Loading [Contrib]/a11y/accessibility-menu.js

Sensitivity of dynamical systems to parameters in a convex subset of a topological vector space

  • Received: 01 November 2006 Accepted: 29 June 2018 Published: 01 May 2007
  • MSC : 34A34, 34K05, 49Q12, 34K30.

  • We develop a theory for sensitivity with respect to parameters in a convex subset of a topological vector space of dynamical systems in a Banach space. Specific motivating examples for probability measure dependent differential, partial differential and delay differential equations are given. Schemes that approximate the measures in the Prohorov sense are illustrated with numerical simulations for distributed delay differential equations.

    Citation: H.T. Banks, S. Dediu, H.K. Nguyen. Sensitivity of dynamical systems to parameters in a convex subset of a topological vector space[J]. Mathematical Biosciences and Engineering, 2007, 4(3): 403-430. doi: 10.3934/mbe.2007.4.403

    Related Papers:

    [1] Fabio Sanchez, Luis A. Barboza, Paola Vásquez . Parameter estimates of the 2016-2017 Zika outbreak in Costa Rica: An Approximate Bayesian Computation (ABC) approach. Mathematical Biosciences and Engineering, 2019, 16(4): 2738-2755. doi: 10.3934/mbe.2019136
    [2] Krzysztof Fujarewicz . Estimation of initial functions for systems with delays from discrete measurements. Mathematical Biosciences and Engineering, 2017, 14(1): 165-178. doi: 10.3934/mbe.2017011
    [3] Scott R. Pope, Laura M. Ellwein, Cheryl L. Zapata, Vera Novak, C. T. Kelley, Mette S. Olufsen . Estimation and identification of parameters in a lumped cerebrovascular model. Mathematical Biosciences and Engineering, 2009, 6(1): 93-115. doi: 10.3934/mbe.2009.6.93
    [4] Elisenda Feliu . Sign-sensitivities for reaction networks: an algebraic approach. Mathematical Biosciences and Engineering, 2019, 16(6): 8195-8213. doi: 10.3934/mbe.2019414
    [5] Krzysztof Fujarewicz, Marek Kimmel, Andrzej Swierniak . On Fitting Of Mathematical Models Of Cell Signaling Pathways Using Adjoint Systems. Mathematical Biosciences and Engineering, 2005, 2(3): 527-534. doi: 10.3934/mbe.2005.2.527
    [6] Giorgos Minas, David A Rand . Parameter sensitivity analysis for biochemical reaction networks. Mathematical Biosciences and Engineering, 2019, 16(5): 3965-3987. doi: 10.3934/mbe.2019196
    [7] Nancy Azer, P. van den Driessche . Competition and Dispersal Delays in Patchy Environments. Mathematical Biosciences and Engineering, 2006, 3(2): 283-296. doi: 10.3934/mbe.2006.3.283
    [8] Yuzhen Zhou, Erxi Zhu, Shan Li . An image encryption algorithm based on the double time-delay Lorenz system. Mathematical Biosciences and Engineering, 2023, 20(10): 18491-18522. doi: 10.3934/mbe.2023821
    [9] Linda J. S. Allen, P. van den Driessche . Stochastic epidemic models with a backward bifurcation. Mathematical Biosciences and Engineering, 2006, 3(3): 445-458. doi: 10.3934/mbe.2006.3.445
    [10] Paolo Fergola, Marianna Cerasuolo, Edoardo Beretta . An allelopathic competition model with quorum sensing and delayed toxicant production. Mathematical Biosciences and Engineering, 2006, 3(1): 37-50. doi: 10.3934/mbe.2006.3.37
  • We develop a theory for sensitivity with respect to parameters in a convex subset of a topological vector space of dynamical systems in a Banach space. Specific motivating examples for probability measure dependent differential, partial differential and delay differential equations are given. Schemes that approximate the measures in the Prohorov sense are illustrated with numerical simulations for distributed delay differential equations.


  • This article has been cited by:

    1. H. T. Banks, J. E. Banks, S. L. Joyner, Estimation in time-delay modeling of insecticide-induced mortality, 2009, 17, 0928-0219, 10.1515/JIIP.2009.012
    2. V. V. Uchaikin, V. A. Litvinov, Variational Interpolation of Functionals in Transport Theory Inverse Problems, 2019, 12, 1995-4239, 297, 10.1134/S199542391903008X
    3. H. Thomas Banks, Marie Davidian, John R. Samuels, Karyn L. Sutton, 2009, Chapter 11, 978-90-481-2312-4, 249, 10.1007/978-90-481-2313-1_11
    4. H. T. Banks, Sava Dediu, Stacey L. Ernstberger, Franz Kappel, Generalized sensitivities and optimal experimental design, 2010, 18, 0928-0219, 10.1515/jiip.2010.002
    5. H. T. Banks, Danielle Robbins, Karyn L. Sutton, 2013, Chapter 2, 978-3-0348-0630-5, 19, 10.1007/978-3-0348-0631-2_2
    6. H. T. Banks, S. Dediu, S. L. Ernstberger, Sensitivity functions and their uses in inverse problems, 2007, 15, 0928-0219, 10.1515/jiip.2007.038
    7. Karyn L. Sutton, Danielle Robbins, H.Thomas Banks, Theoretical foundations for traditional and generalized sensitivity functions for nonlinear delay differential equations, 2013, 10, 1551-0018, 1301, 10.3934/mbe.2013.10.1301
    8. H. Banks, Stacey Ernstberger, Shuhua Hu, Sensitivity equations for a size-structured population model, 2009, 67, 0033-569X, 627, 10.1090/S0033-569X-09-01105-1
  • Reader Comments
  • © 2007 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2458) PDF downloads(469) Cited by(8)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog