Immunotherapy: An Optimal Control Theory Approach

  • Received: 01 January 2005 Accepted: 29 June 2018 Published: 01 August 2005
  • MSC : 49J15, 49K15, 92C50.

  • We investigate mathematical models for the dynamics between tumor cells, immune-effector cells, and cytokine interleukin-2 (IL-2). To better determine under what circumstances the tumor can be eliminated, we implement optimal control theory. We design two control functionals, the first functional having one control and the second having two controls, to maximize the effector cells and interleukin-2 concentration and to minimize the tumor cells. Next, we show that bang-bang optimal controls exist for each problem. Then, we characterize our optimal controls in terms of the solutions to the optimality system, which is the state system coupled with the adjoint system. Finally, we analyze the various optimal controls and optimality systems using numerical techniques.

    Citation: K. Renee Fister, Jennifer Hughes Donnelly. Immunotherapy: An Optimal Control Theory Approach[J]. Mathematical Biosciences and Engineering, 2005, 2(3): 499-510. doi: 10.3934/mbe.2005.2.499

    Related Papers:

  • We investigate mathematical models for the dynamics between tumor cells, immune-effector cells, and cytokine interleukin-2 (IL-2). To better determine under what circumstances the tumor can be eliminated, we implement optimal control theory. We design two control functionals, the first functional having one control and the second having two controls, to maximize the effector cells and interleukin-2 concentration and to minimize the tumor cells. Next, we show that bang-bang optimal controls exist for each problem. Then, we characterize our optimal controls in terms of the solutions to the optimality system, which is the state system coupled with the adjoint system. Finally, we analyze the various optimal controls and optimality systems using numerical techniques.


  • This article has been cited by:

    1. Urszula Ledzewicz, Mozhdeh Sadat Faraji Mosalman, Heinz Schättler, Optimal controls for a mathematical model of tumor-immune interactions under targeted chemotherapy with immune boost, 2013, 18, 1553-524X, 1031, 10.3934/dcdsb.2013.18.1031
    2. Zhiming Li, Zhidong Teng, Hui Miao, Modeling and Control for HIV/AIDS Transmission in China Based on Data from 2004 to 2016, 2017, 2017, 1748-670X, 1, 10.1155/2017/8935314
    3. Svetlana Bunimovich-Mendrazitsky, Benzion Shklyar, Optimization of Combined Leukemia Therapy by Finite-Dimensional Optimal Control Modeling, 2017, 175, 0022-3239, 218, 10.1007/s10957-017-1161-9
    4. Subhas Khajanchi, Dibakar Ghosh, The combined effects of optimal control in cancer remission, 2015, 271, 00963003, 375, 10.1016/j.amc.2015.09.012
    5. F. Castiglione, B. Piccoli, Cancer immunotherapy, mathematical modeling and optimal control, 2007, 247, 00225193, 723, 10.1016/j.jtbi.2007.04.003
    6. Parthasakha Das, Samhita Das, Pritha Das, Fathalla A. Rihan, Muhammet Uzuntarla, Dibakar Ghosh, Optimal control strategy for cancer remission using combinatorial therapy: A mathematical model-based approach, 2021, 145, 09600779, 110789, 10.1016/j.chaos.2021.110789
    7. M. Younus Baba, M. Saleem, M. Noman, Abdur Raheem, A mixed therapy minimal model: Some strategies for eradication or minimization of cancer, 2020, 192, 01692607, 105433, 10.1016/j.cmpb.2020.105433
    8. Tunde T. Yusuf, Francis Benyah, Optimal strategy for controlling the spread of HIV/AIDS disease: a case study of South Africa, 2012, 6, 1751-3758, 475, 10.1080/17513758.2011.628700
    9. Oluwatayo Michael Ogunmiloro, Stability analysis and optimal control strategies of direct and indirect transmission dynamics of conjunctivitis, 2020, 43, 0170-4214, 10619, 10.1002/mma.6756
    10. Zvia Agur, Moran Elishmereni, Urszula Foryś, Yuri Kogan, Accelerating the Development of Personalized Cancer Immunotherapy by Integrating Molecular Patients’ Profiles with Dynamic Mathematical Models, 2020, 108, 0009-9236, 515, 10.1002/cpt.1942
    11. C. Collins, K.R. Fister, M. Williams, Optimal Control of a Cancer Cell Model with Delay, 2010, 5, 0973-5348, 63, 10.1051/mmnp/20105305
    12. Urszula Ledzewicz, Mohammad Naghnaeian, Heinz Schättler, Optimal response to chemotherapy for a mathematical model of tumor–immune dynamics, 2012, 64, 0303-6812, 557, 10.1007/s00285-011-0424-6
    13. Khalid Kassara, A Unified Set-Valued Approach to Control Immunotherapy, 2009, 48, 0363-0129, 909, 10.1137/07070591X
    14. Francesco Pappalardo, Marzio Pennisi, Filippo Castiglione, Santo Motta, Vaccine protocols optimization: In silico experiences, 2010, 28, 07349750, 82, 10.1016/j.biotechadv.2009.10.001
    15. Regina Padmanabhan, Nader Meskin, Ala-Eddin Al Moustafa, 2021, Chapter 4, 978-981-15-8639-2, 77, 10.1007/978-981-15-8640-8_4
    16. G. P. Samanta, Ricardo Gómez Aíza, Swarnali Sharma, Analysis of a mathematical model of periodically pulsed chemotherapy treatment, 2017, 5, 2195-268X, 842, 10.1007/s40435-015-0204-z
    17. G. Dimitriu, T. Lorenzi, R. Ştefănescu, S. Anita, N. Hritonenko, G. Marinoschi, A. Swierniak, Evolutionary Dynamics of Cancer Cell Populations under Immune Selection Pressure and Optimal Control of Chemotherapy, 2014, 9, 0973-5348, 88, 10.1051/mmnp/20149406
    18. Elham Ahmadi, Jafar Zarei, Roozbeh Razavi-Far, Mehrdad Saif, A dual approach for positive T–S fuzzy controller design and its application to cancer treatment under immunotherapy and chemotherapy, 2020, 58, 17468094, 101822, 10.1016/j.bspc.2019.101822
    19. K. Kassara, A. Moustafid, Angiogenesis inhibition and tumor-immune interactions with chemotherapy by a control set-valued method, 2011, 231, 00255564, 135, 10.1016/j.mbs.2011.02.010
    20. Regina Padmanabhan, Nader Meskin, Ala-Eddin Al Moustafa, 2021, Chapter 10, 978-981-15-8639-2, 215, 10.1007/978-981-15-8640-8_10
    21. Swarnali Sharma, G. P. Samanta, Dynamical Behaviour of a Tumor-Immune System with Chemotherapy and Optimal Control, 2013, 2013, 2314-6893, 1, 10.1155/2013/608598
    22. SUBHAS KHAJANCHI, SANDIP BANERJEE, A STRATEGY OF OPTIMAL EFFICACY OF T11 TARGET STRUCTURE IN THE TREATMENT OF BRAIN TUMOR, 2019, 27, 0218-3390, 225, 10.1142/S0218339019500104
    23. Sanaz Nazari, Hadi Basirzadeh, Natural killer or T-lymphocyte cells: Which is the best immune therapeutic agent for cancer? An optimal control approach, 2014, 12, 1598-6446, 84, 10.1007/s12555-013-0030-z
