth efficiency (GGE) of zooplankton from fungi |
| GGE of zooplankton from small phytoplankton |
| GGE of fungi from its host |
Existence | Locally asymptotically stable if | |
| always | |
| under | |
| | |
| | |
| under | |
| | |
| | |
Parameter | Description |
| Input amount of phosphorus (nutrient level) |
| Input concentration of nutrient |
| Washout rate |
| Zooplankton mortality rate, |
besides washout rate | |
| Nutrient affinity of phytoplankton |
| Infectivity constant of fungi |
| Zooplankton clearance rate for small phytoplankton |
| Zooplankton clearance rate for fungi |
| Gross growth efficiency (GGE) of zooplankton from fungi |
| GGE of zooplankton from small phytoplankton |
| GGE of fungi from its host |
Existence | Locally asymptotically stable if | |
| always | |
| under | |
| | |
| | |
| under | |
| | |
| | |