Mathematical epidemiology of HIV/AIDS in cuba during the period 1986-2000

  • Received: 01 June 2005 Accepted: 29 June 2018 Published: 01 May 2006
  • MSC : 92D30.

  • The dynamics of HIV/AIDS epidemics in a specific region is de- termined not only by virology and virus transmission mechanisms, but also by region's socioeconomic aspects. In this paper we study the HIV transmission dynamics for Cuba. We modify the model of de Arazoza and Lounes [1] accord- ing to the background about the virology and the socioeconomic factors that affect the epidemiology of the Cuban HIV outbreak. The two main methods for detection of HIV/AIDS cases in Cuba are ''random'' testing and contact tracing. As the detection equipment is costly and depends on biotechnological advances, the testing rate can be changed by many external factors. Therefore, our model includes time-dependent testing rates. By comparing our model to the 1986-2000 Cuban HIV/AIDS data and the de Arazoza and Lounes model, we show that socioeconomic aspects are an important factor in determining the dynamics of the epidemic.

    Citation: Brandy Rapatski, Petra Klepac, Stephen Dueck, Maoxing Liu, Leda Ivic Weiss. Mathematical epidemiology of HIV/AIDS in cuba during the period 1986-2000[J]. Mathematical Biosciences and Engineering, 2006, 3(3): 545-556. doi: 10.3934/mbe.2006.3.545

    Related Papers:

    [1] Miguel Atencia, Esther García-Garaluz, Gonzalo Joya . The ratio of hidden HIV infection in Cuba. Mathematical Biosciences and Engineering, 2013, 10(4): 959-977. doi: 10.3934/mbe.2013.10.959
    [2] Hiroshi Nishiura, Seiko Fujiwara, Akifumi Imamura, Takuma Shirasaka . HIV incidence before and during the COVID-19 pandemic in Japan. Mathematical Biosciences and Engineering, 2024, 21(4): 4874-4885. doi: 10.3934/mbe.2024215
    [3] B. M. Adams, H. T. Banks, Hee-Dae Kwon, Hien T. Tran . Dynamic Multidrug Therapies for HIV: Optimal and STI Control Approaches. Mathematical Biosciences and Engineering, 2004, 1(2): 223-241. doi: 10.3934/mbe.2004.1.223
    [4] Aditya S. Khanna, Dobromir T. Dimitrov, Steven M. Goodreau . What can mathematical models tell us about the relationship between circular migrations and HIV transmission dynamics?. Mathematical Biosciences and Engineering, 2014, 11(5): 1065-1090. doi: 10.3934/mbe.2014.11.1065
    [5] Vivek Sreejithkumar, Kia Ghods, Tharusha Bandara, Maia Martcheva, Necibe Tuncer . Modeling the interplay between albumin-globulin metabolism and HIV infection. Mathematical Biosciences and Engineering, 2023, 20(11): 19527-19552. doi: 10.3934/mbe.2023865
    [6] Tinevimbo Shiri, Winston Garira, Senelani D. Musekwa . A two-strain HIV-1 mathematical model to assess the effects of chemotherapy on disease parameters. Mathematical Biosciences and Engineering, 2005, 2(4): 811-832. doi: 10.3934/mbe.2005.2.811
    [7] Helen Moore, Weiqing Gu . A mathematical model for treatment-resistant mutations of HIV. Mathematical Biosciences and Engineering, 2005, 2(2): 363-380. doi: 10.3934/mbe.2005.2.363
    [8] Lih-Ing W. Roeger, Z. Feng, Carlos Castillo-Chávez . Modeling TB and HIV co-infections. Mathematical Biosciences and Engineering, 2009, 6(4): 815-837. doi: 10.3934/mbe.2009.6.815
    [9] Shilian Xu . Saturated lysing efficiency of CD8+ cells induced monostable, bistable and oscillatory HIV kinetics. Mathematical Biosciences and Engineering, 2024, 21(10): 7373-7393. doi: 10.3934/mbe.2024324
    [10] Jie Lou, Tommaso Ruggeri, Claudio Tebaldi . Modeling Cancer in HIV-1 Infected Individuals: Equilibria, Cycles and Chaotic Behavior. Mathematical Biosciences and Engineering, 2006, 3(2): 313-324. doi: 10.3934/mbe.2006.3.313
  • The dynamics of HIV/AIDS epidemics in a specific region is de- termined not only by virology and virus transmission mechanisms, but also by region's socioeconomic aspects. In this paper we study the HIV transmission dynamics for Cuba. We modify the model of de Arazoza and Lounes [1] accord- ing to the background about the virology and the socioeconomic factors that affect the epidemiology of the Cuban HIV outbreak. The two main methods for detection of HIV/AIDS cases in Cuba are ''random'' testing and contact tracing. As the detection equipment is costly and depends on biotechnological advances, the testing rate can be changed by many external factors. Therefore, our model includes time-dependent testing rates. By comparing our model to the 1986-2000 Cuban HIV/AIDS data and the de Arazoza and Lounes model, we show that socioeconomic aspects are an important factor in determining the dynamics of the epidemic.


  • This article has been cited by:

    1. Naveen K Vaidya, Jianhong Wu, HIV epidemic in Far-Western Nepal: effect of seasonal labor migration to India, 2011, 11, 1471-2458, 10.1186/1471-2458-11-310
    2. Si-Yuan Liu, Chao Liu, Yu Liu, Yi-Ming Luo, Gao-Jin Wen, Jian-Ping Fan, EEA algorithm model in estimating spread and evaluating countermeasures on high performance computing, 2009, 02, 1937-6871, 41, 10.4236/jbise.2009.21008
    3. Stéphan Clémençon, Viet Chi Tran, Hector de Arazoza, A stochastic SIR model with contact-tracing: large population limits and statistical inference, 2008, 2, 1751-3758, 392, 10.1080/17513750801993266
    4. Brandy L Rapatski, Frederick Suppe, James A Yorke, Reconciling Different Infectivity Estimates for HIV-1, 2006, 43, 1525-4135, 253, 10.1097/01.qai.0000243095.19405.5c
    5. Hossein Kheiri, Mohsen Jafari, Stability analysis of a fractional order model for the HIV/AIDS epidemic in a patchy environment, 2019, 346, 03770427, 323, 10.1016/j.cam.2018.06.055
    6. Antonio Mastroberardino, Yuanji Cheng, Ahmed Abdelrazec, Hao Liu, Mathematical modeling of the HIV/AIDS epidemic in Cuba, 2015, 08, 1793-5245, 1550047, 10.1142/S1793524515500473
    7. Hossein Kheiri, Mohsen Jafari, Optimal control of a fractional-order model for the HIV/AIDS epidemic, 2018, 11, 1793-5245, 1850086, 10.1142/S1793524518500869
    8. Brandy Rapatski, Juan Tolosa, Modeling and analysis of the San Francisco City Clinic Cohort (SFCCC) HIV-epidemic including treatment, 2014, 11, 1551-0018, 599, 10.3934/mbe.2014.11.599
    9. Brandy Rapatski, Juan Tolosa, The San Francisco MSM Epidemic: A Retrospective Analysis, 2015, 3, 2227-7390, 1083, 10.3390/math3041083
    10. The ratio of hidden HIV infection in Cuba, 2013, 10, 1551-0018, 959, 10.3934/mbe.2013.10.959
    11. H. Kheiri, M. Jafari, Fractional optimal control of an HIV/AIDS epidemic model with random testing and contact tracing, 2019, 60, 1598-5865, 387, 10.1007/s12190-018-01219-w
    12. Siyuan Liu, Chao Liu, Yu Liu, Chunzhe Zhao, 2008, EA Algorithms Model for Spread Estimating and Countermeasures Evaluating, 978-1-4244-1747-6, 1135, 10.1109/ICBBE.2008.277
  • Reader Comments
  • © 2006 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2799) PDF downloads(488) Cited by(12)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog