Loading [Contrib]/a11y/accessibility-menu.js

An SIRS model with differential susceptibility and infectivity on uncorrelated networks

  • Received: 01 July 2013 Accepted: 29 June 2018 Published: 01 January 2015
  • MSC : Primary: 34C25, 92D30; Secondary: 34K25.

  • We propose and study a model for sexually transmitted infections on uncorrelated networks, where both differential susceptibility and infectivity are considered. We first establish the spreading threshold, which exists even in the infinite networks. Moreover, it is possible to have backward bifurcation. Then for bounded hard-cutoff networks, the stability of the disease-free equilibrium and the permanence of infection are analyzed. Finally, the effects of two immunization strategies are compared. It turns out that, generally, the targeted immunization is better than the proportional immunization.

    Citation: Maoxing Liu, Yuming Chen. An SIRS model with differential susceptibility and infectivity on uncorrelated networks[J]. Mathematical Biosciences and Engineering, 2015, 12(3): 415-429. doi: 10.3934/mbe.2015.12.415

    Related Papers:

    [1] Hai-Feng Huo, Qian Yang, Hong Xiang . Dynamics of an edge-based SEIR model for sexually transmitted diseases. Mathematical Biosciences and Engineering, 2020, 17(1): 669-699. doi: 10.3934/mbe.2020035
    [2] Carlos Bustamante Orellana, Jordan Lyerla, Aaron Martin, Fabio Milner . Sexually transmitted infections and dating app use. Mathematical Biosciences and Engineering, 2024, 21(3): 3999-4035. doi: 10.3934/mbe.2024177
    [3] Shuixian Yan, Sanling Yuan . Critical value in a SIR network model with heterogeneous infectiousness and susceptibility. Mathematical Biosciences and Engineering, 2020, 17(5): 5802-5811. doi: 10.3934/mbe.2020310
    [4] Wenhao Chen, Guo Lin, Shuxia Pan . Propagation dynamics in an SIRS model with general incidence functions. Mathematical Biosciences and Engineering, 2023, 20(4): 6751-6775. doi: 10.3934/mbe.2023291
    [5] Daniel Maxin, Fabio Augusto Milner . The effect of nonreproductive groups on persistent sexually transmitted diseases. Mathematical Biosciences and Engineering, 2007, 4(3): 505-522. doi: 10.3934/mbe.2007.4.505
    [6] Haijun Hu, Xupu Yuan, Lihong Huang, Chuangxia Huang . Global dynamics of an SIRS model with demographics and transfer from infectious to susceptible on heterogeneous networks. Mathematical Biosciences and Engineering, 2019, 16(5): 5729-5749. doi: 10.3934/mbe.2019286
    [7] Mina Youssef, Caterina Scoglio . Mitigation of epidemics in contact networks through optimal contact adaptation. Mathematical Biosciences and Engineering, 2013, 10(4): 1227-1251. doi: 10.3934/mbe.2013.10.1227
    [8] Chandrani Banerjee, Linda J. S. Allen, Jorge Salazar-Bravo . Models for an arenavirus infection in a rodent population: consequences of horizontal, vertical and sexual transmission. Mathematical Biosciences and Engineering, 2008, 5(4): 617-645. doi: 10.3934/mbe.2008.5.617
    [9] Carlos Castillo-Chavez, Bingtuan Li . Spatial spread of sexually transmitted diseases within susceptible populations at demographic steady state. Mathematical Biosciences and Engineering, 2008, 5(4): 713-727. doi: 10.3934/mbe.2008.5.713
    [10] Jummy F. David, Sarafa A. Iyaniwura, Michael J. Ward, Fred Brauer . A novel approach to modelling the spatial spread of airborne diseases: an epidemic model with indirect transmission. Mathematical Biosciences and Engineering, 2020, 17(4): 3294-3328. doi: 10.3934/mbe.2020188
  • We propose and study a model for sexually transmitted infections on uncorrelated networks, where both differential susceptibility and infectivity are considered. We first establish the spreading threshold, which exists even in the infinite networks. Moreover, it is possible to have backward bifurcation. Then for bounded hard-cutoff networks, the stability of the disease-free equilibrium and the permanence of infection are analyzed. Finally, the effects of two immunization strategies are compared. It turns out that, generally, the targeted immunization is better than the proportional immunization.


    [1] Mathematical Population Studies, 16 (2009), 266-287.
    [2] Science, 286 (1999), 509-512.
    [3] J. Math. Biol., 62 (2011), 39-64.
    [4] Rev. Mod. Phys., 80 (2008), 1275-1335.
    [5] Phys. Rev. E, 77 (2008), 036113, 8pp.
    [6] Physica A, 380 (2007), 684-690.
    [7] J. Math. Biol., 50 (2005), 626-644.
    [8] Math. Biosci. Engrg., 3 (2006), 89-100.
    [9] Math. Biosci. Engrg., 6 (2009), 321-332.
    [10] Math. Biosci., 28 (1976), 221-236.
    [11] SIAM J. Appl. Math., 63 (2003), 1313-1327.
    [12] Nature, 411 (2001), 907-908.
    [13] J. Math. Anal. Appl., 365 (2010), 210-219.
    [14] Nonlinear Anal.: RWA, 4 (2003), 841-856.
    [15] 3rd Ed., Springer-Verlag, New York, 2002.
    [16] Phys. Rev. E, 64 (2001), 066112.
    [17] SIAM Rev., 45 (2003), 167-256.
    [18] Phys. Rev. Lett., 86 (2001), 3200-3203.
    [19] Phys. Rev. E, 65 (2002), 035108.
    [20] Phys. Rev. E, 65 (2002), 036104.
    [21] Math. Biosci., 201 (2006), 3-14.
    [22] Sex. Transm. Dis., 31 (2004), 380-387.
    [23] J. Virology, 79 (2005), 8861-8869.
    [24] Artif. Life Robotics, 11 (2007), 157-161.
    [25] SIAM J. Math. Anal., 24 (1993), 407-435.
    [26] Phys. Lett. A, 364 (2007), 189-193.
    [27] Nonlinear Anal. Real World Appl., 9 (2008), 1714-1726.
    [28] J. Math. Anal. Appl., 331 (2007), 1396-1414.
    [29] J. Math. Anal. Appl., 340 (2008), 102-115.
    [30] Phys. Rev. E, 83 (2011), 056121.
  • This article has been cited by:

    1. Shouying Huang, Jifa Jiang, Global stability of a network-based sis epidemic model with a general nonlinear incidence rate, 2016, 13, 1551-0018, 723, 10.3934/mbe.2016016
    2. Shouying Huang, Fengde Chen, Yanhong Zhang, Global analysis of epidemic spreading with a general feedback mechanism on complex networks, 2019, 2019, 1687-1847, 10.1186/s13662-019-2095-3
    3. Jian-Qin Qiao, Li Li, Analysis of competitive infectious diseases with multiple strains, 2017, 104, 09600779, 215, 10.1016/j.chaos.2017.08.017
    4. ANALYSIS OF THE BINGE DRINKING MODELS WITH DEMOGRAPHICS AND NONLINEAR INFECTIVITY ON NETWORKS, 2018, 8, 2156-907X, 1535, 10.11948/2018.1535
    5. Qiming Liu, A Network Virus Propagation Model with Distributed Infectious Period Delay in Internet, 2019, 234, 1755-1315, 012054, 10.1088/1755-1315/234/1/012054
    6. Xiaogang Liu, Yuming Chen, Xiaomin Li, Jianquan Li, Global stability of latency-age/stage-structured epidemic models with differential infectivity, 2023, 86, 0303-6812, 10.1007/s00285-023-01918-4
  • Reader Comments
  • © 2015 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2395) PDF downloads(520) Cited by(6)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog