The relative biologic effectiveness versus linear energy transfer curve as an output-input relation for linear cellular systems

  • Received: 01 September 2008 Accepted: 29 June 2018 Published: 01 June 2009
  • MSC : Primary: 92C99, 93A30; Secondary: 92B05.

  • Experiments have established that different radiation types have different magnitudes of biological response. When biological response is defined in terms of the Relative Biologic Effectiveness (RBE) and different radiation type is characterized by Linear Energy Transfer (LET), the plot of the RBE versus LET (RBE-LET) curve shows RBE to increase with increasing LET, to reach a maximum, and to decrease with further increasing LET. Perhaps due to the descriptive nature of biology, most quantitative models for the RBE-LET curve ignore the reality of the underlying molecular biology. On the other hand, the molecular basis for the RBE-LET curve is not completely known despite recent efforts.
       Here we introduce a differential equation formulation for a signal-and-system model that sees cells as systems, different radiation types as input, and cellular responses as output. Because of scant knowledge of the underlying biochemical network, the current version is necessarily a work in progress. It explains the RBE-LET curve using not just input parameters but also systems internal state parameters. These systems internal state parameters represent parts of a biochemical network within a cell. Although multiple biochemical parts may well be involved, the shape of the RBE-LET curve is reproduced when only three system parameters are related to three biochemical parts: the molecular machinery for DNA double strand break repair; the molecular pathways for handling oxidative stress; and the radiolytic products of the cellular water.
       Despite being a simplified ''toy model,'' changes in the systems state parameters lead to model curves that are refutable in a modern molecular biology laboratory. As the parts in the biochemical network of the radiation response are being further elucidated, this model can incorporate new systems state parameters to allow a more accurate fit.

    Citation: Quoc T. Luu, Paul DuChateau. The relative biologic effectiveness versus linear energy transfercurve as an output-input relation for linear cellular systems[J]. Mathematical Biosciences and Engineering, 2009, 6(3): 591-602. doi: 10.3934/mbe.2009.6.591

    Related Papers:

  • Experiments have established that different radiation types have different magnitudes of biological response. When biological response is defined in terms of the Relative Biologic Effectiveness (RBE) and different radiation type is characterized by Linear Energy Transfer (LET), the plot of the RBE versus LET (RBE-LET) curve shows RBE to increase with increasing LET, to reach a maximum, and to decrease with further increasing LET. Perhaps due to the descriptive nature of biology, most quantitative models for the RBE-LET curve ignore the reality of the underlying molecular biology. On the other hand, the molecular basis for the RBE-LET curve is not completely known despite recent efforts.
       Here we introduce a differential equation formulation for a signal-and-system model that sees cells as systems, different radiation types as input, and cellular responses as output. Because of scant knowledge of the underlying biochemical network, the current version is necessarily a work in progress. It explains the RBE-LET curve using not just input parameters but also systems internal state parameters. These systems internal state parameters represent parts of a biochemical network within a cell. Although multiple biochemical parts may well be involved, the shape of the RBE-LET curve is reproduced when only three system parameters are related to three biochemical parts: the molecular machinery for DNA double strand break repair; the molecular pathways for handling oxidative stress; and the radiolytic products of the cellular water.
       Despite being a simplified ''toy model,'' changes in the systems state parameters lead to model curves that are refutable in a modern molecular biology laboratory. As the parts in the biochemical network of the radiation response are being further elucidated, this model can incorporate new systems state parameters to allow a more accurate fit.


    加载中
  • Reader Comments
  • © 2009 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2850) PDF downloads(643) Cited by(3)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog