Citation: Maoxing Liu, Yuming Chen. An SIRS model with differential susceptibility and infectivity on uncorrelated networks[J]. Mathematical Biosciences and Engineering, 2015, 12(3): 415-429. doi: 10.3934/mbe.2015.12.415
[1] | Hai-Feng Huo, Qian Yang, Hong Xiang . Dynamics of an edge-based SEIR model for sexually transmitted diseases. Mathematical Biosciences and Engineering, 2020, 17(1): 669-699. doi: 10.3934/mbe.2020035 |
[2] | Carlos Bustamante Orellana, Jordan Lyerla, Aaron Martin, Fabio Milner . Sexually transmitted infections and dating app use. Mathematical Biosciences and Engineering, 2024, 21(3): 3999-4035. doi: 10.3934/mbe.2024177 |
[3] | Shuixian Yan, Sanling Yuan . Critical value in a SIR network model with heterogeneous infectiousness and susceptibility. Mathematical Biosciences and Engineering, 2020, 17(5): 5802-5811. doi: 10.3934/mbe.2020310 |
[4] | Wenhao Chen, Guo Lin, Shuxia Pan . Propagation dynamics in an SIRS model with general incidence functions. Mathematical Biosciences and Engineering, 2023, 20(4): 6751-6775. doi: 10.3934/mbe.2023291 |
[5] | Daniel Maxin, Fabio Augusto Milner . The effect of nonreproductive groups on persistent sexually transmitted diseases. Mathematical Biosciences and Engineering, 2007, 4(3): 505-522. doi: 10.3934/mbe.2007.4.505 |
[6] | Haijun Hu, Xupu Yuan, Lihong Huang, Chuangxia Huang . Global dynamics of an SIRS model with demographics and transfer from infectious to susceptible on heterogeneous networks. Mathematical Biosciences and Engineering, 2019, 16(5): 5729-5749. doi: 10.3934/mbe.2019286 |
[7] | Mina Youssef, Caterina Scoglio . Mitigation of epidemics in contact networks through optimal contact adaptation. Mathematical Biosciences and Engineering, 2013, 10(4): 1227-1251. doi: 10.3934/mbe.2013.10.1227 |
[8] | Chandrani Banerjee, Linda J. S. Allen, Jorge Salazar-Bravo . Models for an arenavirus infection in a rodent population: consequences of horizontal, vertical and sexual transmission. Mathematical Biosciences and Engineering, 2008, 5(4): 617-645. doi: 10.3934/mbe.2008.5.617 |
[9] | Carlos Castillo-Chavez, Bingtuan Li . Spatial spread of sexually transmitted diseases within susceptible populations at demographic steady state. Mathematical Biosciences and Engineering, 2008, 5(4): 713-727. doi: 10.3934/mbe.2008.5.713 |
[10] | Jummy F. David, Sarafa A. Iyaniwura, Michael J. Ward, Fred Brauer . A novel approach to modelling the spatial spread of airborne diseases: an epidemic model with indirect transmission. Mathematical Biosciences and Engineering, 2020, 17(4): 3294-3328. doi: 10.3934/mbe.2020188 |
[1] | Mathematical Population Studies, 16 (2009), 266-287. |
[2] | Science, 286 (1999), 509-512. |
[3] | J. Math. Biol., 62 (2011), 39-64. |
[4] | Rev. Mod. Phys., 80 (2008), 1275-1335. |
[5] | Phys. Rev. E, 77 (2008), 036113, 8pp. |
[6] | Physica A, 380 (2007), 684-690. |
[7] | J. Math. Biol., 50 (2005), 626-644. |
[8] | Math. Biosci. Engrg., 3 (2006), 89-100. |
[9] | Math. Biosci. Engrg., 6 (2009), 321-332. |
[10] | Math. Biosci., 28 (1976), 221-236. |
[11] | SIAM J. Appl. Math., 63 (2003), 1313-1327. |
[12] | Nature, 411 (2001), 907-908. |
[13] | J. Math. Anal. Appl., 365 (2010), 210-219. |
[14] | Nonlinear Anal.: RWA, 4 (2003), 841-856. |
[15] | 3rd Ed., Springer-Verlag, New York, 2002. |
[16] | Phys. Rev. E, 64 (2001), 066112. |
[17] | SIAM Rev., 45 (2003), 167-256. |
[18] | Phys. Rev. Lett., 86 (2001), 3200-3203. |
[19] | Phys. Rev. E, 65 (2002), 035108. |
[20] | Phys. Rev. E, 65 (2002), 036104. |
[21] | Math. Biosci., 201 (2006), 3-14. |
[22] | Sex. Transm. Dis., 31 (2004), 380-387. |
[23] | J. Virology, 79 (2005), 8861-8869. |
[24] | Artif. Life Robotics, 11 (2007), 157-161. |
[25] | SIAM J. Math. Anal., 24 (1993), 407-435. |
[26] | Phys. Lett. A, 364 (2007), 189-193. |
[27] | Nonlinear Anal. Real World Appl., 9 (2008), 1714-1726. |
[28] | J. Math. Anal. Appl., 331 (2007), 1396-1414. |
[29] | J. Math. Anal. Appl., 340 (2008), 102-115. |
[30] | Phys. Rev. E, 83 (2011), 056121. |
1. | Shouying Huang, Jifa Jiang, Global stability of a network-based sis epidemic model with a general nonlinear incidence rate, 2016, 13, 1551-0018, 723, 10.3934/mbe.2016016 | |
2. | Shouying Huang, Fengde Chen, Yanhong Zhang, Global analysis of epidemic spreading with a general feedback mechanism on complex networks, 2019, 2019, 1687-1847, 10.1186/s13662-019-2095-3 | |
3. | Jian-Qin Qiao, Li Li, Analysis of competitive infectious diseases with multiple strains, 2017, 104, 09600779, 215, 10.1016/j.chaos.2017.08.017 | |
4. | ANALYSIS OF THE BINGE DRINKING MODELS WITH DEMOGRAPHICS AND NONLINEAR INFECTIVITY ON NETWORKS, 2018, 8, 2156-907X, 1535, 10.11948/2018.1535 | |
5. | Qiming Liu, A Network Virus Propagation Model with Distributed Infectious Period Delay in Internet, 2019, 234, 1755-1315, 012054, 10.1088/1755-1315/234/1/012054 | |
6. | Xiaogang Liu, Yuming Chen, Xiaomin Li, Jianquan Li, Global stability of latency-age/stage-structured epidemic models with differential infectivity, 2023, 86, 0303-6812, 10.1007/s00285-023-01918-4 |