    24. Mehdi Afshar, Mohammad Reza Razvan, Optimal Control of Differential Infectivity Models, 2017, 3, 2349-5103, 65, 10.1007/s40819-015-0089-8
    25. Swarnali Sharma, G. P. Samanta, Analysis of the Dynamics of a Tumor–Immune System with Chemotherapy and Immunotherapy and Quadratic Optimal Control, 2016, 24, 0971-3514, 149, 10.1007/s12591-015-0250-1
    26. L.G. de Pillis, W. Gu, K.R. Fister, T. Head, K. Maples, A. Murugan, T. Neal, K. Yoshida, Chemotherapy for tumors: An analysis of the dynamics and a study of quadratic and linear optimal controls, 2007, 209, 00255564, 292, 10.1016/j.mbs.2006.05.003
    27. Subhas Khajanchi, Stability Analysis of a Mathematical Model for Glioma-Immune Interaction under Optimal Therapy, 2019, 20, 2191-0294, 269, 10.1515/ijnsns-2017-0206
    28. M. P. Rajan, C. K. Nanditha, A Multi-Drug Pharmacokinectic Optimal Control Approach in Cancer Chemotherapy, 2022, 195, 0022-3239, 314, 10.1007/s10957-022-02085-0
    29. C. K. NANDITHA, M. P. RAJAN, AN ADAPTIVE PHARMACOKINETIC OPTIMAL CONTROL APPROACH IN CHEMOTHERAPY FOR HETEROGENEOUS TUMOR, 2022, 30, 0218-3390, 529, 10.1142/S0218339022500188
    30. Ehsan Sadeghi Ghasemabad, Iman Zamani, Hami Tourajizadeh, Mahdi Mirhadi, Zahra Goorkani Zarandi, Design and implementation of an adaptive fuzzy sliding mode controller for drug delivery in treatment of vascular cancer tumours and its optimisation using genetic algorithm tool, 2022, 16, 1751-8849, 201, 10.1049/syb2.12051
    31. Heinz Schättler, Urszula Ledzewicz, 2015, Chapter 1, 978-1-4939-2971-9, 1, 10.1007/978-1-4939-2972-6_1
    32. Pariya Khalili, Ramin Vatankhah, Optimal control design for drug delivery of immunotherapy in chemoimmunotherapy treatment, 2023, 229, 01692607, 107248, 10.1016/j.cmpb.2022.107248
    33. Qing Zhao, Xiantao Jiang, Communication Strategy of Urban Media Image Based on Global Discretization, 2022, 2022, 1563-5147, 1, 10.1155/2022/4892812
    34. Reem A. Elghaish, Zina Alaswad, Sondos H. Abdelhafeez, Omar Salem, Menattallah Elserafy, 2023, Chapter 316-1, 978-3-030-80962-1, 1, 10.1007/978-3-030-80962-1_316-1
    35. K. M. Ariful Kabir, MD Shahidul Islam, Mohammad Sharif Ullah, Understanding the Impact of Vaccination and Self-Defense Measures on Epidemic Dynamics Using an Embedded Optimization and Evolutionary Game Theory Methodology, 2023, 11, 2076-393X, 1421, 10.3390/vaccines11091421
    36. Subhajit Das, Goutam Mandal, Fleming Akhtar, Ali Akbar Shaikh, Asoke Kumar Bhunia, Pricing and dynamic service policy for an imperfect production system: Extended Pontryagin’s maximum principle for interval control problems, 2024, 238, 09574174, 122090, 10.1016/j.eswa.2023.122090
    37. Andreas Wagner, Pirmin Schlicke, Marvin Fritz, Christina Kuttler, J. Tinsley Oden, Christian Schumann, Barbara Wohlmuth, A phase-field model for non-small cell lung cancer under the effects of immunotherapy, 2023, 20, 1551-0018, 18670, 10.3934/mbe.2023828
    38. Mrinmoy Sardar, Santosh Biswas, Subhas Khajanchi, Modeling the dynamics of mixed immunotherapy and chemotherapy for the treatment of immunogenic tumor, 2024, 139, 2190-5444, 10.1140/epjp/s13360-024-05004-6
    39. Oluwatayo Michael Ogunmiloro, Adesoji Abraham Obayomi, Gazali Oluwasegun Agboola, The Menace of Ghost Workers, Job Racketeers, and Creators of Online Job Offer Scam Sites on Unemployment in Nigeria: A Mathematical Model Analysis and Control, 2024, 5, 2662-2556, 10.1007/s43069-024-00308-w
    40. Saima Efat, K. M. Ariful Kabir, Atila Bueno, Exploring the Inducement for Social Awareness Behavior and Optimal Control Strategy on Nipah Virus Transmission, 2024, 2024, 1076-2787, 10.1155/2024/7880455
    41. Yineng Ouyang, Zhaotao Liang, Zhihui Ma, Lei Wang, Zhaohua Gong, Jun Xie, Kuikui Gao, A class of constrained optimal control problems arising in an immunotherapy cancer remission process, 2024, 32, 2688-1594, 5868, 10.3934/era.2024271
    42. Sooyoun Choi, Yunil Roh, Yong Dam Jeong, Il Hyo Jung, Jesus Manuel Munoz-Pacheco, Prevention of EMT‐Mediated Metastasis via Optimal Modulation Strategies for the Dysregulated WNT Pathway Interacting With TGF‐β, 2025, 2025, 1076-2787, 10.1155/cplx/9007322
  • Reader Comments
  • © 2005 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3378) PDF downloads(663) Cited by(42)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog